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Abstract. 

   Black holes, thermodynamics and entropy are three topics which both 

separately and together raise several quite deep and serious questions which 

need to be addressed. Here an attempt is made to highlight some of these issues 

and to indicate a possible linkage between the accepted entropy expression for 

a black hole and the paradox linked to black holes and information loss.  
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Introduction. 

 

   The recently published article Comment on ‘What Information Loss is 

Not’[1] proved to be an interesting and informative read but it also provoked 

several thoughts concerning the inter-relation of the three topics mentioned in 

the title to this note– black holes, thermodynamics and entropy. All three 

separately provide much food for thought but, when considered together, the 

thoughts and queries become overwhelming – what is a black hole?, do black 

holes exist?, how does thermodynamics fit into the picture?, what is entropy?, 

and possibly most important of all, are the entropies alluded to in 

thermodynamics, in statistical mechanics and in information theory identical 

functions? The purpose of this note is to highlight these questions but not 

necessarily provide concrete answers to all, as well as to point out that the 

paradox linked with black holes and information loss may be linked to the 

commonly accepted entropy expression for such bodies. 

 

 Black Holes. 

 

   In 1784, John Michell [2] first derived an expression, using Newtonian 

mechanics, for the mass-radius ratio of a spherical body having an escape 

speed equal to, or greater than, the speed of light. Such a body as Michell 

envisaged has erroneously been termed a black hole in the past but it might 

more accurately be termed a dark body since, if such a body exists, it would be 

simply a very dense body which could be approached and, in fact, viewed from 

a suitable distance, unlike the modern notion of a black hole. Obviously, this 

latter comment is in accordance with the usual meaning of a so-called ‘escape 

speed’. 

   However, towards the middle of the last century, the modern idea of a black 

hole appeared. Such a body occurs as a consequence of a singularity apparently 

appearing in the form of the Schwarzschild solution to Einstein’s field 

equations of general relativity for the case of a spherically symmetric mass 

point which appears in most textbooks on general relativity and cosmology [3]. 

Normally, this solution is stated as being either 
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where the universal constant of gravitation, G, and the speed of light, c, have 

both been put equal to unity. Here r, , and  appear to be taken to be normal 

polar co-ordinates. 

   In the above expressions, a mathematical singularity is seen to occur when r 

= 0, as might be expected for polar co-ordinates. However, due to the form of 

the coefficient of dr
2
, it follows that a second mathematical singularity occurs 

when, in the first of the above equations, rc
2
 = 2Gm or, in the second, r = 2m. 

The first singularity is regularly dismissed as being merely a property of polar 

co-ordinates and, therefore, of no physical significance. The second singularity, 

however, tends to have a physical interpretation attributed to it - namely that it 

is said to indicate the existence of a black hole. If this interpretation were valid, 

it would imply that, for an object of mass m and event horizon radius r to be a 

black hole, it would need to satisfy the inequality                  

m/r    c
2
/2G  =  6.7  10

26
 kg/m. 

It is of interest to note that, for Michell’s dark body, the ratio of mass to actual 

radius, rather than radius of the event horizon, formally gives exactly the same 

result [2].  

    These days, claims for the identification of black holes appear fairly 

regularly in the scientific literature. Quite often, the supposed existence of 

massive black holes - is invoked to explain some otherwise puzzling 

phenomenon. However, so far, on no occasion has the postulated object 

satisfied the requirement mentioned earlier that, for a black hole, the ratio of 

the body’s mass to its radius - or more specifically in general relativistic 

language, the radius of its event horizon - must be subject to the restriction 

m/r    6.7   10
26

 kg/m. 

Also, what some regard as the defining feature of a black hole – its event 

horizon – has never been positively identified. 

 

 Black Holes and Thermodynamics. 

.   

     In retrospect, it seems that it was inevitable that the analogy between an 

area theorem for black holes, published by Hawking in 1972, which asserted 

that, in any process involving black holes, the total area of the event horizon 

may only increase, and the established increase in entropy due to thermal 

interactions, was one that could not go unnoticed for long. If a connection was 

to be established, the question remaining was what function of the area was to 

be identified with the entropy of a black hole? The simplest choice compatible 



 

 

with Hawking’s theorem is to set the black hole entropy proportional to the 
area of the event horizon itself.   

    Black holes are said to obey a ‘no–hair’ theorem. This states that black holes 

cannot be distinguished except for their mass, charge and angular momentum. 

