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Abstract

Warp Drives are solutions of the Einstein Field Equations that allows superluminal travel within
the framework of General Relativity. There are at the present moment two known solutions: The
Alcubierre warp drive discovered in 1994 and the Natario warp drive discovered in 2001. However
the major drawback concerning warp drives is the huge amount of negative energy density able to
sustain the warp bubble.In order to perform an interstellar space travel to a ”nearby” star at 20 light-
years away in a reasonable amount of time a ship must attain a speed of about 200 times faster than
light.However the negative energy density at such a speed is directly proportional to the factor 1048 which
is 1.000.000.000.000.000.000.000.000 times bigger in magnitude than the mass of the planet Earth!!. With
the correct form of the shape function the Natario warp drive can overcome this obstacle at least in
theory.Other drawbacks that affects the warp drive geometry are the collisions with hazardous inter-
stellar matter(asteroids,comets,interstellar dust etc)that will unavoidably occurs when a ship travels at
superluminal speeds and the problem of the Horizons(causally disconnected portions of spacetime).The
geometrical features of the Natario warp drive are the required ones to overcome these obstacles also at
least in theory.
Some years ago the American physicist Harold Puthoff published a very interesting work in the Journal
of the British Interplanetary Society.He theorized about the possibility of the modification of the space-
time geometry by arbitrary advanced civilizations able to generate the so-called metric engineering and
such a modification would be supposed to ”allow” the propulsion of spaceships at superluminal veloci-
ties.However Puthoff used only diagonalized metrics for his analysis and he even quotes the Schwarzschild
metric.In this work we reproduce the Puthoff analysis for the Natario warp drive spacetime and due to
the fact that the Natario warp drive is a non-diagonalized metric due to the presence of both the shift
and Natario vectors our results are different than the ones obtained by Puthoff.However his idea of a
spacetime metric engineering able to distort the spacetime geometry ”allowing” superluminal interstellar
spaceflight is perfectly possible.

∗spacetimeshortcut@yahoo.com
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1 Introduction:

The Warp Drive as a solution of the Einstein field equations of General Relativity that allows superluminal
travel appeared first in 1994 due to the work of Alcubierre.([1]) The warp drive as conceived by Alcu-
bierre worked with an expansion of the spacetime behind an object and contraction of the spacetime in
front.The departure point is being moved away from the object and the destination point is being moved
closer to the object.The object do not moves at all1.It remains at the rest inside the so called warp bubble
but an external observer would see the object passing by him at superluminal speeds(pg 8 in [1])(pg 1 in [2]).

Later on in 2001 another warp drive appeared due to the work of Natario.([2]).This do not expands
or contracts spacetime but deals with the spacetime as a ”strain” tensor of Fluid Mechanics(pg 5 in [2]).
Imagine the object being a fish inside an aquarium and the aquarium is floating in the surface of a river but
carried out by the river stream.The warp bubble in this case is the aquarium whose walls do not expand or
contract. An observer in the margin of the river would see the aquarium passing by him at a large speed
but inside the aquarium the fish is at the rest with respect to his local neighborhoods.

However there are 3 major drawbacks that compromises the warp drive physical integrity as a viable
tool for superluminal interstellar travel.

The first drawback is the quest of large negative energy requirements enough to sustain the warp bubble.
In order to travel to a ”nearby” star at 20 light-years at superluminal speeds in a reasonable amount of
time a ship must attain a speed of about 200 times faster than light.However the negative energy density
at such a speed is directly proportional to the factor 1048 which is 1.000.000.000.000.000.000.000.000 times
bigger in magnitude than the mass of the planet Earth!!!(see [7],[8] and [9]).

Another drawback that affects the warp drive is the quest of the interstellar navigation:Interstellar space is
not empty and from a real point of view a ship at superluminal speeds would impact asteroids,comets,interstellar
space dust and photons.(see [5],[7] and [8]).

The last drawback raised against the warp drive is the fact that inside the warp bubble an astronaut can-
not send signals with the speed of the light to control the front of the bubble because an Horizon(causally
disconnected portion of spacetime)is established between the astronaut and the warp bubble.(see [5],[7]
and [8]).

We can demonstrate that the Natario warp drive can ”easily” overcome these obstacles as a valid can-
didate for superluminal interstellar travel(see [7],[8] and [9]).

In this work we cover only the Natario warp drive and we avoid comparisons between the differences
of the models proposed by Alcubierre and Natario since these differences were already deeply covered by
the existing available literature.(see [5],[6] and [7])However we use the Alcubierre shape function to define
its Natario counterpart.

1do not violates Relativity
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Some years ago the American physicist Harold Puthoff published a very interesting work in the Journal
of the British Interplanetary Society.[10]

He theorized about the possibility of the modification of the spacetime geometry by arbitrary advanced
civilizations able to generate the so-called metric engineering and such a modification would be supposed
to ”allow” the propulsion of spaceships at superluminal velocities(see pg 85 in [10]).

However Puthoff used only diagonalized metrics for his analysis and he even quotes the Schwarzschild
metric.(see pg 83 in [10]).

In this work we reproduce the Puthoff analysis for the Natario warp drive spacetime and due to the
fact that the Natario warp drive is a non-diagonalized metric due to the presence of both the shift and
Natario vectors our results are different than the ones obtained by Puthoff.

However his idea of a spacetime metric engineering able to distort the spacetime geometry ”allowing”
superluminal interstellar spaceflight is perfectly possible.

This work is organized as follows:

• Section 2)-Introduces the Natario warp drive continuous shape function able to low the negative
energy density requirements when a ship travels with a speed of 200 times faster than light.
The negative energy density for such a speed is directly proportional to the factor 1048 which is
1.000.000.000.000.000.000.000.000 times bigger in magnitude than the mass of the planet Earth!!!.

• Section 3)-Introduces the mathematical structure for the equation of the Natario warp drive spacetime
metric outlining its non-diagonalized features due to the presence of both the shift and Natario
vectors.

• Section 4)-Introduces the Puthoff analysis for the Natario warp drive spacetime.The results obtained
by ourselves are radically different than the ones obtained originally by Puthoff.

Natario in its warp drive uses the spherical coordinates rs and θ.In order to simplify our analysis we
consider motion in the x− axis or the equatorial plane rs where θ = 0 sin(θ) = 0 and cos(θ) = 1.(see pgs
4,5 and 6 in [2]).1 + 1 spacetime.

We adopt here the Geometrized system of units in which c = G = 1 for geometric purposes and the
International System of units for energetic purposes
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2 The Natario warp drive continuous shape function

Introducing here f(rs) as the Alcubierre shape function that defines the Alcubierre warp drive spacetime
we can construct the Natario shape function n(rs) that defines the Natario warp drive spacetime using its
Alcubierre counterpart.Below is presented the equation of the Alcubierre shape function.2.

f(rs) =
1
2
[1− tanh[@(rs−R)] (1)

rs =
√

(x− xs)2 + y2 + z2 (2)

According with Alcubierre any function f(rs) that gives 1 inside the bubble and 0 outside the bubble
while being 1 > f(rs) > 0 in the Alcubierre warped region is a valid shape function for the Alcubierre
warp drive.(see eqs 6 and 7 pg 4 in [1] or top of pg 4 in [2]).

In the Alcubierre shape function xs is the center of the warp bubble where the ship resides. R is the
radius of the warp bubble and @ is the Alcubierre parameter related to the thickness.According to Alcu-
bierre these can have arbitrary values.We outline here the fact that according to pg 4 in [1] the parameter
@ can have arbitrary values.rs is the path of the so-called Eulerian observer that starts at the center of
the bubble xs = R = rs = 0 and ends up outside the warp bubble rs > R.

According to Natario(pg 5 in [2]) any function that gives 0 inside the bubble and 1
2 outside the bubble

while being 0 < n(rs) < 1
2 in the Natario warped region is a valid shape function for the Natario warp drive.

The Natario warp drive continuous shape function can be defined by:

n(rs) =
1
2
[1− f(rs)] (3)

n(rs) =
1
2
[1− [

1
2
[1− tanh[@(rs−R)]]]] (4)

This shape function gives the result of n(rs) = 0 inside the warp bubble and n(rs) = 1
2 outside the warp

bubble while being 0 < n(rs) < 1
2 in the Natario warped region.

Note that the Alcubierre shape function is being used to define its Natario shape function counterpart.

