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Abstract

New conduction equations are derived on the basis of Eyring’s rate process theory and free volume

concept. The basic assumptions are that electrons traveling from one equilibrium position to the

other may obey Eyring’s rate process theory; the traveling distance is governed by the free volume

available to each electron by assuming that electrons may have a spherical physical shape with an

imaginative effective radius. The obtained equations predict that the superconductivity happens

only when electrons form certain structures of a relative small coordinate number like Cooper pair at

low temperatures; If each electron has a large coordinate number such as 8 when electrons form the

body-centered-cubic (bcc) lattice structure like Wigner crystal, the predicted conductivity decreases

instead increases when temperatures approach to zero. The electron condensation structures have

a big impact on the conductivity. A sharp conductivity decrease at low temperatures, probably

due to an Anderson transition, is predicted even when the Cooper pair is formed and the electrons

can only travel short distances; While the Mott transition appears when crystalline structures like

Wigner crystal form. On the other hand, the electron pairing or called the strong spin-spin coupling

is predicted to induce Kondo effect when electrons are assumed to travel a very short distance. The

Anderson localization seems to have a lot of similarities as Kondo effect such as electron pairing

and low traveling distances of electrons at low temperatures. The Cooper pair that is the essence

of BCS theory for superconductivity and the spin-spin coupling that is the cause for Kondo effect

seem to contradict each other, but are seamlessly united in our current conductivity equations. The

topological insulators become the natural occurrences of our equations, as both Kondo insulator

and superconductivity share a same physical origin–the electron pairs, but the electrons just travel

different distances at these two cases. A material containing an element of a high electro-negativity

(or high ionization energy) and an element of a low electro-negativity(or low ionization energy) may

form a good topological insulator and superconductor. Any magnetic element, like Iron, Nickel, and

Cobalt, that has unpaired electrons and can induce Kondo effect as a dopant, could be a very good

superconductor candidate once it is synthesized together with other proper elements of low electro-

negativity (for example forming pnictide superconductors). The numbers of both conduction and

valence electrons and the volume of a material under investigation have positive impacts on the

conductivity. Any method that may increase the numbers of both conduction and valence electrons

may move the superconductivity transition temperatures to higher regions. Any method that may

reduce the volume of the material like external pressure seems to lower transition temperatures,

2



unless that the applied pressure is so high that the electron density between the chemical bonds

increases. The derived equations are in good agreement with the currently observed experimental

phenomena. The current work may shed light on the mechanisms of superconductivity, presenting

clues on how to move the superconductivity transition temperatures to higher regions.
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I. INTRODUCTION

Conductivities of materials have been extensively addressed for many decades. The rich

and distinctive conductive phenomena have generated many different theories and/or mod-

els with the attempts of better understanding the underlying physical mechanisms. From

pure crystalline materials like metals to semi-conductive metal oxides, amorphous solids,

and to superconductors, each class of materials gives remarkable different conductive be-

haviors, encouraging researchers to patch the models with more complications added in.

However, what we don’t know grows proportionally with what we have already known so

far, especially after the discoveries of Kondo effect, Mott insulators, Anderson insulator, high

temperature superconductors, ferropnictides superconductors, topological insulators, and so

on. As scientific history has shown repeatedly, we always start with simple and idealized

models, enjoy the success of those achievements for some periods of time, be surprised and

puzzled with new experimental discoveries that cannot be explained with the current mech-

anisms/models, be excited with new theories that seem to work perfectly for everything we

have observed, and then start a new cycle again...

Back to the knowledge we have accumulated in conductive behaviors of a wide variety of

materials, the following facts may be true in the event that we still have many unknowns.

1) The conductivity is resulted from the movements of charge carriers like electrons and

ions; 2) The inter-electron interactions cannot be overlooked even in metallic materials;

the resistivity comes from not only electron-lattice interactions, but also electron-electron

interactions; 3) At low temperatures close to zero Kelvin, electrons may tend to condensate,

forming pairs as suggested in BCS theory [1] and even crystal lattice structures predicted

by Wigner [2]. Recent experimental evidences may confirm the existence of cooper pairs

[3] and the body-centered cubic (bcc) structure in 3D [4] and triangular lattice structure in

2D [5]. An improved precise measurement indicates that the shape of electron is a perfect

sphere [6]. All those facts listed above may drive us believe that electrons may be reasonably

considered as a spherical particle with a ”physical” radius, carrying a negative charge and

behaving like a colloidal particle in a liquid phase, since colloidal particles usually carry

charges, interact repulsively each other, and can form a perfect bcc crystal lattice in a liquid

under certain conditions, mainly due to the lowest energy of bcc lattice structure [7] [8] [9]

among all crystal lattice structures.
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Similar to electron systems containing a huge amount of fast-moving electrons, colloidal

suspensions contain thousands of thousands particles that are non-stop moving due to the

Brownian motion. Both systems have complicated many-body problems, and the exact

solution to the total interaction energy between particles (electrons) are hard to be estimated.