In the simplest case of a Schwarzschild black hole, which is uncharged and 

non-rotating, the area of the event horizon is proportional to the so-called 

‘irreducible’, or ‘inextractable’, part of the mass of the black hole. Actually, the 

entropy is postulated to have the form 

,22

mkMS 
 

where M is the ‘irreducible’ mass of the black hole and σm = (ch/2πG)
1/2

 = 2 × 

10
5
 gm is the Planck mass.  

  Actual criticism of the established view has been minimal. However, it has 

been pointed out that, in conventional thermodynamics, the entropy is a first-

order homogeneous function in all the extensive variables and this is not the 

case for this commonly accepted black hole entropy expression. (Here 

extensive variables, such as internal energy, volume and number of particles, 

are those which depend on the size of the particular system; all other variables, 

such as temperature and pressure, are termed intensive variables.) This might 

seem a somewhat trivial point to many people but it is, in fact, a feature which 

has several important consequences. In orthodox thermodynamics, one very 

useful formula is the so-called Gibbs-Duhem equation, which is a relation 

linking all the intensive variables of a system and shows that these variables 

are not all independent of one another. This formula has many important 

consequences and features in the derivation of many other formulae. However, 

the derivation of the Gibbs-Duhem relation itself depends critically on the 

extensive nature of the entropy of the system. Since the proposed black hole 

entropy expression is certainly not extensive in nature, it follows that there is 

no Gibbs-Duhem equation for such a system [4]. Hence, formulae derived by 

using the Gibbs-Duhem relation must be excluded from use also when 

discussing such systems. It is possible that this is a technical point, which may 

be appreciated fully only by the theoretician but it is an important point which 

cannot be over-emphasised. The same argument may be employed when 

considering the derivation of the well-known Einstein – Boltzmann formula for 

the probability of spontaneous fluctuations. This derivation holds no longer 

also. This follows because the Einstein formula implies that the entropy is an 

additive function; that is, if two systems are considered, the entropy of the 

combined system equals the sum of the entropies of the individual systems. 

Alternatively, this may be viewed as meaning that the joint probability of 



 

 

different events reduces to the product of the individual probabilities, implying 
statistical independence; in other words, the product of probability densities is 

tantamount to the sum of the entropies, which is Boltzmann’s principle. Quite 

clearly, this is simply not possible for the present case because of the precise 

nature of Hawking’s area theorem, from which it may be concluded that, if two 

black holes are combined, the entropy of a combined black hole is always 

greater than the sum of the entropies of the individual black holes, excluding 

the case where equality may hold. Hence, the Einstein – Boltzmann formula for 

a spontaneous fluctuation from equilibrium may not be used when considering 

thermodynamic black hole fluctuations. At the very least, this point has not 

been fully appreciated on a number of occasions and the said formula has been 

applied in a number of situations where its use is simply not permissible. 

    The fact that the sum of the areas before collision is not equal to the area 

after collision means that thermodynamic equilibrium may not be achieved. 

Consider two isolated systems at different temperatures. Suppose they are 

placed in thermal contact with one another but isolated from everything else. 

Eventually, in accordance with the zeroth law of thermodynamics, they will 

arrive at a common temperature. During this process, there will have been an 

increase in entropy. However, if the two separate systems had initially been at 

the same temperature, the entropy would not have increased. The above 

mentioned Bekenstein -Hawking expression for the entropy of a black hole is 

unable to cope with this particular, but very important, case since, if M1 and M2 

are the masses of the two black holes, then the mass after the collision is given 

by 

 221 MM     .2

2

2

1 MM   

    Another important consequence of the presently accepted black hole entropy 

expression is that the heat capacity of the system is negative. Although such 

heat capacities are no strangers in astrophysics, inevitably they refer to one 

component, or phase, of a multicomponent, or multiphase, system. In reality a 

black hole must be an open system but it is always treated as a closed system. 

The mass could be written as the product M  =  Nm, where N is the number of 

‘particles’ in the black hole having mass m, but, if N is not conserved, it would 

then be necessary to specify the second phase. Further, it has been shown 

possible for a negative heat capacity in a closed system to lead to a violation of 

the second law of thermodynamics and so, such heat capacities cannot be 

permissible. This point has been strengthened even more by work which 

indicates that it is the mathematical property of concavity of the entropy which 

embodies the essence of the second law. 