For the Natario shape function introduced above it is easy to figure out when f(rs) = 1(interior of
the Alcubierre bubble) then n(rs) = 0(interior of the Natario bubble) and when f(rs) = 0(exterior of the
Alcubierre bubble)then n(rs) = 1

2(exterior of the Natario bubble).

2tanh[@(rs + R)] = 1,tanh(@R) = 1 for very high values of the Alcubierre thickness parameter @ >> |R|
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Another Natario warp drive valid shape function can be given by:

n(rs) = [
1
2
][1− f(rs)WF ]WF (5)

Its derivative square is :

n′(rs)2 = [
1
4
]WF 4[1− f(rs)WF ]2(WF−1)[f(rs)2(WF−1)]f ′(rs)2 (6)

The shape function above also gives the result of n(rs) = 0 inside the warp bubble and n(rs) = 1
2

outside the warp bubble while being 0 < n(rs) < 1
2 in the Natario warped region(see pg 5 in [2]).

Note that like in the previous case the Alcubierre shape function is being used to define its Natario
shape function counterpart. The term WF in the Natario shape function is dimensionless too:it is the
warp factor.It is important to outline that the warp factor WF >> |R| is much greater than the modulus
of the bubble radius.

For the second Natario shape function introduced above it is easy to figure out when f(rs) = 1(interior of
the Alcubierre bubble) then n(rs) = 0(interior of the Natario bubble) and when f(rs) = 0(exterior of the
Alcubierre bubble)then n(rs) = 1

2(exterior of the Natario bubble).

• Numerical plot for the second shape function with @ = 50000 and warp factor with a value WF = 200

rs f(rs) n(rs) f ′(rs)2 n′(rs)2

9, 99970000000E + 001 1 0 2, 650396620740E − 251 0
9, 99980000000E + 001 1 0 1, 915169647489E − 164 0
9, 99990000000E + 001 1 0 1, 383896564748E − 077 0
1, 00000000000E + 002 0, 5 0, 5 6, 250000000000E + 008 3, 872591914849E − 103
1, 00001000000E + 002 0 0, 5 1, 383896486082E − 077 0
1, 00002000000E + 002 0 0, 5 1, 915169538624E − 164 0
1, 00003000000E + 002 0 0, 5 2, 650396470082E − 251 0

• Numerical plot for the second shape function with @ = 75000 and warp factor with a value WF = 200

rs f(rs) n(rs) f ′(rs)2 n′(rs)2

9, 99980000000E + 001 1 0 5, 963392481410E − 251 0
9, 99990000000E + 001 1 0 1, 158345097767E − 120 0
1, 00000000000E + 002 0, 5 0, 5 1, 406250000000E + 009 8, 713331808411E − 103
1, 00001000000E + 002 0 0, 5 1, 158344999000E − 120 0
1, 00002000000E + 002 0 0, 5 5, 963391972940E − 251 0

• Numerical plot for the second shape function with @ = 100000 and warp factor with a value WF =
200

rs f(rs) n(rs) f ′(rs)2 n′(rs)2

9, 99990000000E + 001 1 0 7, 660678807684E − 164 0
1, 00000000000E + 002 0, 5 0, 5 2, 500000000000E + 009 1, 549036765940E − 102
1, 00001000000E + 002 0 0, 5 7, 660677936765E − 164 0
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The plots in the previous page demonstrate the important role of the thickness parameter @ in the warp
bubble geometry wether in both Alcubierre or Natario warp drive spacetimes.For a bubble of 100 meters
radius R = 100 the regions where 1 > f(rs) > 0(Alcubierre warped region) and 0 < n(rs) < 1

2(Natario
warped region) becomes thicker or thinner as @ becomes higher.

Then the geometric position where both Alcubierre and Natario warped regions begins with respect to
R the bubble radius is rs = R − ε < R and the geometric position where both Alcubierre and Natario
warped regions ends with respect to R the bubble radius is rs = R + ε > R

As large as @ becomes as smaller ε becomes too.

Note from the plots of the previous page that we really have two warped regions:

• 1)-The geometrized warped region where 1 > f(rs) > 0(Alcubierre warped region) and 0 < n(rs) < 1
2

(Natario warped region).

• 2)-The energized warped region where the derivative squares of both Alcubierre and Natario shape
functions are not zero.

The parameter @ affects both energized warped regions wether in Alcubierre or Natario cases but is
more visible for the Alcubierre shape function because the warp factor WF in the Natario shape functions
squeezes the energized warped region into a very small thickness.

The negative energy density for the Natario warp drive is given by(see pg 5 in [2])

ρ = Tµνu
µuν = − 1

16π
KijK

ij = − v2
s

8π

[
3(n′(rs))2 cos2 θ +

(
n′(rs) +

r

2
n′′(rs)

)2
sin2 θ

]
(7)

Converting from the Geometrized System of Units to the International System we should expect for
the following expression:

ρ = −c2

G

vs2

8π

[
3(n′(rs))2 cos2 θ +

(
n′(rs) +

rs

2
n′′(rs)

)2
sin2 θ

]
. (8)

Rewriting the Natario negative energy density in cartezian coordinates we should expect for3:

ρ = Tµνu
µuν = −c2

G

v2
s

8π

[
3(n′(rs))2(

x

rs
)2 +

(
n′(rs) +

r

2
n′′(rs)

)2
(

y

rs
)2

]
(9)

3see Appendix D
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In the equatorial plane(1 + 1 dimensional spacetime with rs = x− xs ,y = 0 and center of the bubble
xs = 0):

ρ = Tµνu
µuν = −c2

G

v2
s

8π

[
3(n′(rs))2

]
(10)

Note that in the above expressions the warp drive speed vs appears raised to a power of 2. Considering
our Natario warp drive moving with vs = 200 which means to say 200 times light speed in order to make
a round trip from Earth to a nearby star at 20 light-years away in a reasonable amount of time(in months
not in years) we would get in the expression of the negative energy the factor c2 = (3 × 108)2 = 9 × 1016

being divided by 6, 67× 10−11 giving 1, 35× 1027 and this is multiplied by (6× 1010)2 = 36× 1020 coming
from the term vs = 200 giving 1, 35× 1027 × 36× 1020 = 1, 35× 1027 × 3, 6× 1021 = 4, 86× 1048 !!!

A number with 48 zeros!!!The planet Earth have a mass4 of about 6× 1024kg

This term is 1.000.000.000.000.000.000.000.000 times bigger in magnitude than the mass of the planet
Earth!!!or better:The amount of negative energy density needed to sustain a warp bubble at a speed of 200
times faster than light requires the magnitude of the masses of 1.000.000.000.000.000.000.000.000 planet
Earths!!!

Note that if the negative energy density is proportional to 1048 this would render the warp drive im-
possible but fortunately the square derivative of the Natario shape function possesses values of 10−102

ameliorating the factor 1048 making the warp drive negative energy density more ”affordable”.

Note also that when we define the Natario shape function as being (pg 5 in [2]) any function n(rs) that
gives 0 inside the bubble and 1

2 outside the bubble while being 0 < n(rs) < 1
2 in the Natario warped region

we are defining the shape function n(rs) for a coordinate system frame based on the spaceship placed
inside the bubble at the rest while the remaining Universe outside the bubble passes by the ship with a
speed vs.

On the other hand we need to define a Natario shape function o(rs) that gives 1
2 inside the bubble 0

outside the bubble and 1
2 > o(rs) > 0 in the Natario warped region which represents the Natario shape

function o(rs) defined for a coordinate system frame based on the distant observer in the rest of the Uni-
verse outside the bubble watching the bubble passing by him with a speed vs.

The Natatio shape function for a coordinate system frame based on a distant observer at the rest outside
the bubble is given by:

o(rs) =
1
2
− n(rs) (11)

From above it is easy to see that when n(rs) = 0,o(rs) = 1
2 (inside the bubble) and when n(rs) =

1
2 ,o(rs) = 0 (outside the bubble).