In colloidal suspensions, we know that the inter-particle forces are important to physical

properties of whole systems. For example, the viscosity and the micro-structures of colloidal

suspensions are strongly dependent on how strong the inter-particle forces are [10]. If an

external electric or a magnetic field is applied to a colloidal suspension, the particles are

polarized, generating additional amount of charges on particle surfaces and dramatically

altering the inter-particle forces. Several orders of magnitudes of viscosity increase are

observed under such situations, and those suspensions are called electrorheological fluids

[11] or magnetorheological fluids [12] and have been explored extensively within last two

decades. The dramatic increases of rheological properties are attributed to the crystallized

bcc lattice structure formed by polarized particles and induced by the applied external field.

The conductive mechanism of electrorheological fluids obey the variable ranges hopping

model [13]. The particle volume fractions that scale how crowded the particles are in a

suspension can induce a very similar viscosity increase, due to a percolation type phase

transition [14]. Analogous to charged colloidal particles, the electrons, if have a physical

shape, can be easily polarized under either an electric or magnetic field and might easily form

a crystallized structure, which may strongly control the conductivity, even superconductivity

properties of materials.

The Eyring’s rate process theory is based on quantum mechanics, and has been widely

used in many fields since it was first incepted in 1935 [15][16] [17]. Although his simple

and elegant treatment approaches have been fiercely criticized from day one, the success in

resolving many fundamental problems like chemical reaction rate, viscosity and diffusion,

electrochemical process, and biophysics, etc.., has demonstrated again that the truth is

alway simple and his approaches are powerful and accurate, indeed. Together with the free

volume concept that has been employed in chemistry and physics fields with great success,

Eyring’s rate process theory is successfully utilized to describe the viscosity of colloidal

suspensions with and without an electric field [18]. The idea is very simple: The free

volume unoccupied by the particles in suspensions determine the free ”walking” distance

of particles, and the process of particles traveling from one equilibrium position to another
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is considered to obey Eyring’s rate process theory [19]; The viscosity of whole systems is

inversely proportional to the available free volume and the rate of particle motion. Instead

of trying to calculate the exact multiple-particle interaction forces, we group the impact of

surrounding particles into the average ”free volume ” available to each particle. If many

random, disordered, and multi-body systems can be well treated with Eyring’s theory, why

not electron systems? Such an attempt is made in this article with the aid of the free

volume concept. The obtained conductivity equations seem able to describe many distinctive

conductive behaviors, especially the superconductivity, at low temperatures.

II. THEORY

As we know, the conductivity, σ, can be expressed as [20]:

σ = eNc
vd
E

(1)

where e is the charge of an electron, Nc is the number of conduction electrons, vd is the

drift velocity of electrons, and E is the applied electric field. For calculating conductivity,

one may need to determine the drift velocity, vd. Assume that an electron moving from one

equilibrium position to another obeys Eyring’s rate process theory, then according to Eyring

[19], a reactant molecule(an electron in this article) should cross a potential barrier (the

activation energy) in order to react with another molecules and produce the final product.

As illustrated in Fig.1, when an external electric field is applied, this activation energy is

reduced by an amount of αw, making the reaction much easier in the forward direction.

