A Common Reason behind the Structure of the Universe and the Mud cracks

Mueiz Gafer KamalEldeen

mueizphysics@gmail.com

October 2014

Abstract

The method of physical analogy is used to generate general explanations to the structure of the universe.

Introduction

Scientific literature contains many examples of both the usefulness and the danger of taking physical arguments from our experience with what we see around us to employ them in more abstract or unfamiliar phenomena that belong to different branch of science but have something in common with our experience.

Although not intended to be taken too seriously, this proposed analogy between the structure of the universe in the stage of the formation of separated parts and the shape of the dried mud maybe another example of the usefulness or danger of this method.

The Structure Formation

The early universe is thought to be in a very dense and uniform state . However it is known from observation that the universe today has a more complicated structure that may be described as a combination between uniformity and irregularity. This conflict between the initial state and the final result reminds us of the similar case of the formation of mud cracks from nearly uniform state so that we are seduced into investigating other similarities concerning the causes and results of the two phenomena.

The comparison between the two phenomena is shown in the following table :

	Mud Cracks	The Structure of the	Common Language
		Universe	00
The Shapes	The dry mud is divided into smaller	The universe is divided into smaller	Divisions and subdivisions
	parts which is	parts which is	following the normal
	divided into smaller	divided into smaller	distribution
	subdivisions	subdivisions	
	following the normal distribution	following the normal distribution	
The Cause	The dry mud strain	The strain of the	The matter is
	arrives the breaking	dense mater of the	strained because of
	point because the	early universe arrives	its response to
	top dryer layers try	the breaking point	opposite
	to shrink while the	because of the	requirements until it
	material bellow stays	expansion of the	arrives its breaking
	the same size .	universe.	point.
Deviation from	Resulted from	Resulted from	Irregularity find its
Homogeneity	irregularities in the	irregularities in the	source in contents or
	initial state .	laws of physics.	the tools .
The size of divisions	The dried mud is not	The universe is not	The state of matter
	broken in every	broken in every point	after breaking is in
	point as predicted in	as predicted in the	the middle between
	the case of total	case of total	total breaking up (
	homogeneity but is	homogeneity but is	predicted in the case
	divided into several	divided into several	of homogeneity)
	parts with	parts with	and the state of
	considerable sizes	considerable sizes	holding together . So
	which is subdivided	which is subdivided	the opposite
	again into smaller	again into smaller	requirements are
	pieces for the same	pieces for the same	partly fulfilled
	reason .	reason.	

If the probability of the quantity of matter in the separated parts in both cases of the dried mud and the universe follows the normal distribution (the bell curve) then this distribution can be described completely by the mean and the standard deviation, so a very important question remains which is that : what are the properties in each case responsible for the determination of these two parameter? Will there be any similarity between the answers of this question in the two cases ?

Conclusion

When the matter is subjected to strain caused by opposite requirements, the seeds of Irregularity which are found in the initial state (in the case of dried mud) or in the laws of physics (in the case of the universe) help matter to release much of its strain with the minimum breaking costs .. for if there is total homogeneity in the initial state and the laws of physics the matter will break in all the points at the same time and so will not benefit from the releasing of strain which is given to the region around the broken line of points which would have to stop the need for more breaking.