4see Wikipedia:The free Encyclopedia
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3 The equation of the Natario warp drive spacetime metric

The warp drive spacetime according to Natario for the coordinates rs and θ is defined by the following
equation:(see Appendix A for details )

ds2 = [1− (Xrs)2 − (Xθ)2]dt2 + 2[Xrsdrs + Xθrsdθ]dt− drs2 − rs2dθ2 (12)

The expressions for Xrs and Xθ are given by:(see pg 5 in [2],see also Appendix B for details)

Xrs = −2vsn(rs) cos θ (13)

Xrs = 2vsn(rs) cos θ (14)

Xθ = vs(2n(rs) + (rs)n′(rs)) sin θ (15)

Xθ = −vs(2n(rs) + (rs)n′(rs)) sin θ (16)

Looking both the equation of the Natario warp drive and the equation of the Natario vector nX(pg 2
and 5 in [2]):

ds2 = [1− (Xrs)2 − (Xθ)2]dt2 + 2[Xrsdrs + Xθrsdθ]dt− drs2 − rs2dθ2 (17)

nX = Xrsdrs + Xθrsdθ (18)

We can see that the Natario vector is completely inserted twice in the non-diagonalized components of
the metric of the Nayario warp drive equation which gives:

g01 = g10 = Xrs = 2vsn(rs) cos θ (19)

g02 = g20 = Xθrs = −vs(2n(rs) + (rs)n′(rs))rs sin θ (20)

Since we have two sets of non-diagonalized components in the Natario warp drive equation and each
set possesses equal components of the Natario vector nX this is the reason why the Natario vector nX
appears twice in the Natario warp drive equation.

The diagonalized components of the metric of the Natario warp drive equation are given by:

g00 = 1− (Xrs)2 − (Xθ)2 = 1− (2vsn(rs) cos θ)2 − (−vs(2n(rs) + (rs)n′(rs)) sin θ)2 (21)

The term (−vs(2n(rs) + (rs)n′(rs)) sin θ)2 = (vs(2n(rs) + (rs)n′(rs)) sin θ)2

g00 = 1− (Xrs)2 − (Xθ)2 = 1− (2vsn(rs) cos θ)2 − (vs(2n(rs) + (rs)n′(rs)) sin θ)2 (22)
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g11 = −1 (23)

g22 = −rs2 (24)

Considering a valid n(rs) as a Natario shape function being n(rs) = 1
2 for large rs(outside the warp

bubble) and n(rs) = 0 for small rs(inside the warp bubble) while being 0 < n(rs) < 1
2 in the walls of the

warp bubble also known as the Natario warped region(pg 5 in [2]):

We can see that the Natario warp drive equation given in the previous page satisfies the Natario re-
quirements for a warp bubble defined by:

any Natario vector nX generates a warp drive spacetime if nX = 0 and X = vs = 0 for a small value of rs
defined by Natario as the interior of the warp bubble and nX = −vs(t)dx or nX = vs(t)dx with X = vs
for a large value of rs defined by Natario as the exterior of the warp bubble with vs(t) being the speed of
the warp bubble.(pg 4 in [2])

The statement above can be explained in the following way:

Consider again the Natario vector nX(pg 2 and 5 in [2]) defined below as:

nX = Xrsdrs + Xθrsdθ (25)

The components of the Natario vector nX are Xrs and Xθ.These are the shift vectors.Then a Natario
vector is constituted by one or more shift vectors.

When the Natario shape function n(rs) = 0 inside the bubble then Xrs = 2vsn(rs) cos θ = 0 and
Xθ = −vs(2n(rs) + (rs)n′(rs)) sin = 0.Then inside the bubble both shift vectors are zero resulting in
a zero Natario vector.

When the Natario shape function n(rs) = 1
2 outside the bubble then Xrs = 2vsn(rs) cos θ = vs cos θ

and Xθ = −vs(2n(rs) + (rs)n′(rs)) sin θ = −vs sin θ.Then outside the bubble both shift vectors are not
zero resulting in a not zero Natario vector.

Natario in its warp drive uses the spherical coordinates rs and θ.In order to simplify our analysis we
consider motion in the x− axis or the equatorial plane rs where θ = 0 sin(θ) = 0 and cos(θ) = 1.(see pgs
4,5 and 6 in [2]).

The Natario warp drive equation and the Natario vector nX in the equatorial plane 1 + 1 spacetime
now becomes:

ds2 = [1− (Xrs)2]dt2 + 2[Xrsdrs]dt− drs2 (26)

nX = Xrsdrs (27)

Note that the Natario vector nX is still inserted twice in the Natario warp drive equation due to the
2 remaining non-diagonalized components which are:
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g01 = g10 = Xrs = 2vsn(rs) (28)

When the Natario shape function n(rs) = 0 inside the bubble then the shift vector Xrs = 2vsn(rs) = 0
.Then inside the bubble the shift vector Xrs = 0 is zero resulting in a zero Natario vector.

When the Natario shape function n(rs) = 1
2 outside the bubble then the shift vector Xrs = 2vsn(rs) = vs

.Then outside the bubble both shift and Natario vectors are not zero and the shift vector is equal to the
bubble speed vs Xrs = vs.

The above statements explain the Natario affirmation of X = 0 inside the bubble and X = vs out-
side the bubble.(pg 4 in [2])

The diagonalized components of the metric of the Natario warp drive equation are given by:

g00 = 1− (Xrs)2 = 1− (2vsn(rs))2 (29)

g11 = −1 (30)

The results above are valid for a ship frame coordinates system.

The Natario warp drive equation and the Natario vector nX in the equatorial plane 1 + 1 spacetime
for a remote frame coordinates system now becomes:

ds2 = [1− (Xrs)2]dt2 + 2[Xrsdrs]dt− drs2 (31)

nX = Xrsdrs (32)

Note that the Natario vector nX is still inserted twice in the Natario warp drive equation due to the
2 remaining non-diagonalized components which are:

g01 = g10 = Xrs = 2vso(rs) (33)

When the Natario shape function o(rs) = 1
2 inside the bubble then the shift vector Xrs = 2vso(rs) = vs

.Then inside the bubble the shift and Natario vectors are not zero and the shift vector is equal to the bubble
speed vs Xrs = vs.

When the Natario shape function o(rs) = 0 outside the bubble then the shift vector Xrs = 2vso(rs) = 0
.Then outside the bubble both shift and Natario vectors are zero.

The diagonalized components of the metric of the Natario warp drive equation are given by:

g00 = 1− (Xrs)2 = 1− (2vso(rs))2 (34)

g11 = −1 (35)
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We have two different physical situations here considering two different coordinate frames:

• 1)-Coordinates frame based on the ship inside the bubble

Note that when we define the Natario shape function as being (pg 5 in [2]) any function n(rs) that gives
0 inside the bubble and 1

2 outside the bubble while being 0 < n(rs) < 1
2 in the Natario warped region we

are defining the shape function n(rs) for a coordinate system frame based on the spaceship placed inside
the bubble at the rest while the remaining Universe outside the bubble passes by the ship with a speed vs.

When the Natario shape function n(rs) = 0 inside the bubble then the shift vector Xrs = 2vsn(rs) = 0
.Then inside the bubble the shift vector is zero resulting in a zero Natario vector.Xrs = 0
When the Natario shape function n(rs) = 1

2 outside the bubble then the shift vector Xrs = 2vsn(rs) = vs

.Then outside the bubble both shift and Natario vectors are not zero and the shift vector is equal to the
bubble speed vs.Xrs = vs

• 2)-Coordinates frame based on the remote observer outside the bubble

We need to define a Natario shape function o(rs) that gives 1
2 inside the bubble 0 outside the bubble

and 1
2 > o(rs) > 0 in the Natario warped region which represents the Natario shape function o(rs) defined

for a coordinate system frame based on the distant observer in the rest of the Universe outside the bubble
watching the bubble passing by him with a speed vs.

When the Natario shape function o(rs) = 1
2 inside the bubble then the shift vector Xrs = 2vso(rs) = vs

.Then inside the bubble the shift and Natario vectors are not zero zero and the shift vector is equal to the
bubble speed vs.Xrs = vs
When the Natario shape function o(rs) = 0 outside the bubble then the shift vector Xrs = 2vso(rs) = 0
.Then outside the bubble both shift and Natario vectors are zero.Xrs = 0
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4 The analysis of Harold Puthoff applied to the Natario warp drive
spacetime: Can the spacetime metric engineering be really used for
superluminal interstellar spaceflight??

Some years ago Harold Puthoff published a work [10] about the possibility of the modification of the
spacetime geometry by arbitrary advanced civilizations able to generate the so-called metric engineering
and such a modification would be supposed to ”allow” the propulsion of spaceships at superluminal veloc-
ities(see pg 85 in [10]).