However, the potential barrier will be raised by an amount of (1 − α)w in the backward

(reverse) direction, where w is the amount of work done in moving an electron from one

equilibrium position to the next, and α is a fraction operative between the initial and

activated states. In his late article published in 1958 [21], Eyring pointed out that in

condensed systems, α is directly related to the coordinate number (cn) of a molecule in the

system with the relationship, α = 1/cn. The number of electrons crossing the energy barrier

in unit time in the electric field direction should be given:

Rate in the forward direction = K+λ[exp
αw

kBT
] (2)
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FIG. 1: Illustrative diagram for activation potential energy with and without an electric field

Where K+ = kBT
h

exp(−∆G/RT ), is the specific velocity rate in any direction for the undis-

turbed system, kB is the Boltzmann constant, ∆G is the standard Gibbs free energy of the

activation process, R is the gas constant, h is the Planck constant, and λ is the distance

between the initial equilibrium position to the final position. In analogy, the number of

electrons crossing the energy barrier in unit time in the reverse direction should be given:

Rate in the backward direction = K+λ[exp
−(1− α)w

kBT
] (3)

The net rate, the velocity of an electron in the direction of an applied electric field, is thus

written as:

Net Rate = K+λ[exp
αw

kBT
− exp

−(1− α)w

kBT
] = vd (4)

By the definition, the work needs to move an electron in a distance λ under an electric field,

E, may be expressed as:

w = eλE (5)

Combining Eqs.4 and 5, one may obtain the velocity of an electron:

vd = K+λ[exp
αeλE

kBT
− exp

−(1− α)eλE

kBT
] (6)

Now, one may need to determine λ, the distance that an electron can travel from one

equilibrium position to the next. It should be related to how much the free volume is
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available for a conduction electron in systems. According to standard solid state physics,

the Fermi wavevector (radius) kF can be expressed as [20]:

kF = (
3π2Nv

Vu
)1/3 (7)

Where Nv is the number of valence electrons in one unit cell and Vu is the volume of unit cell.

Assume that the conduction electrons can only take the space outside the Fermi spheres and

all electrons initially stay inside Fermi surface. In one unit cell, the free volume Vc available

may be expressed as:

Vc = Vu − VF (8)

Where VF is the volume of Fermi sphere that can be expressed as:

VF =
4π

3
kF

−3 =
4Vu

9πNv

(9)

Thus Eq. 8 can be expressed as:

Vc = (1− 4

9πNv

)Vu (10)

If the number of unit cells in a material is Nu, and the total volume of the material under

consideration is Vm, the total free volume Vf :

Vf = NuVc = (1− 4

9πNv

)NuVu = (1− 4

9πNv

)Vm (11)

as NuVu = Vm by definition. The Vf is the free volume that all conduction electrons can

have in the whole material body, Vm. As mentioned in Section I, the electrons may be

considered as spherical shape particles dispersed in a continuous ”solid atomic lattice”,

similar to colloidal particles dispersed in a continuous liquid medium. In this scenario, we

may be able to estimate the effective radius of an electron based on the free volume shown

in Eq. 11 by utilizing a same analogous method for calculating the free volume in colloidal

suspensions. Hao has developed a method for calculating the free volume of particulate

systems using the inter-particle spacing (IPS) concept [11] [18] [22]. The inter-particle

spacing (IPS) that scales the distance between two particle surfaces was used for estimating

the free volume of whole systems to derive the viscosity of colloidal suspension systems [11]

[18]. For estimating IPS, Hao [22] used Kuwabaras cell model [23] that was extended by

many other researchers [24] [25][26] for calculating the electrophoretic and electroacoustic

mobility of particles. The obtained IPS may be expressed as:

IPS = 2( 3
√
φm/φ− 1)r (12)
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where r is the effective radius of an electron, φm is the maximum packing volume fraction

achieved by the conduction electrons, and φ is the volume fraction of conduction electrons.

Suppose that an electron can move three dimensionally on both left and right sides, the free

volume of such an electron may occupy can be expressed as:

Vfe = (2IPS)3 = 64( 3
√
φm/φ− 1)3r3 (13)

Eq. 13 gives the free volume of each individual conduction electron. If the number of

conduction electrons in the whole systemis is Nc , then the total free volume is:

Vf = VfeNc = 64Nc(
3
√
φm/φ− 1)3r3 (14)

Note that Eq.11 should be identical to Eq.14, one thus can obtain the effective radius of an

electron:

r =
1

12( 3
√
φm/φ− 1)

[
(27πNv − 12)Vm

πNcNv

]1/3 (15)

Since an electron may move both left and right sides with the distance of IPS, the equilibrium

distance of an electron can travel, λ, may be expressed as:

λ = 2IPS =
1

3
[
(27πNv − 12)Vm

πNcNv

]1/3 = [
(9πNv − 4)Vm

9πNcNv

]1/3 (16)

