Quantum Gravitational Shielding

Fran De Aquino
Professor Emeritus of Physics, Maranhao State University, UEMA.
Titular Researcher (R) of National Institute for Space Research, INPE
Copyright © 2014 by Fran De Aquino. All Rights Reserved.

We propose here a new type of Gravitational Shielding. This is a quantum device because results from the behaviour of the matter and energy on the subatomic length scale. From the technical point of view this Gravitational Shielding can be produced in laminas with positive electric charge, subjected to a magnetic field sufficiently intense. It is easy to build, and can be used to develop several devices for gravity control.

Key words: Gravitation, Gravitational Mass, Inertial Mass, Gravitational Shielding, Quantum Device.

1. Introduction

Some years ago [1] I wrote a paper where a correlation between gravitational mass and inertial mass was obtained. In the paper I pointed out that the relationship between gravitational mass, \(m_g \), and rest inertial mass, \(m_{i0} \), is given by

\[
\chi = \frac{m_g}{m_{i0}} = \left\{ 1 - 2 \left[1 + \left(\frac{\Delta p}{m_{i0}c} \right)^2 \right] \right\}^{-1}
\]

where \(\Delta p \) is the variation in the particle’s kinetic momentum; \(U \) is the electromagnetic energy absorbed or emitted by the particle; \(n_r \) is the index of refraction of the particle; \(W \) is the density of energy on the particle (J/kg); \(\rho \) is the matter density (kg/m\(^3\)) and \(c \) is the speed of light.

Also it was shown that, if the weight of a particle in a side of a lamina is \(\tilde{P} = m_g \tilde{g} \) (\(\tilde{g} \) perpendicular to the lamina) then the weight of the same particle, in the other side of the lamina is \(\tilde{P}' = \chi m_g \tilde{g} \), where

\[
\chi = m_g / m_{i0} \quad (m_g \quad \text{and} \quad m_{i0} \quad \text{are respectively, the gravitational mass and the inertial mass of the lamina}). \quad \text{Only when} \quad \chi = 1, \quad \text{the weight is equal in both sides of the lamina. The lamina works as a Gravitational Shielding. This is the Gravitational Shielding effect. Since} \quad \rho' = \chi \rho = \left(\chi m_g \right) / \left(m_{i0} \right), \quad \text{we can consider that} \quad m_g' = \chi m_g \quad \text{or that} \quad \tilde{g}' = \chi \tilde{g}.
\]

In the last years I have proposed several types of Gravitational Shieldings. Here, I describe the Quantum Gravitational Shielding. This quantum device is easy to build and can be used in order to test the correlation between gravitational mass and inertial mass previously obtained.

2. Theory

Consider a conducting spherical shell with outer radius \(r \). From the subatomic viewpoint the region with thickness of \(\phi_e \) (diameter of an electron) in the border of the spherical shell (See Fig.1 (a)) contains an amount, \(N_e \), of electrons. Since the number of atoms per \(m^3 \), \(n_a \), in the spherical shell is given by

\[
n_a = \frac{N_0 \rho_s}{A_s}
\]

where \(N_0 = 6.02214129 \times 10^{26} \text{ atoms/kmole} \), is the Avogadro’s number; \(\rho_s \) is the matter density of the spherical shell (in kg/m\(^3\)) and \(A_s \) is the molar mass (kg/kmole\(^{-1}\)). Then, at a volume \(\phi_s \) of the spherical shell, there are \(N_a \) atoms per \(m^3 \), where
(a) \[E = \frac{q}{4\pi \varepsilon_0 r^2} = \frac{V}{r} \]

(b) \[N_h = \frac{q}{e} \]

Fig.1 – Subatomic view of the border of the conducting spherical shell.
Similarly, if there are \(n_e \) electrons per \(m^3 \) in the same volume \(\phi_S \), then we can write that
\[
N_e = n_e \phi_S
\] (3)
By dividing both sides of Eq. (3) by \(N_e \), given by Eq. (4), we get
\[
n_e = n_d \left(\frac{N_e}{N_a} \right)
\] (5)
Then, the amount of electrons, in the border of the spherical shell, at the region with thickness of \(\phi_e \) is
\[
N_e(\phi_e) = n_e \phi_e S = \frac{N_0 \rho_x}{A_s} \left(\frac{N_e}{N_a} \right) \phi_e S
\] (6)
Assuming that in the border of the spherical shell, at the region with thickness of \(x = \phi_a / 2 \) (See Fig.1(b)), each atom contributes with approximately \(Z/2 \) electrons (\(Z \) is the atomic number). Thus, the total number of electrons, in this region, is
\[
N_e(x) = \left(\frac{Z}{2} \right) N_e(\phi_e) = \left(\frac{Z}{2} \right) \frac{N_0 \rho_x}{A_s} \left(\frac{N_e}{N_a} \right) \phi_e S
\] (7)
where \(\left(\frac{N_e}{N_a} \right) x \approx Z/2 \).