However Puthoff used only diagonalized metrics for his analysis and he even quotes the Schwarzschild
metric.(see pg 83 in [10]).

Puthoff also introduced a coefficient for the metric engineering that would make an observer subluminal
in an interior reference frame(a ship frame) appears superluminal when seen by an observer in an exterior
reference frame (a remote observer outside the spacetime distortion watching the spaceship passing by him).

The Puthoff metric engineering coefficient(pmc) is given by the following expression:(see pg 85 in [10])

pmc =
√

g00

−g11
(36)

The analysis of Puthoff may be correct for diagonalized metrics however the Natario warp drive is a
non-diagonalized metric due to the presence of both the shift and the Natario vectors.

We are about the develop the Puthoff analysis for the Natario warp drive in a 1 + 1 spacetime:

• 1)-spacetime metric tensor components for the Natario warp drive in a ship frame based coordinates
system:

g01 = g10 = Xrs = 2vsn(rs) (37)

g00 = 1− (Xrs)2 = 1− (2vsn(rs))2 (38)

g11 = −1 (39)

• 2)–spacetime metric tensor components for the Natario warp drive in a remote frame based coordi-
nates system:

g01 = g10 = Xrs = 2vso(rs) (40)

g00 = 1− (Xrs)2 = 1− (2vso(rs))2 (41)

g11 = −1 (42)
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• A)-Puthoff analysis for the Natario warp drive in a ship frame based coordinates system:

In a ship frame based coordinates system the Natario shape function n(rs) is 0 inside the bubble and 1
2

outside the bubble while being 0 < n(rs) < 1
2 in the Natario warped region.The shift and Natario vectors

X and nX are 0 inside the bubble and the shift vector is equal to vs outside the bubble.

This is due to the fact that the ship is at the rest in its own reference frame then X = 0 and the ob-
server inside the bubble sees the remaining Universe outside the bubble passing by him with a relative
speed vs.Then the observer inside the bubble sees the shift and Natario vectors outside the bubble with
non-null values and the shift vector with a value X = vs.

• A1)-measures for the spacetime metric components taken inside the bubble.n(rs) = 0.ship frame
based coordinates system:

g01 = g10 = Xrs = 2vsn(rs) = 0 (43)

g00 = 1− (Xrs)2 = 1− (2vsn(rs))2 = 1 (44)

• A2)-measures for the spacetime metric components taken outside the bubble.n(rs) = 1
2 .ship frame

based coordinates system:

g01 = g10 = Xrs = 2vsn(rs) = vs (45)

g00 = 1− (Xrs)2 = 1− (2vsn(rs))2 = 1− vs2 (46)

• A3)-measures for the spacetime metric components taken in the Natario warped region.0 < n(rs) <
1
2 .ship frame based coordinates system:

g01 = g10 = Xrs = 2vsn(rs) < vs (47)

g00 = 1− (Xrs)2 = 1− (2vsn(rs))2 < 1− vs2 (48)

Examining the Appendix C we have an artistic presentation of a spaceship inside a Natario warp bub-
ble.The ship is at the rest inside the bubble while the rest of the Universe passes by the ship with a relative
speed vs.So inside the bubble the shift vector Xrs = 0 and outside the bubble the shift vector Xrs = vs
and in the Natario warped region (the blue circle) 0 < Xrs < vs.

Remember that we the adopted the geometrized system of units for geometrical purposes so we use the
units c = G = 1.

Then we have 3 different types of bubble velocity vs:

• 1)-bubble at subluminal velocity vs < 1

• 2)-bubble at luminal velocity vs = 1

• 3)-bubble at superluminal velocity vs > 1
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• A1.1)-measures for the spacetime metric components taken inside the bubble.n(rs) = 0.ship frame
based coordinates system:bubble at subluminal velocity vs < 1

g01 = g10 = Xrs = 2vsn(rs) = 0 (49)

g00 = 1− (Xrs)2 = 1− (2vsn(rs))2 = 1 (50)

• A2.1)-measures for the spacetime metric components taken outside the bubble.n(rs) = 1
2 .ship frame

based coordinates system:bubble at subluminal velocity vs < 1

g01 = g10 = Xrs = 2vsn(rs) = vs < 1 (51)

g00 = 1− (Xrs)2 = 1− (2vsn(rs))2 = 1− vs2 < 1 (52)

g00 = 1− (Xrs)2 = 1− (2vsn(rs))2 = 1− vs2 > 0 (53)

• A3.1)-measures for the spacetime metric components taken in the Natario warped region.0 < n(rs) <
1
2 .ship frame based coordinates system:bubble at subluminal velocity vs < 1

g01 = g10 = Xrs = 2vsn(rs) < vs (54)

g01 = g10 = Xrs = 2vsn(rs) < 1 (55)

g00 = 1− (Xrs)2 = 1− (2vsn(rs))2 < 1− vs2 (56)

g00 = 1− (Xrs)2 = 1− (2vsn(rs))2 < 1 (57)

g00 = 1− (Xrs)2 = 1− (2vsn(rs))2 > 0 (58)

Note that in this case inside the bubble we recover the flat spacetime g00 = 1 while outside the bubble
g00 < 1 however g00 > 0.It is very important to outline that in this case outside the bubble g00 > 0
always.Note that the conditions outside the bubble are the same ones for the Natario warped region.

Note that we found for a spacetime obtained by metric engineering (the Natario warp drive) a value
g00 < 1 but g00 > 0 while Puthoff found a result of g00 > 1 for a metric engineered spacetime.(see table 1
pg 84 in [10])

And remember that we are working with a non-diagonalized metric but at subluminal speeds.
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• A1.2)-measures for the spacetime metric components taken inside the bubble.n(rs) = 0.ship frame
based coordinates system:bubble at luminal velocity vs = 1

g01 = g10 = Xrs = 2vsn(rs) = 0 (59)

g00 = 1− (Xrs)2 = 1− (2vsn(rs))2 = 1 (60)

• A2.2)-measures for the spacetime metric components taken outside the bubble.n(rs) = 1
2 .ship frame

based coordinates system:bubble at luminal velocity vs = 1

g01 = g10 = Xrs = 2vsn(rs) = vs = 1 (61)

g00 = 1− (Xrs)2 = 1− (2vsn(rs))2 = 1− vs2 = 0 (62)

• A3.2)-measures for the spacetime metric components taken in the Natario warped region.0 < n(rs) <
1
2 .ship frame based coordinates system:bubble at luminal velocity vs = 1

g01 = g10 = Xrs = 2vsn(rs) < vs (63)

g01 = g10 = Xrs = 2vsn(rs) < 1 (64)

g00 = 1− (Xrs)2 = 1− (2vsn(rs))2 < 1− vs2 (65)

g00 = 1− (Xrs)2 = 1− (2vsn(rs))2 < 1 (66)

g00 = 1− (Xrs)2 = 1− (2vsn(rs))2 > 0 (67)

Note that in this case inside the bubble we also recover the flat spacetime g00 = 1. Note that the
conditions of the Natario warped region g00 < 1 g00 > 0 and the conditions inside the bubble are equal to
the ones of the previous case..

But outside the bubble g00 = 0.It is very important to outline that in this case outside the bubble g00 = 0
always.

A g00 = 0 in the Schwarzschild metric results in an Event Horizon.Exactly what happens here with a
warp bubble at luminal speeds. In the end of the warped region and in the beginning of the region outside
the bubble (end of the blue circle in the Appendix C) an Event Horizon forms when the bubble moves at
luminal seeds.