Now, we have the velocity of conduction electrons as shown in Eq. 6, the distance that a

conduction electron can travel as shown in Eq.16, one may easily obtain the conductivity

equation based on Eq.1:

σ =
eNcK

+λ

E
[exp

αeλE

kBT
− exp

−(1− α)eλE

kBT
]

=
ekBTN

2/3
c

hE
exp(
−∆G

RT
)[

(9πNv − 4)Vm
9πNv

]1/3[exp
αeλE

kBT
− exp

−(1− α)eλE

kBT
]

=
ekBTN

2/3
c

hE
exp(
−∆G

RT
)[

(9πNv − 4)Vm
9πNv

]1/3

[exp
αeE

kBT
[
(9πNv − 4)Vm

9πNvNc

]1/3 − exp
−(1− α)eE

kBT
[
(9πNv − 4)Vm

9πNvNc

]1/3] (17)

As one may see, the conductivity has complicated relationships with the number of valence

electrons in unit cell, Nv; the number of conduction electrons in whole system, Nc; the volume

of a material under study, Vm; A parameter related to the structures that electrons may

form, α; the standard Gibbs free energy, ∆G; and the most importantly, the temperature,
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T . In thermodynamics, the Gibbs free energy, ∆G, has a relationship with the equilibrium

constant, Keq:

−∆G = RT lnKeq (18)

Keq = exp
−∆G

RT
(19)

We may be able to use the equilibrium constant Keq to replace the Gibbs free energy term

in Eq.17. As we mentioned earlier, in condensed systems, α is related to the coordinate

number of an electron in the system, cn, with a simple relationship;

α =
1

cn
(20)

When cn = 1, then α = 1. At this condition, electrons form pairs, and the conductivity

equation Eq.17 may be written as:

σ =
ekBTN

2/3
c

hE
exp(
−∆G

RT
)[

(9πNv − 4)Vm
9πNv

]1/3[exp
eE

kBT
[
(9πNv − 4)Vm

9πNvNc

]1/3 − 1] (21)

When cn = 4, then α = 1/4. At this condition, electrons form tetrahedron lattice structure,

and the conductivity equation Eq.17 may be written as:

σ =
ekBTN

2/3
c

hE
exp(
−∆G

RT
)[

(9πNv − 4)Vm
9πNv

]1/3

[exp
0.25eE

kBT
[
(9πNv − 4)Vm

9πNvNc

]1/3 − exp
−0.75eE

kBT
[
(9πNv − 4)Vm

9πNvNc

]1/3] (22)

When cn = 8, then α = 1/8. At this condition, electrons form body-centered cubic (bcc)

lattice structure, Wigner crystal at 3D [2], and the conductivity equation Eq.17 may be

written as:

σ =
ekBTN

2/3
c

hE
exp(
−∆G

RT
)[

(9πNv − 4)Vm
9πNv

]1/3

[exp
0.125eE

kBT
[
(9πNv − 4)Vm

9πNvNc

]1/3 − exp
−0.815eE

kBT
[
(9πNv − 4)Vm

9πNvNc

]1/3] (23)

We will evaluate all these situations in a more generic manner in next section, for the purpose

of extracting what are the generic trends/correlations between the conductivity and all those

parameters in the equations.
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III. RESULTS

For illustrative comparison purpose, we may need to further simplify the conductivity

equations listed above based on some approximations. First, let’s focus on temperature

dependence. The electron traveling distance, λ, should vary with temperature, on the basis

of Fermi-Dirac distribution function with the relations Nv ∝ T 3/2, NcNv ∝ T 3, and λ ∝

T−1/2 approximately [27]. It will be assumed to be independent of temperature for clarity

and easy evaluation purpose, assigned as about 100 nanometers as a starting point if the

temperature variation range is not too wide in the consideration. So eEλ/kB is about 10

for a small electric field, 10 V/mm. The term ekB/Eh is in the orders 10−13. The number

of conduction electrons per unit volume is ∼ 1023, about one conduction electron per atom.