 

 

    It might be argued that the second law, as popularly known, does not hold 
for such exotic objects as black holes. This is not a totally unreasonable point 

of view since the said law, although it might be said to have stood the test of 

time, is really a statement of fact based on worldly experience. For the hundred 

and fifty years or so since it was first proposed, people have sought to find 

violations of the second law of thermodynamics, just as they have striven to 

find violations of the first law. The reason for this preoccupation is the lure of 

‘getting something for nothing’, while making massive inroads into the 

problem of solving the world’s energy requirements. It goes without saying 

that, so far, all these efforts have been in vain. However, as pointed out by 

Planck, if units of time, length, and mass that may be constructed from the 

fundamental constants of nature “necessarily retain their significance for all 

times and for all cultures, including extraterrestrial and nonhuman ones, these 

‘natural units’ would retain their natural significance as long as the laws of 

gravitation and the propagation of light in vacuum, and the two laws of 

thermodynamics retain their validity” [5]. Therefore, according to Planck, to 

question universality and the fundamental constants is tantamount to 

questioning the two laws of thermodynamics. Although it might be argued that 

it is not concavity but rather the property of super-additivity that is the true 

stamp of entropy, it only requires one single exception to disprove this 

possibility. That exception is provided by black body radiation which possesses 

a sub-additive entropy. 

   Since black body radiation has been mentioned, it seems worth considering, 

at this point, what happens when a black hole is bathed in black body radiation 

in a closed container. In the Bekenstein-Hawking entropy expression, the 

original dependence is on M, the so-called ‘irreducible’ mass. It is only via use 

of the relation 

E  =  Mc
2
 

that the dependence of the entropy on the energy is established. Hence, for a 

so-called Schwarzschild black hole, the entropy is given by 
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while that of black body radiation is given by 

,
3
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where  is the radiation constant. It needs a little imagination to achieve it but, 

given that, it might be possible to become convinced that the total entropy in 

the container is given by the sum of these two expressions; that is, 
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The constancy of the total energy, E  =  Ebh  +  Ebb, means that dEbh =  - dEbb 

or, in other words, any changes in the black hole entropy must be exactly 

balanced by corresponding changes in the black body entropy. Again, the 

condition for thermal equilibrium demands that any change in the total entropy 

vanishes for arbitrary variations of energy. Hence, 

1/Tbh  =  1/Tbb, 

where, in an obvious notation, Tbh and Tbb represent the black hole and black 

body temperatures respectively. 

   Further, following earlier work, it might seem that 
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is a condition for thermodynamic stability in a system comprising two bodies; 

in this case the two bodies being a black hole and black body radiation. From 

this last inequality, which expresses the concavity of the total entropy, there 

would result 

Ebb    Ebh/4. 
In Hawking’s words, “in order for the configuration of a black hole and 

gravitons to maximise the probability, the volume, V, of the box must be 

sufficiently small that the energy Ebb of the black body gravitons is less than ¼ 

the mass of the black hole”. However, thermodynamics can never place limits 

on the size of the volume or energy above which the system would be unstable. 

Thermodynamics is a ‘black box’ that provides no specific information about 

the system under consideration. An explicit physical model is necessary if 

actual numerical values are to be obtained.  

   In the situation just considered, a system composed of two parts – a black 

hole and black body radiation – was under examination. However, what 

precisely is a composite system? The notion of a composite system was 

introduced by Carathéodory, when he looked at the problems surrounding the 

foundations of thermodynamics at the beginning of the last century, in order to 

avoid considering non-equilibrium states. In fact, he compared two states of 

equilibrium, a more and a less constrained state of thermodynamic equilibrium 

that is achieved from the former by removing a restrictive partition between the 

two subsystems. Here the subsystems must necessarily be of the same type and 

not two different types, such as in the situation considered by Hawking [6]. It 

was claimed that “although the canonical ensemble did not work for black 



 

 

holes, one can still employ a microcanonical ensemble of a large number of 
similar insulated systems each with a fixed energy E”. 

   It should be noted that all the material contained in the foregoing discussion 

is well documented [7]. 

 

Entropy. 

  

   Although thermodynamics is a subject based on phenomena with which all 

are familiar, it is, nevertheless, a topic which causes many worries and 

concerns. Much of this centres around the concept of entropy, possibly because 

it is the one quantity in the introduction to the subject which is not in any way 

part of people’s everyday experience. Hence, as such, an aura of mystery 

surrounds this quantity for most people. If people are more mathematically 

inclined, the problem is less severe since, whatever the approach adopted, the 

entropy is seen to enter the theory merely as the name given to a total 

derivative, where that total derivative equals an inexact differential of the heat 

multiplied by its integrating factor which is the reciprocal of the absolute 

temperature. The problem is exacerbated in all probability by at least two 

modern occurrences:   

(i) the modern tendency to drift away from the origins of the subject 

and so, cease to stress the importance of cycles in the development  

and 

(ii) possible confusion caused by the link between thermodynamics  

and statistical mechanics. 