Note that we found for a spacetime obtained by metric engineering (the Natario warp drive) a value
g00 < 1 but g00 > 0 for the Natario warped region and we found an Event Horizon for the region outside
the bubble g00 = 0 while Puthoff found a result of g00 > 1 for a metric engineered spacetime.(see table 1
pg 84 in [10])

And remember that we are working with a non-diagonalized metric but at luminal speeds.
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• A1.3)-measures for the spacetime metric components taken inside the bubble.n(rs) = 0.ship frame
based coordinates system:bubble at superluminal velocity vs > 1

g01 = g10 = Xrs = 2vsn(rs) = 0 (68)

g00 = 1− (Xrs)2 = 1− (2vsn(rs))2 = 1 (69)

• A2.3)-measures for the spacetime metric components taken outside the bubble.n(rs) = 1
2 .ship frame

based coordinates system:bubble at suoerluminal velocity vs > 1

g01 = g10 = Xrs = 2vsn(rs) = vs > 1 (70)

g00 = 1− (Xrs)2 = 1− (2vsn(rs))2 = 1− vs2 < 1 (71)

g00 = 1− (Xrs)2 = 1− (2vsn(rs))2 = 1− vs2 < 0 (72)

• A3.3)-measures for the spacetime metric components taken in the Natario warped region.0 < n(rs) <
1
2 .ship frame based coordinates system:bubble at superluminal velocity vs > 1

g01 = g10 = Xrs = 2vsn(rs) < vs (73)

g01 = g10 = Xrs = 2vsn(rs) <= 1 (74)

g00 = 1− (Xrs)2 = 1− (2vsn(rs))2 < 1− vs2 (75)

g00 = 1− (Xrs)2 = 1− (2vsn(rs))2 < 1 (76)

g00 = 1− (Xrs)2 = 1− (2vsn(rs))2 = 0 (77)

g00 = 1− (Xrs)2 = 1− (2vsn(rs))2 < 0 (78)

Like in the previous cases inside the bubble we also recover the flat spacetime g00 = 1.

Outside the bubble in this physical situation we have a striking feature:g00 < 0.
Now g00 becomes negative.Then the term

√
g00 in the Puthoff metric engineering coefficient(pmc) given by

the following expression:(see pg 85 in [10])

pmc =
√

g00

−g11
(79)

becomes imaginary.The Puthoff analysis cannot be applied to the Natario warp drive at superluminal
speeds because the metric is non-diagonalized.
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But the most remarkable physical situation for the Natario warp bubble at superluminal speeds (vs > 1)
occurs in the Natario warped region:

We already know that inside the bubble the shift vector Xrs = 0 and outside the bubble the shift vector
Xrs = vs and in the Natario warped region 0 < Xrs < vs and in the superluminal case vs > 1.Assuming
a continuous growth of Xrs from 0 to vs and since in this case vs > 1 then in a certain moment Xrs = 1
and in consequence g00 = 1− (Xrs)2 = 0 .

An Event Horizon g00 = 0 is established but now inside the Natario warped region.(In the contours of
the blue circle in Appendix C).

The point inside the Natario warped region where the Event Horizon occurs is the point where the Natario
shape function have the following value:

g00 = 1− (Xrs)2 = 1− (2vsn(rs))2 = 0 (80)

1 = (2vsn(rs))2 99K 1 = 2vsn(rs) (81)

n(rs) =
1

2vs
(82)

Remember that the Natario shape function n(rs) in the Natario warped region possesses the values
0 < n(rs) < 1

2 and 1
2vs is still far from 1

2 like a luminal speed 1 is still far from a superluminal speed vs > 1.
Then in the part of the Natario warped region where 1

2vs < n(rs) < 1
2 which means to say the part

of the Natario warped region beyond the Event Horizon from the point of view of a ship frame coordi-
nates inside the bubble where g00 = 1 − (Xrs)2 = 1 − (2vsn(rs))2 < 0 we have again negative values for
g00 and with a g00 < 0 the term

√
g00 in the Puthoff metric engineering coefficient becomes again imaginary.

Then in the Natario warped region for the superluminal case we have two relevant physical situations:

• 1)-g00 = 0.Existence of the Event Horizon.

• 2)-g00 < 0.A g00 negative makes the term
√

g00 imaginary

The Puthoff analysis cannot be applied to the Natario warp drive at superluminal speeds because the
metric is non-diagonalized.
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• B)-Puthoff analysis for the Natario warp drive in a remote frame based coordinates system outside
the bubble:

In a remote frame based coordinates system the Natario shape function o(rs) is 0 outside the bubble
and 1

2 inside the bubble while being 0 < o(rs) < 1
2 in the Natario warped region.The shift and Natario

vectors X and nX are 0 outside the bubble and the shift vector is equal to vs inside the bubble.

This is due to the fact that the ship is passing by a remote observer at the rest outside the bubble
watching the ship moving with a speed vs relative to him.Then the remote observer measures a shift vec-
tor X = vs for the ship inside the bubble while measuring a shift vector X = 0 for him and in its local
neighborhoods outside the bubble.

• B1)-measures for the spacetime metric components taken outside the bubble.o(rs) = 0.remote frame
based coordinates system:

g01 = g10 = Xrs = 2vso(rs) = 0 (83)

g00 = 1− (Xrs)2 = 1− (2vso(rs))2 = 1 (84)

• B2)-measures for the spacetime metric components taken inside the bubble.o(rs) = 1
2 .remote frame

based coordinates system:

g01 = g10 = Xrs = 2vso(rs) = vs (85)

g00 = 1− (Xrs)2 = 1− (2vso(rs))2 = 1− vs2 (86)

• B3)-measures for the spacetime metric components taken in the Natario warped region.0 < o(rs) <
1
2 .remote frame based coordinates system:

g01 = g10 = Xrs = 2vso(rs) < vs (87)

g00 = 1− (Xrs)2 = 1− (2vso(rs))2 < 1− vs2 (88)

It is easy to see that this physical situation for the remote frame observer outside the bubble is exactly
the opposite of the situation of the ship frame observer inside the bubble previously discussed.The region
inside the bubble for a ship frame observer corresponds to the region outside the bubble for a remote frame
observer and the region outside the bubble for a ship frame observer corresponds to the region inside the
bubble for a remote frame observer.

It is also easy to see that in this case of the remote frame coordinates system when vs = 1 the Event
Horizon will appear and when vs > 1 g00 < 0 makings the term

√
g00 imaginary.
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5 Conclusion:

In this work we demonstrated the analysis of Harold Puthoff applied to the Natario warp drive spacetime.

In section 2 we presented two Natario shape functions and while one of them makes the Natario warp
drive impossible to be physically achieved due to high negative energy density requirements the other
makes the Natario warp drive perfectly possible to be achieved because this shape function have a form
that allows low and ”affordable” negative energy density requirements.Then the form of the shape func-
tions affects the behavior of the Natario warp drive spacetime specially in the Natario warped region.(See
[8] and [9])

We also introduced in section 3 the mathematical structure of the equation of the Natario warp drive space-
time metric outlining the importance of the shift and Natario vectors presented in this non-diagonalized
metric with the shift vector being the non-diagonalized component in the spacetime metric tensor for the
Natario warp drive.

In section 4 we discuss the Puthoff analysis presented in [10] applied to the Natario warp drive space-
time.While Puthoff uses only diagonalized metrics for his analysis and he even quotes the Schwarzschild
metric.(see pg 83 in [10]) and also uses a result of g00 > 1 for a metric engineered spacetime(see table 1 pg
84 in [10]) designed to satisfy the Puthoff coefficient with the term

√
g00 in the Puthoff metric engineering

coefficient(see pg 85 in [10]) being always real we found that for the Natario warp drive spacetime at sub-
luminal speeds the term g00 < 1 but g00 > 0.At luminal speeds outside the bubble g00 = 0 and an Event
Horizon is formed.At superluminal speeds the Event Horizon also appears but inside the middle layers of
the Natario warped region and in the outermost layers of the Natario warped region the term g00 < 0
making the term

√
g00 imaginary.

Of course our results are very different than the ones obtained by Puthoff:This is due to the fact that
the Natario warp drive spacetime is a non-diagonalized metric and the presence of both shift and Natario
vectors alters the result of the analysis.

About the possibility of the modification of the spacetime geometry by arbitrary advanced civilizations
able to generate the so-called metric engineering in order for such a modification ”allow” the propulsion
of spaceships at superluminal velocities(see pg 85 in [10]) as described by Puthoff considering the Natario
warp drive spacetime then the advanced civilizations must discover a way to generate reasonable outputs
of negative energy density.While mathematically we can get arbitrarily low amounts of negative energy
density as described in [8] we now know that the total amount of negative energy density able to sustain
a warp bubble with a spaceship inside must be a fraction of the total spaceship mass as described in [9].

The Event Horizon described here resembles the Horizon problem generated by causally disconnected por-
tions of spacetime as described in [5],[7] and [8].Any advanced civilization in order to have a Natario warp
drive able to achieve superluminal speeds must overcome the Horizon problem using a solution perhaps
similar to the one described in [7] and [8].
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With the problems of negative energy density and Horizons solved then the modification of the space-
time geometry by arbitrary advanced civilizations able to generate the so-called metric engineering in order
for such a modification ”allow” the propulsion of spaceships at superluminal velocities(see pg 85 in [10])
as described by Puthoff is perfectly possible.