The equilibrium constant exp(−∆G
RT

) is usually a fairly large number, typically ∼ 104. So the

term ekBN
2/3
c

hE
exp(−∆G

RT
)[ (9πNv−4)Vm

9πNv
]1/3 is ∼ 105. The term eE

kB
[ (9πNv−4)Vm

9πNvNc
]1/3] is ∼ 10. Under

those approximations, the conductivity equation may be written as:

σ = AT [exp
10α

T
− exp

−10(1− α)

T
] (24)

where A is a constant, ∼ 105. For simplicity and easy comparison reason, A will be consid-

ered as 1 when we plot figures. Using Eq. 24, one may easily see how conductivity is going to

change with temperature, which is shown in Fig. 2. Three electron condensation structures

are evaluated: the electron pairs, the tetrahedron lattice, and the bcc lattice. First, under

all those three conditions, there seem to be a sharp conductivity increase when the tem-

perature approaches to zero: When electrons form pairs, the conductivity slowly increases

with temperature decreases and suddenly starts to jump up when the temperatures reach a

critical point, about 5 K, which may be the transition point for superconductivity. When

electrons form tetrahedron lattice structure, the conductivity increases with the decrease of

temperature in a much slower pace in comparison with that when electrons form pairs; how-

ever, there is still a sharp increase of conductivity but occurring at a little lower transition

temperature, about 2 K. When electrons form Wigner crystal, bcc lattice structure, an ab-

normal phenomenon appears: The conductivity decreases with the decrease of temperatures

and sharply increases when the temperature is very close to zero. Those findings at
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FIG. 2: Conductivity vs temperature at different lattice structures. The coordinate number is 1

for Cooper pair, 4 for tetrahedron, and 8 for Wigner crystal (bcc) lattice.

least demonstrate three things: 1) Electron pairs seem to favor superconductivity behaviors,

which is in consistence with Cooper pair concept in BCS theory; 2) With electron coordinate

numbers changing from 1 to 8, the transition temperatures move toward to lower ends,

implying that electron trapping or localization from the formed crystalline structures may

become a great hindrance for electron movements and thus lower the conductivity; Mott

localization may come from the ”crystalinity energy” created by other associated electrons;

3) When the Wigner crystal forms, the conductivity decreases rather than increases when

the temperatures go lower, even though the electrons are assumed to travel such a long

distance, 100 nm. This decrease may preclude the Mott transition phenomena if all other

conditions are met, such as that the electrons can only travel a short distance.

For further elucidating the trends, we use 3D plots to illustrate the conductivity vs. both

the temperature and α, first at the presumption that the electrons can still travel 100 nm

from one equilibrium point to another, see Fig.3, and second at the presumption that the

electrons may travel a smaller distance, 10 nm, see Fig.4. As clearly demonstrated in Fig.

3, the sharp conductivity increase that represents the superconductivity behavior, occurs

at low temperatures and α is about 1; when temperatures and α are relatively high, the

conductivity is flat and low. If the electron traveling distance is as lower as 10 nm, as shown

in Fig.4, the conductivity is still higher when the temperatures are low and in addition

α is about 1, but the increment is very limited. An intriguing thing happens when both
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temperature and α are low, the conductivity actually decreases instead increases, which is

opposite to superconductivity and may imply that Mott transition occurs at such conditions,
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FIG. 3: Conductivity vs both temperatures and the structure related parameter α at electron

traveling distance about 100 nm
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FIG. 4: Conductivity vs both temperatures and the structure related parameter α at electron

traveling distance about 10 nm
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FIG. 5: Conductivity vs both temperatures and the structure related parameter α at electron

traveling distance about 1 nm

where electrons are localized due to the interaction between electrons. Note that electrons

are still assumed to travel a reasonable long distance at those conditions, 10 nm, further indi-

cating that the electron crystallization may be responsible for Mott transition, the decrease

rather than increase of conductivity at low temperatures. What happens if the electron

traveling distance goes down to 1 nm? The illustrative graph is shown in Fig. 5. In such

conditions, the conductivity goes down substantially even at high α, implying that even the

Cooper pairs cannot prevent insulator transitions. Everything seems to completely stop due

to the strong localization mainly resulted from the strong interferences between electrons,

an Anderson localization. Again, the Mott localization may be resulted from crystalline

structures formed in low temperature, corresponding to the low α region in Fig. 5; while

the Anderson localization may be resulted from the strong interference between electrons

at high α regions in Fig. 5. The most intriguing part is that when electron pairs form

at α = 1, the conductivity seems to slowly increase as temperature approaches to zero,

go through a maximum, and then suddenly drop off. This seems to be the Kondo effect
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observed in metallic alloy doped with magnetic impurities [28] and resulted from a strong

spin-spin coupling between two electrons [29] [30], again, the electron pairs. Theoretically,