    As far as the first of these is concerned, it must always be remembered that 

the founding fathers of thermodynamics were closely involved with the 

working of heat engines. The only place in the early development where cycles 

were not involved was in the observations of Rumford. Apart from that, people 

like Carnot derived their inspiration from the practical work of men like Watt 

and Trevithick who were concerned with improving the efficiency of heat 

engines for use in, amongst other places, the Cornish tin mines. Some of 

Carnot’s inspiration came from a desire to help the French catch up with the 

British in this area of production of heat engines. Hence, cycles were a vitally 

important part of the beginnings of thermodynamics and the people who 

pushed it forward and began to give the topic a firm theoretical foundation – 

Thomson (Lord Kelvin), Tait, Clausius [8] – based their work on engines 

working in cycles. It should be noted that the two modern versions of the 

famous statements of the Second Law, that due to Thomson : 



 

 

It is impossible to transform an amount of heat completely 

into work in a cyclic process in the absence of other effects 

and that due to Clausius: 

It is impossible for heat to be transferred by a cyclic process from 

a body to one warmer than itself in the absence of other effects, 

both stress the notion of cyclic processes as well as the absence of effects other 

than those specifically mentioned. It might be noted also that these are the 

fundamental forms of the Second Law. In what follows, mention will be made 

of the possibility of entropy increasing in an irreversible change. It should be 

noted that the property of entropy increase, even if true, is not a statement of 

the Second Law of Thermodynamics; at best, it is merely a deduction from that 

law. 

    The link between thermodynamics and statistical mechanics can also lead to 

problems since, normally, the entropy of thermodynamics is immediately 

equated with the entropy of statistical mechanics. It is obvious to see why such 

an identification should be made, but a moment’s reflection immediately 

identifies serious problems. When the question is considered, it is realised at 

once that the backgrounds of the two entropies are somewhat different; that 

from thermodynamics is purely due to a change in heat, but that in statistical 

mechanics, at first sight at least, is a function related to the statistical 

distribution of the particles under consideration. Possibly even more confusion 

arises due to the modern tendency to link the entropy function associated with 

information theory with those of thermodynamics and statistical mechanics. At 

first sight, because of its mathematical form, this does not seem unreasonable 

but a moment’s reflection indicates concerns. While the possibility of a link 

between the entropy functions of thermodynamics and statistical mechanics 

can be justified, it is far more difficult to do so with the function of information 

theory because there is no immediate link with a change in heat in the 

information theory case. This point cannot be overemphasised; in the 

thermodynamics, an entropy change is irrevocably linked with a change in 

heat. It might be noted that this and other associated points have formed the 

basis of a number of recent articles. [9] 

 

 

 

 

 

 



 

 

References. 

 

1. Cai, Q. Y. et al, Hadronic J. 37, 75 (2014) 

 

2. Michell, J., Phil. Trans R. Soc. 74, 35 (1784) 

 

3. Adler, R., Bazin, M., Schiffer, M., Introduction to General Relativity,                                                                                                                                       

                                          (McGraw-Hill, New York, 1965) 

 

4. Dunning-Davies, J., Trends in Statistical Physics 1, 233 (1994) 

 

5. Planck, M., Ann. der Phys. 4, 553 (1901) 

 

6. Hawking, S. W., Phys. Rev. D. 13, 191 (1976) 

 

7. Dunning-Davies, J., Concise Thermodynamics,  

                             (Albion Publishing, Chichester 1996)  

            Lavenda, B. H., Statistical Thermodynamics, 

                             (John Wiley & Son, Chichester, 1991)  

            Lavenda, B. H., Extreme Value Statistics,  

                             (Albion Publishing, Chichester, 1995)  

            and references cited in these books.  

 

8. P. G. Tait, Sketch of Thermodynamics,  

                 (David Douglas, Edinburgh, 1877) 

            P. G. Tait, Lectures on Physical Science,  

                 (Macmillan & Co., London, 1885) 

           W. F. Magie; The Second Law of Thermodynamics,  

                 (Kessinger Publishing, 1899)                                        

 

9. D. Sands & J. Dunning-Davies in The Physics of Reality, eds. R. L. 

Amoroso, L. H. Kaufmann and P. Rowlands (World Scientific, 2013) 

and references cited there. 

 

 

 