But unfortunately although we can discuss mathematically how to generate the negative energy den-
sity to sustain a warp drive we dont know how to generate the shape function that distorts the spacetime
geometry creating the warp drive effect.So unfortunately all the discussions about warp drives are still
under the domain of the mathematical conjectures.

However we are confident to affirm that the Natario warp drive will survive the passage of the Cen-
tury XXI and will arrive to the Future.The Natario warp drive as a valid candidate for faster than light
interstellar space travel will arrive to the the Century XXIV on-board the future starships up there in
the middle of the stars helping the human race to give his first steps in the exploration of our Galaxy

Live Long And Prosper
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6 Appendix A:mathematical demonstration of the Natario warp drive
equation for a constant speed vs

The warp drive spacetime according to Natario is defined by the following equation but we changed the
metric signature from (−,+,+,+) to (+,−,−,−)(pg 2 in [2])

ds2 = dt2 −
3∑

i=1

(dxi −Xidt)2 (89)

where Xi is the so-called shift vector.This shift vector is the responsible for the warp drive behavior
defined as follows(pg 2 in [2]):

Xi = X, Y, Z y i = 1, 2, 3 (90)

The warp drive spacetime is completely generated by the Natario vector nX(pg 2 in [2])

nX = Xi ∂

∂xi
= X

∂

∂x
+ Y

∂

∂y
+ Z

∂

∂z
, (91)

Defined using the canonical basis of the Hodge Star in spherical coordinates as follows(pg 4 in [2]):

er ≡
∂

∂r
∼ dr ∼ (rdθ) ∧ (r sin θdϕ) (92)

eθ ≡
1
r

∂

∂θ
∼ rdθ ∼ (r sin θdϕ) ∧ dr (93)

eϕ ≡
1

r sin θ

∂

∂ϕ
∼ r sin θdϕ ∼ dr ∧ (rdθ) (94)

Redefining the Natario vector nX as being the rate-of-strain tensor of fluid mechanics as shown below(pg
5 in [2]):

nX = Xrer + Xθeθ + Xϕeϕ (95)

nX = Xrdr + Xθrdθ + Xϕr sin θdϕ (96)

ds2 = dt2 −
3∑

i=1

(dxi −Xidt)2 (97)

Xi = r, θ, ϕ y i = 1, 2, 3 (98)

We are interested only in the coordinates r and θ according to pg 5 in [2])

ds2 = dt2 − (dr −Xrdt)2 − (rdθ −Xθdt)2 (99)

(dr −Xrdt)2 = dr2 − 2Xrdrdt + (Xr)2dt2 (100)
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(rdθ −Xθdt)2 = r2dθ2 − 2Xθrdθdt + (Xθ)2dt2 (101)

ds2 = dt2 − (Xr)2dt2 − (Xθ)2dt2 + 2Xrdrdt + 2Xθrdθdt− dr2 − r2dθ2 (102)

ds2 = [1− (Xr)2 − (Xθ)2]dt2 + 2[Xrdr + Xθrdθ]dt− dr2 − r2dθ2 (103)

making r = rs we have the Natario warp drive equation:

ds2 = [1− (Xrs)2 − (Xθ)2]dt2 + 2[Xrsdrs + Xθrsdθ]dt− drs2 − rs2dθ2 (104)

According with the Natario definition for the warp drive using the following statement(pg 4 in [2]):any
Natario vector nX generates a warp drive spacetime if nX = 0 and X = vs = 0 for a small value of rs
defined by Natario as the interior of the warp bubble and nX = −vs(t)dx or nX = vs(t)dx with X = vs
for a large value of rs defined by Natario as the exterior of the warp bubble with vs(t) being the speed of
the warp bubble

The expressions for Xrs and Xθ are given by:(see pg 5 in [2]).See also Appendix B.

nX ∼ −2vsn(rs) cos θers + vs(2n(rs) + (rs)n′(rs)) sin θeθ (105)

nX ∼ 2vsn(rs) cos θers − vs(2n(rs) + (rs)n′(rs)) sin θeθ (106)

nX ∼ −2vsn(rs) cos θdrs + vs(2n(rs) + (rs)n′(rs)) sin θrsdθ (107)

nX ∼ 2vsn(rs) cos θdrs− vs(2n(rs) + (rs)n′(rs)) sin θrsdθ (108)

But we already know that the Natario vector nX is defined by(pg 2 and 5 in [2]):

nX = Xrsdrs + Xθrsdθ (109)

Hence we should expect for:

Xrs = −2vsn(rs) cos θ (110)

Xrs = 2vsn(rs) cos θ (111)

Xθ = vs(2n(rs) + (rs)n′(rs)) sin θ (112)

Xθ = −vs(2n(rs) + (rs)n′(rs)) sin θ (113)
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Looking both the equation of the Natario warp drive and the equation of the Natario vector nX(pg 2
and 5 in [2]):

ds2 = [1− (Xrs)2 − (Xθ)2]dt2 + 2[Xrsdrs + Xθrsdθ]dt− drs2 − rs2dθ2 (114)

nX = Xrsdrs + Xθrsdθ (115)

We can see that the Natario vector is completely inserted twice in the non-diagonalized components of
the metric of the Nayario warp drive equation which gives:

g01 = g10 = Xrs = 2vsn(rs) cos θ (116)

g02 = g20 = Xθrs = −vs(2n(rs) + (rs)n′(rs))rs sin θ (117)

Since we have two sets of non-diagonalized components in the Natario warp drive equation and each
set possesses equal components of the Natario vector nX this is the reason why the Natario vector nX
appears twice in the Natario warp drive equation.

The diagonalized components of the metric of the Natario warp drive equation are given by:

g00 = 1− (Xrs)2 − (Xθ)2 = 1− (2vsn(rs) cos θ)2 − (−vs(2n(rs) + (rs)n′(rs)) sin θ)2 (118)

The term (−vs(2n(rs) + (rs)n′(rs)) sin θ)2 = (vs(2n(rs) + (rs)n′(rs)) sin θ)2

g00 = 1− (Xrs)2 − (Xθ)2 = 1− (2vsn(rs) cos θ)2 − (vs(2n(rs) + (rs)n′(rs)) sin θ)2 (119)

g11 = −1 (120)

g22 = −rs2 (121)

Considering a valid n(rs) as a Natario shape function being n(rs) = 1
2 for large rs(outside the warp

bubble) and n(rs) = 0 for small rs(inside the warp bubble) while being 0 < n(rs) < 1
2 in the walls of the

warp bubble also known as the Natario warped region(pg 5 in [2]):

We can see that the Natario warp drive equation given above satisfies the Natario requirements for a
warp bubble defined by:

any Natario vector nX generates a warp drive spacetime if nX = 0 and X = vs = 0 for a small value of rs
defined by Natario as the interior of the warp bubble and nX = −vs(t)dx or nX = vs(t)dx with X = vs
for a large value of rs defined by Natario as the exterior of the warp bubble with vs(t) being the speed of
the warp bubble.(pg 4 in [2])

The statement above can be explained in the following way:
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Consider again the Natario vector nX(pg 2 and 5 in [2]) defined below as:

nX = Xrsdrs + Xθrsdθ (122)

The components of the Natario vector nX are Xrs and Xθ.These are the shift vectors.Then a Natario
vector is constituted by one or more shift vectors.

When the Natario shape function n(rs) = 0 inside the bubble then Xrs = 2vsn(rs) cos θ = 0 and
Xθ = −vs(2n(rs) + (rs)n′(rs)) sin = 0.Then inside the bubble both shift vectors are zero resulting in
a zero Natario vector.

When the Natario shape function n(rs) = 1
2 outside the bubble then Xrs = 2vsn(rs) cos θ = vs cos θ

and Xθ = −vs(2n(rs) + (rs)n′(rs)) sin θ = −vs sin θ.Then outside the bubble both shift vectors are not
zero resulting in a not zero Natario vector.

Natario in its warp drive uses the spherical coordinates rs and θ.In order to simplify our analysis we
consider motion in the x− axis or the equatorial plane rs where θ = 0 sin(θ) = 0 and cos(θ) = 1.(see pgs
4,5 and 6 in [2]).