Anderson localization model at low temperatures is found to be equivalent to what has been

discussed for Kondo model [31] [32], and the similarity is again demonstrated in Fig. 5 at low

temperatures and low traveling distances for electrons. The electron pairing could produce

superconductivity when electrons are assumed to travel a relatively long distance as shown

in Fig. 3; while it could induce Kondo insulator transition when electrons can only travel a

very short distance as shown in Fig. 5. The Cooper pair that is the essence of BCS theory

for superconductivity and the spin-spin coupling that is the cause for Kondo effect seem to

contradict each other, but are seamlessly united in our current conductivity equation. The

discovery may imply that Kondo insulators could potentially be very good superconductors,

as the electron pairs are already formed and only thing needed is to make electrons travel a

relatively long distance. Theoretically predicted and experimentally confirmed existence of

topological insulators [33] [34] [35], where the surfaces show high conductivity even super-

conductivity properties and the interior is Kondo insulator, further confirm that the Kondo

insulator and superconductor do co-exist together. In the interior of topological insulators

all paired electrons are strongly localized probably due to the strong electron-phonon inter-

actions; However, on the surfaces the electron-phonon interactions may become weak due to

only half amount of atomic sites available to hinder the electron movements. If this physical

picture is true, a material containing an element of a high electro-negativity (or high ion-

ization energy like oxygen and fluorine) and an element of a low electro-negativity(or low

ionization energy like Caesium, Barium, and Francium, etc. ) may form a good topological

insulator: an element of a high electro-negativity will ensure that electrons can be strongly

pulled together to form pairs, while an element of a low electro-negativity will not hinder

the electron movements too much, so electrons can travel a relatively long distance and the

surfaces will show superconductivity. The ratio between those two elements could be critical,

too, as we don’t want too many atoms of a high electro-negativity in the systems to hold

off the electron movements. In the meanwhile, since Kondo insulators are potentially good

superconductors, any magnetic element, like Iron, Nickel, and Cobalt, that has unpaired

electrons and can induce Kondo insulator as a dopant, could be a very good superconductor

candidate once it is synthesized together with other proper elements of low electro-negativity.

The discovery of Iron-based superconductors called ferropnictides [36] [37] [38] [39] further
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supports the statements above derived from the conductivity equations.

It seems that the electron traveling distance plays a critical role here and it should

be interesting to see how conductivity is going to change with λ, especially when Cooper

pairs form, as this is the most favorable condition for superconductivity. As expected, the

conductivity increases with the increase of λ, and superconductivity appears when the
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FIG. 6: Conductivity vs both temperatures and electron traveling distance, λ, when Cooper pairs

form
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FIG. 7: Conductivity vs both temperatures and electron traveling distance, λ, when Wigner crystal

forms
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temperature is low. Note that the superconductivity transition temperatures seem to shift

to higher regions when electrons are able to travel a long distance, which may give some

clues on what drives high temperature superconductivity. In other words, if electrons can

form Cooper pairs and are able to travel a relatively long distance, the superconductivity

may appear at higher temperatures. For curiosity, what happens when Wigner crystal forms

and λ is getting bigger? The graph is shown in Fig.7. With no surprise, the conductivity

becomes larger when λ increases, but gets smaller when temperature goes down. A much

more noticeable decrease occurs at higher λ, probably implying that electron interaction or

localization may become more pronounced at low temperature and higher traveling distance.

The conductivity obviously has a complicated relationship with the volume of a material,

the number of conduction electrons, and the number of valence electrons. We will use

the conductivity equation under the assumption that Cooper pairs form for evaluation, as

these equations will give more relevant information on superconductivity. The conductivity

dependence on both temperature and the volume of a material is shown in Fig.8. The

conductivity increases very slightly when the volume increases, and a relative large increase of

conductivity happens only at low temperature regions. In this regards, the high pressure that

typically makes material shrink will lower the conductivity, making the superconductivity

transition temperature lower; However, under extremely high pressure, the electron density

must increase for maintaining the stability of chemical bonds. Such an increase in electron

density comes laterally from the region normal to the bond [40] [41], providing more valence

electrons and making the superconductivity transition temperature higher. Those physical

scenarios are qualitatively consistent with the experimental observation on how the pressure

will change the superconductivity transition temperatures [42] [43]: Most time the high

pressures lower superconductivity transition temperatures initially and raise it up once the

pressures further increase. The impact of the numbers of both the valence electrons in

unit cell and the conduction electrons in whole system is shown in Fig.9. The valence

electrons only have an impact on conductivity at low temperature regions with a somewhat

linear manner (see Fig.9 (b)) ; In contrast, the number of conduction electrons may have

a deep impact: the conductivity dramatically increases when the number of conduction

electrons reach a certain level, a phenomenon similar to the percolation transition observed

in amorphous systems.