Now, if a potential \(V \) is applied on the spherical shell an amount of electrons, \(N_h \), is removed from the mentioned region. Since \(N_h = q/e \) and \(E = q/4\pi\epsilon_0 e_0 r^2 \), then we obtain
\[
N_h = \left(\frac{4\pi\epsilon_0^2 e e_0 E}{e} \right) = \frac{S e_0 e_0 E}{e}
\] (8)
Thus, we can express the matter density, \(\rho \), in the border of the spherical shell, at the region with thickness of \(x \approx \phi_a / 2 \), by means of the following equation
\[
\rho = \frac{\left(N_e(x) - N_h \right) n_{e_0}}{S \phi_a} = \frac{\left(N_e(x) - N_h \right) 2 n_{e_0}}{S \phi_a} = \left[\frac{Z}{2} \right] \frac{N_0 \rho_x}{A_s} \left(\frac{\phi_e}{\phi_a} \right) \frac{\epsilon_r \epsilon_0 E}{\epsilon_{\phi_a}} 2 n_{e_0}
\]
or
\[
\rho = \left[\frac{Z}{2} \right] \frac{N_0 \rho_x}{A_s} \left(\frac{\phi_e}{\phi_a} \right) \frac{\epsilon_r \epsilon_0 V}{\epsilon_{\phi_a}} 2 n_{e_0}
\] (9)
since \(E = V/r \).

If the spherical shell is made of Lithium (\(Z = 3 \), \(\rho_s = 534 \text{kg m}^{-3} \), \(A_s = 6.941 \text{kg mole}^{-1} \)), \(\phi_a = 3.04 \times 10^{-10} \text{ m} \) and outer radius \(r = 0.10 \text{ m} \) and covered with a thin layer (20 \(\mu \text{m} \)) of Barium titanate\(^{*} \) (BaTiO\(_3\)), whose relative permittivity at 20°C is \(\epsilon_r = 1250 \), then Eq. (9) gives
\[
\rho = \left(3.4310685 \times 10^{38} \frac{\phi_e}{2.2725033 \times 10^{21} V} \right) n_{e_0}
\] (10)
Assuming that the electron is a sphere with radius \(r_e \) and surface charge \(-e \), and that at an atomic orbit its total energy \(E \cong m_e c^2 \) is equal to the potential electrostatic energy of the surface charge, \(E_{\text{pot}} = e^2 / 8\pi\epsilon_0 r \) [2], then these conditions determine the radius \(r = r_e \):
\[
r_e = e^2 / 2.4\pi\epsilon_0 m_e c^2 = 1.4 \times 10^{-15} \text{ m} \dagger,\]
which is equal to the radii of the protons and neutrons. Thus, we can conclude that in the atom, electrons, protons and neutrons have the same radius. Thus, substitution of \(\phi_e = 2r_e = 28 \times 10^{-15} \text{ m} \) into Eq. (10) gives
\[
\rho = (9.6069918 \times 10^{23} - 2.2725033 \times 10^{21} V) n_{e_0}
\] (11)
For \(V = 422.7493 \text{ volts} \), Eq. (11) gives
\[
\rho = (6.8 \times 10^{14}) n_{e_0} = 1.2 \times 10^{-15} \text{ kg m}^{-3}
\] (12)
Note that the voltage \(V = 422.7493 \text{ volts} \) is only a theoretical value resulting from inaccurate values of the constants present in the Eq. (11), and that leads to the critical value \(6.8 \times 10^{14} \) shown in Eq. (12), which is fundamental to obtain a low density, \(\rho \). However, if for example, \(V = 422.7 \text{ volts} \), then the critical value increases to \(1.1 \times 10^{-20} \) (more than 100,000 times the initial value) and, therefore the system shown in

\(\dagger \) The radius of the electron depends on the circumstances (energy, interaction, etc.) in which it is measured. This is because its structure is easily deformable. For example, the radius of a free electron is of the order of \(10^{-13} \text{ m} \) [3], when accelerated to 1GeV total energy it has a radius of \(0.9 \times 10^{-16} \text{ m} \) [4].
Pair of Helmholtz Coils
($B_{\text{max}} = 20\text{mT}$)

Lithium Spherical Shell
(with outer diameter 20 cm and inner diameter 19 cm)

Quantum Gravitational Shielding

Barium titanate
(20μm thickness)

Mechanical dynamometer

$V_{\text{max}} = 425$ volts

Fig. 2 – Quantum Gravitational Shielding produced in the border of a Lithium Spherical Shell with positive electric charge, subjected to a magnetic field B.