The Natario warp drive equation and the Natario vector nX in the equatorial plane 1 + 1 spacetime
now becomes:

ds2 = [1− (Xrs)2]dt2 + 2[Xrsdrs]dt− drs2 (123)

nX = Xrsdrs (124)

Note that the Natario vector nX is still inserted twice in the Natario warp drive equation due to the
2 remaining non-diagonalized components which are:

g01 = g10 = Xrs = 2vsn(rs) (125)

When the Natario shape function n(rs) = 0 inside the bubble then the shift vector Xrs = 2vsn(rs) = 0
.Then inside the bubble the shift vector is zero resulting in a zero Natario vector.Xrs = 0

When the Natario shape function n(rs) = 1
2 outside the bubble then the shift vector Xrs = 2vsn(rs) = vs

.Then outside the bubble both shift and Natario vectors are not zero and the shift vector is equal to the
bubble speed vs.Xrs = vs

The above statements explain the Natario affirmation of X = 0 inside the bubble and X = vs out-
side the bubble.(pg 4 in [2])

The diagonalized components of the metric of the Natario warp drive equation are given by:

g00 = 1− (Xrs)2 = 1− (2vsn(rs))2 (126)

g11 = −1 (127)
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The results above are valid for a ship frame coordinates system.

The Natario warp drive equation and the Natario vector nX in the equatorial plane 1 + 1 spacetime
for a remote frame coordinates system now becomes:

ds2 = [1− (Xrs)2]dt2 + 2[Xrsdrs]dt− drs2 (128)

nX = Xrsdrs (129)

Note that the Natario vector nX is still inserted twice in the Natario warp drive equation due to the
2 remaining non-diagonalized components which are:

g01 = g10 = Xrs = 2vso(rs) (130)

When the Natario shape function o(rs) = 1
2 inside the bubble then the shift vector Xrs = 2vso(rs) = vs

.Then inside the bubble the shift and Natario vectors are not zero and the shift vector is equal to the bubble
speed vs.Xrs = vs

When the Natario shape function o(rs) = 0 outside the bubble then the shift vector Xrs = 2vso(rs) = 0
.Then outside the bubble both shift and Natario vectors are zero.Xrs = 0

The diagonalized components of the metric of the Natario warp drive equation are given by:

g00 = 1− (Xrs)2 = 1− (2vso(rs))2 (131)

g11 = −1 (132)
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We have two different physical situations here considering two different coordinate frames:

• 1)-Coordinates frame based on the ship inside the bubble

Note that when we define the Natario shape function as being (pg 5 in [2]) any function n(rs) that gives
0 inside the bubble and 1

2 outside the bubble while being 0 < n(rs) < 1
2 in the Natario warped region we

are defining the shape function n(rs) for a coordinate system frame based on the spaceship placed inside
the bubble at the rest while the remaining Universe outside the bubble passes by the ship with a speed vs.

When the Natario shape function n(rs) = 0 inside the bubble then the shift vector Xrs = 2vsn(rs) = 0
.Then inside the bubble the shift vector is zero resulting in a zero Natario vector.Xrs = 0
When the Natario shape function n(rs) = 1

2 outside the bubble then the shift vector Xrs = 2vsn(rs) = vs

.Then outside the bubble both shift and Natario vectors are not zero and the shift vector is equal to the
bubble speed vs.Xrs = vs

• 2)-Coordinates frame based on the remote observer outside the bubble

We need to define a Natario shape function o(rs) that gives 1
2 inside the bubble 0 outside the bubble

and 1
2 > o(rs) > 0 in the Natario warped region which represents the Natario shape function o(rs) defined

for a coordinate system frame based on the distant observer in the rest of the Universe outside the bubble
watching the bubble passing by him with a speed vs.

When the Natario shape function o(rs) = 1
2 inside the bubble then the shift vector Xrs = 2vso(rs) = vs

.Then inside the bubble the shift and Natario vectors are not zero zero and the shift vector is equal to the
bubble speed vs.Xrs = vs
When the Natario shape function o(rs) = 0 outside the bubble then the shift vector Xrs = 2vso(rs) = 0
.Then outside the bubble both shift and Natario vectors are zero.Xrs = 0
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7 Appendix B:differential forms,Hodge star and the mathematical demon-
stration of the Natario vectors nX = −vsdx and nX = vsdx for a
constant speed vs

This appendix is being written for novice or newcomer students on Warp Drive theory still not acquainted
with the methods Natario used to arrive at the final expression of the Natario Vector nX

The Canonical Basis of the Hodge Star in spherical coordinates can be defined as follows(pg 4 in [2]):

er ≡
∂

∂r
∼ dr ∼ (rdθ) ∧ (r sin θdϕ) ∼ r2 sin θ(dθ ∧ dϕ) (133)

eθ ≡
1
r

∂

∂θ
∼ rdθ ∼ (r sin θdϕ) ∧ dr ∼ r sin θ(dϕ ∧ dr) (134)

eϕ ≡
1

r sin θ

∂

∂ϕ
∼ r sin θdϕ ∼ dr ∧ (rdθ) ∼ r(dr ∧ dθ) (135)

From above we get the following results

dr ∼ r2 sin θ(dθ ∧ dϕ) (136)

rdθ ∼ r sin θ(dϕ ∧ dr) (137)

r sin θdϕ ∼ r(dr ∧ dθ) (138)

Note that this expression matches the common definition of the Hodge Star operator * applied to the
spherical coordinates as given by(pg 8 in [4]):

∗dr = r2 sin θ(dθ ∧ dϕ) (139)

∗rdθ = r sin θ(dϕ ∧ dr) (140)

∗r sin θdϕ = r(dr ∧ dθ) (141)

Back again to the Natario equivalence between spherical and cartezian coordinates(pg 5 in [2]):

∂

∂x
∼ dx = d(r cos θ) = cos θdr−r sin θdθ ∼ r2 sin θ cos θdθ∧dϕ+r sin2 θdr∧dϕ = d

(
1
2
r2 sin2 θdϕ

)
(142)

Look that

dx = d(r cos θ) = cos θdr − r sin θdθ (143)

Or

dx = d(r cos θ) = cos θdr − sin θrdθ (144)
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Applying the Hodge Star operator * to the above expression:

∗dx = ∗d(r cos θ) = cos θ(∗dr)− sin θ(∗rdθ) (145)

∗dx = ∗d(r cos θ) = cos θ[r2 sin θ(dθ ∧ dϕ)]− sin θ[r sin θ(dϕ ∧ dr)] (146)

∗dx = ∗d(r cos θ) = [r2 sin θ cos θ(dθ ∧ dϕ)]− [r sin2 θ(dϕ ∧ dr)] (147)

We know that the following expression holds true(see pg 9 in [3]):

dϕ ∧ dr = −dr ∧ dϕ (148)

Then we have

∗dx = ∗d(r cos θ) = [r2 sin θ cos θ(dθ ∧ dϕ)] + [r sin2 θ(dr ∧ dϕ)] (149)

And the above expression matches exactly the term obtained by Natario using the Hodge Star operator
applied to the equivalence between cartezian and spherical coordinates(pg 5 in [2]).