These new conductivity equations seem to be very consistent with experimental observa-
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tions. The next important question will be how we can have a superconductor with higher

transition temperatures?
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FIG. 8: Conductivity vs both temperature and the volume of a material
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FIG. 9: (a) Conductivity vs both temperature and number of conduction electrons, Nc; (b) Con-

ductivity vs both temperature and number of valence electrons, Nv.

.

Based on all figures showing from Fig. 2 to Fig. 9, we may say that the longer traveling

distance for electrons, the larger number of conduction electrons, the larger number of

valence electrons, and most importantly the electron pairing structure, will favor better

superconductors with higher transition temperatures. From Fig.8, we may conclude that

the volume reduction of a material (such as from the bulk to a thin film), the transition
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temperature will be lowered, which has been confirmed experimentally [44][45][46]. We may

not be able to control the electron condensation structure at this moment, but we may

be able to do it in the future with new technologies that can help us better manipulate

and monitor. If we can increase the numbers of both conduction and valence electrons

using extremely thin epitaxy film deposited on a substrate, we may be able to increase the

superconductivity transition temperatures, as confirmed experimentally [47].

IV. CONCLUSION

Using Eyring’s rate process theory and the free volume concept, we come up conduc-

tivity equations under assumptions that electrons may have a spherical physical shape and

the available free volume for each electron scales the traveling distance from one equilib-

rium position to the other; The electron traveling rate is assumed to obey Eyring’s rate

process theory. The conductivity has a complicated relationship with the electron conden-

sation structure, the traveling distance, the numbers of both the conduction and the valence

electrons, the volume of the material under investigation, and the most importantly, the

temperature. When electrons form the Cooper pairs, the conductivity increases with the

decrease of temperatures, and the superconductivity occurs when temperature is below a

critical value; While when electrons form Wigner crystal (bcc lattice structure), the con-

ductivity decreases when the temperature decreases, and the Mott transition, opposite to

superconductivity, is predicted. However, even when Cooper pairs form but the electrons is

only able to travel a short distance, the conductivity sharply decreases rather than increases,

probably due to the Anderson localization resulted from the electron interference between

each other, causing Anderson insulator transition. If the paired electrons can only travel a

very short distance, the Kondo effect is predicted. The Anderson localization seems to have

a lot of similarities as Kondo effect such as electron pairing and low traveling distances of

electrons at low temperatures. The Cooper pair that is the essence of BCS theory for super-

conductivity and the spin-spin coupling that is the cause for Kondo effect seem to contradict

each other, but are seamlessly united in our current conductivity equations. The topological

insulators become the natural occurrences of our equations, as both Kondo insulator and

superconductivity share a same physical origin–the electron pairs, but the electrons travel

different distances at those two cases. We predict that a material containing an element
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of a high electro-negativity (or high ionization energy) and an element of a low electro-

negativity(or low ionization energy) may form a good topological insulator: an element of

a high electro-negativity will ensure that electrons can be strongly pulled together to form

pairs, while an element of a low electro-negativity will not hinder the electron movements too

much, so electrons can travel a relatively long distance and the surfaces will show supercon-

ductivity. Any magnetic element, like Iron, Nickel, and Cobalt, that has unpaired electrons

and can induce Kondo effect as a dopant, could be a very good superconductor candidate

once it is synthesized together with other proper elements of low electro-negativity, form-

ing pnictide superconductors as an example. As expected, the conductivity increases with

the electron traveling distance, no matter which structures form (Cooper pair or Wigner

crystal). It increases with the volume of the material, the numbers of both the conduction

and the valence electrons. Anything that can change the volume of the material like the

pressure and the thin film and can change the numbers of the conduction and the valence

electrons, could potentially change the conductivity. For obtaining a superconductor with

higher transition temperatures, electrons may better form Cooper pair and are able to travel

a relatively long distance. Our equations are qualitatively in consistent with the currently

observed rich conductivity phenomena.
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