V

i

g
Fig. 2 will require a magnetic field 402 times more intense. In practice, the value of V, which should lead to the critical value 6.8×10^{14} or a close value, must be found by using a very accurate voltage source in order to apply accurate voltages around the value $V = 4227493$ volts at ambient temperature of 20°C.

Substitution of the value of ρ (density in the border of the Lithium Spherical Shell, at the region with thickness of $x = \phi_a / 2$), given by Eq. (12), into Eq. (1) yields

$$\chi = \left[1 - 2 \left(\frac{1 + 9.3 \times 10^{-3} W}{2} - 1 \right) \right] \quad (13)$$

Substitution of

$$W = \frac{1}{2} e \phi_0 E^2 + \frac{1}{2} \mu_0 H^2 \quad (12)$$

into Eq. (13) gives

$$\chi = \left[1 - 2 \left(\sqrt{1 + 5.4 \times 10^7 B^4} - 1 \right) \right] \quad (14)$$

Therefore, if a magnetic field $B = 0.020 T$ passes through the spherical shell (See Fig. (2)) it produces a Gravitational Shielding (in the border of the Lithium Spherical Shell, at the region with thickness of $x = \phi_a / 2$) with a value of χ, given by

$$\chi \cong -3 \quad (15)$$

Also, it is possible to build a Flat Gravitational Shielding, as shown in Fig. 3. Consider a cylindrical or hexagonal container, and a parallel plate capacitor, as shown in Fig. 3(a). When the capacitor is inserted into the container the positive charges of the plate of the capacitor are transferred to the external surface of the container (Gauss law), as shown in Fig. 3(b). Thus, in the border of the container, at the region with thickness of $x = \phi_a / 2$ the density, ρ, will be given by Eq. (9), i.e.,

$$\rho = \left[\frac{Z^2}{2} \frac{N_0 \phi_a}{A_s} \left(\frac{\phi_a}{\phi_0} \right) - \frac{\varepsilon_r \varepsilon_0 E}{\varepsilon_0 \phi_0} \right] 2m_0$$

where

$$E = \frac{\sigma}{\varepsilon_r \varepsilon_0} = \frac{q}{\varepsilon_r \varepsilon_0 S} = CV = \frac{\varepsilon_r \varepsilon_0 S}{\varepsilon_r}$$

Thus, we obtain

$$\rho = \left[\frac{Z^2}{2} \frac{N_0 \phi_a}{A_s} \left(\frac{\phi_a}{\phi_0} \right) - \frac{\varepsilon_r \varepsilon_0 AV}{\varepsilon_0 \phi_0 S} \right] 2m_0 \quad (17)$$

Therefore, if the container is made of Lithium ($Z = 3, \rho_s = 534 \, kg \, m^{-3}, A_s = 6.941 \, kg / kmole$, $\phi_a = 3.04 \times 10^{-10} m$) and, if the dielectric of the capacitor is Barium titanate (BaTiO$_3$), whose relative permittivity at 20°C is $\varepsilon_r = 1250$, and the area of the capacitor is $A = S$, and $d = 1 mm$, then Eq. (17) gives

$$\rho = 9.6069918 \times 10^{23} - 2.2725033 \times 10^{-23} V m_0 \quad (18)$$

For $V = 4227493$ volts, Eq. (18) gives

$$\rho = 6.8 \times 10^{14} 2m_0 = 1.2 \times 10^{-15} kg m^{-3} \quad (19)$$

Substitution of this value into Eq. (1) gives

$$\chi = \left[1 - 2 \left(\sqrt{1 + 5.4 \times 10^7 B^4} - 1 \right) \right]$$

This is exactly the Eq. (13), which leads to

$$\chi \cong -3$$

Therefore, if a magnetic field $B = 0.020 T$ passes through the Lithium container, it produces a Quantum Gravitational Shielding (in the border of the container, at the region with thickness of $x = \phi_a / 2$) with a value of χ, given by

$$\chi \cong -3$$

Fig. 3 – Flat Gravitational Shielding or Flat Gravity Control Cell (GCC).
Fig. 4 – Flat Gravity Control Cell - Experimental Set-up. (BR Patent Number: PI0805046-5, July 31, 2008).

Digital force gauge with external sensor

\[(\pm 20N; 0.01N)\]

Lithium: 1mm thick

Barium titanate (BaTiO3); 1mm thick

Coil: 18mm x 18mm; 10 x 10 = 100 turns, #14 AWG

DC 1-10ref: fixed voltage reference, providing an 1.000000V and an 10.000000 V output.

http://www.stahl-elektronics.com/voltage-supplies.html
References