Now examining the expression:

d

(
1
2
r2 sin2 θdϕ

)
(150)

We must also apply the Hodge Star operator to the expression above

And then we have:

∗d
(

1
2
r2 sin2 θdϕ

)
(151)

∗d
(

1
2
r2 sin2 θdϕ

)
∼ 1

2
r2 ∗ d[(sin2 θ)dϕ] +

1
2

sin2 θ ∗ [d(r2)dϕ] +
1
2
r2 sin2 θ ∗ d[(dϕ)] (152)

According to pg 10 in [3] the term 1
2r2 sin2 θ ∗ d[(dϕ)] = 0

This leaves us with:

1
2
r2 ∗ d[(sin2 θ)dϕ] +

1
2

sin2 θ ∗ [d(r2)dϕ] ∼ 1
2
r22 sin θ cos θ(dθ ∧ dϕ) +

1
2

sin2 θ2r(dr ∧ dϕ) (153)

Because and according to pg 10 in [3]:

d(α + β) = dα + dβ (154)

d(fα) = df ∧ α + f ∧ dα (155)

d(dx) = d(dy) = d(dz) = 0 (156)
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From above we can see for example that

∗d[(sin2 θ)dϕ] = d(sin2 θ) ∧ dϕ + sin2 θ ∧ ddϕ = 2sinθ cos θ(dθ ∧ dϕ) (157)

∗[d(r2)dϕ] = 2rdr ∧ dϕ + r2 ∧ ddϕ = 2r(dr ∧ dϕ) (158)

And then we derived again the Natario result of pg 5 in [2]

r2 sin θ cos θ(dθ ∧ dϕ) + r sin2 θ(dr ∧ dϕ) (159)

Now we will examine the following expression equivalent to the one of Natario pg 5 in [2] except that
we replaced 1

2 by the function f(r) :

∗d[f(r)r2 sin2 θdϕ] (160)

From above we can obtain the next expressions

f(r)r2 ∗ d[(sin2 θ)dϕ] + f(r) sin2 θ ∗ [d(r2)dϕ] + r2 sin2 θ ∗ d[f(r)dϕ] (161)

f(r)r22sinθ cos θ(dθ ∧ dϕ) + f(r) sin2 θ2r(dr ∧ dϕ) + r2 sin2 θf ′(r)(dr ∧ dϕ) (162)

2f(r)r2sinθ cos θ(dθ ∧ dϕ) + 2f(r)r sin2 θ(dr ∧ dϕ) + r2 sin2 θf ′(r)(dr ∧ dϕ) (163)

Comparing the above expressions with the Natario definitions of pg 4 in [2]):

er ≡
∂

∂r
∼ dr ∼ (rdθ) ∧ (r sin θdϕ) ∼ r2 sin θ(dθ ∧ dϕ) (164)

eθ ≡
1
r

∂

∂θ
∼ rdθ ∼ (r sin θdϕ) ∧ dr ∼ r sin θ(dϕ ∧ dr) ∼ −r sin θ(dr ∧ dϕ) (165)

eϕ ≡
1

r sin θ

∂

∂ϕ
∼ r sin θdϕ ∼ dr ∧ (rdθ) ∼ r(dr ∧ dθ) (166)

We can obtain the following result:

2f(r) cosθ[r2sinθ(dθ ∧ dϕ)] + 2f(r) sinθ[r sin θ(dr ∧ dϕ)] + f ′(r)r sin θ[r sin θ(dr ∧ dϕ)] (167)

2f(r) cosθer − 2f(r) sinθeθ − rf ′(r) sin θeθ (168)

∗d[f(r)r2 sin2 θdϕ] = 2f(r) cosθer − [2f(r) + rf ′(r)] sin θeθ (169)

Defining the Natario Vector as in pg 5 in [2] with the Hodge Star operator * explicitly written :

nX = vs(t) ∗ d
(
f(r)r2 sin2 θdϕ

)
(170)

nX = −vs(t) ∗ d
(
f(r)r2 sin2 θdϕ

)
(171)
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We can get finally the latest expressions for the Natario Vector nX also shown in pg 5 in [2]

nX = 2vs(t)f(r) cosθer − vs(t)[2f(r) + rf ′(r)] sin θeθ (172)

nX = −2vs(t)f(r) cosθer + vs(t)[2f(r) + rf ′(r)] sin θeθ (173)

With our pedagogical approaches

nX = 2vs(t)f(r) cosθdr − vs(t)[2f(r) + rf ′(r)]r sin θdθ (174)

nX = −2vs(t)f(r) cosθdr + vs(t)[2f(r) + rf ′(r)]r sin θdθ (175)
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Figure 1: Artistic representation of the Natario Warp Bubble .(Source:Internet)

8 Appendix C:artistic presentation of the Natario warp bubble

According to the Natario definition for the warp drive using the following statement(pg 4 in [2]):

• 1)-Any Natario vector nX generates a warp drive spacetime if nX = 0 and X = vs = 0 for a small
value of rs defined by Natario as the interior of the bubble and nX = −vs(t)dx or nX = vs(t)dx
with X = vs for a large value of rs defined by Natario as the exterior of the bubble with vs(t) being
the speed of the bubble(pg 5 in [2]).The blue region is the Natario warped region(bubble walls)

31



A given Natario vector nX generates a Natario warp drive Spacetime if and only if satisfies these
conditions stated below:

• 1)-A Natario vector nX being nX = 0 for a small value of rs(interior of the bubble)

• 2)-A Natario vector nX = −Xdx or nX = Xdx for a large value of rs(exterior of the bubble)

• 3)-A shift vector X depicting the speed of the bubble being X = 0(interior of the bubble) while
X = vs seen by distant observers(exterior of the bubble).

The Natario vector nX is given by:

nX = −vs(t)d
[
n(rs)rs2 sin2 θdϕ

]
∼ −2vsn(rs) cos θdrs + vs(2n(rs) + rsn′(rs))rs sin θdθ (176)

nX = −vs(t)d
[
n(rs)rs2 sin2 θdϕ

]
∼ 2vsn(rs) cos θdrs− vs(2n(rs) + rsn′(rs))rs sin θdθ (177)

This holds true if we set for the Natario vector nX a continuous Natario shape function being n(rs) = 1
2

for large rs(outside the bubble) and n(rs) = 0 for small rs(inside the bubble) while being 0 < n(rs) < 1
2

in the walls of the bubble(pg 5 in [2])

The Natario vector nX = −vs(t)dx = 0 vanishes inside the bubble because inside the bubble there are no
motion at all because dx = 0 or n(rs) = 0 or X = 0 while being nX = −vs(t)dx 6= 0 or nX − vs(t)dx 6= 0
not vanishing outside the bubble because n(rs) do not vanish.Then an external observer would see the
bubble passing by him with a speed defined by the shift vector X = −vs(t) or X = vs(t).

The ”spaceship” above lies in the interior of the bubble at the rest X = vs = 0 but the observer out-
side the bubble sees the ”spaceship” passing by him with a speed X = vs.

See also pgs 7,8 and 9 in [2] for more graphical presentations of the Natario warp bubble
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9 Appendix D:The Natario warp drive negative energy density in Cartezian
coordinates

The negative energy density according to Natario is given by(see pg 5 in [2])5:

ρ = Tµνu
µuν = − 1

16π
KijK

ij = − v2
s

8π

[
3(n′(rs))2 cos2 θ +

(
n′(rs) +

r

2
n′′(rs)

)2
sin2 θ

]
(178)

In the bottom of pg 4 in [2] Natario defined the x-axis as the polar axis.In the top of page 5 we can see
that x = rs cos(θ) implying in cos(θ) = x

rs and in sin(θ) = y
rs

Rewriting the Natario negative energy density in cartezian coordinates we should expect for:

ρ = Tµνu
µuν = − 1

16π
KijK

ij = − v2
s

8π

[
3(n′(rs))2(

x

rs
)2 +

(
n′(rs) +

r

2
n′′(rs)

)2
(

y

rs
)2

]
(179)

Considering motion in the equatorial plane of the Natario warp bubble (x-axis only) then [y2 + z2] = 0
and rs2 = [(x− xs)2] and making xs = 0 the center of the bubble as the origin of the coordinate frame for
the motion of the Eulerian observer then rs2 = x2 because in the equatorial plane y = z = 0.

Rewriting the Natario negative energy density in cartezian coordinates in the equatorial plane we should
expect for:

ρ = Tµνu
µuν = − 1

16π
KijK

ij = − v2
s

8π

[
3(n′(rs))2

]
(180)

5n(rs) is the Natario shape function.Equation written in the Geometrized System of Units c = G = 1
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10 Epilogue

• ”The only way of discovering the limits of the possible is to venture a little way past them into the
impossible.”-Arthur C.Clarke6

• ”The supreme task of the physicist is to arrive at those universal elementary laws from which the
cosmos can be built up by pure deduction. There is no logical path to these laws; only intuition,
resting on sympathetic understanding of experience, can reach them”-Albert Einstein78

6special thanks to Maria Matreno from Residencia de Estudantes Universitas Lisboa Portugal for providing the Second
Law Of Arthur C.Clarke

7”Ideas And Opinions” Einstein compilation, ISBN 0− 517− 88440− 2, on page 226.”Principles of Research” ([Ideas and
Opinions],pp.224-227), described as ”Address delivered in celebration of Max Planck’s sixtieth birthday (1918) before the
Physical Society in Berlin”

8appears also in the Eric Baird book Relativity in Curved Spacetime ISBN 978 − 0 − 9557068 − 0 − 6
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