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We consider the relations of the energy density and its entropic density with the temperature of Schwarzschild black hole (SBH) 

and holographic dark energy (HDE). On the basis of literature [4], we obtain the energy density of the scalar field being 

proportional to the square of the Hawking-Unruh temperature near the event horizon, and that its entropic density is directly 

proportional to the Hawking-Unruh one. Basing on [6], we find the equation of gravitational energy density inside SBH; derive 

that the gravitational energy density is proportional to the square of the effective temperature far from the event horizon in SBH 

interior, whether the gravitational fields of SBH are Coulomb-like or wave-like; and their entropic density is directly proportional 

to the effective temperature. Basing on [7, 8, 9], we gain the HDE density being proportional to square of the Gibbons-Hawking 

temperature, and that its entropic density is directly proportional to the Gibbons-Hawking one. These equations are similar and 

have relations with each other. We suggest that these relations are interesting and significant for SBH and HDE.  
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I. Introduction 

What is the relation of  the energy density and its entropic density with the temperature of Schwarzschild black hole (SBH) and 

holographic dark energy (HDE)? It is an interesting and significant question. At the event horizon of SBH, the Stefan-Boltzmann law 

(SBL) [1, 2] can be modified as the General SBL by Meng Q M et al [3, 4] and A. I. Fisenko et al [5].  In SBH interior, T. Clifton et al 

proposed the gravitational energy density formula and the effective temperature expression respectively [6], but they are irrelative. M. Li 

et al proposed the HDE density equation [7, 8, 9] which has no relation with the temperature. 

This paper is organized as follows. In Sec. II, we get the energy density of the scalar field being proportional to the square of the 

Hawking-Unruh temperature [10, 11] near the horizon of SBH, and that its entropic density is directly proportional to the 

Hawking-Unruh one. In Sec. III, we find that the gravitational energy density  is proportional to the square of the effective temperature 

far from the horizon inside SBH, and its entropic density is directly proportional to the effective temperature. In Sec. IV, we obtain the 

HDE density being proportional to square of the Gibbons-Hawking temperature [12, 13, 14, 15], and that its entropic density is directly 

proportional to the Gibbons-Hawking one. We conclude in Sec. V. 

 

II. Relations of Energy Density of scalar field and Its Entropic Density with Hawking-Unruh Temperature 

near Event Horizon 

In this section, we review [4]; obtain that the energy density of the scalar field is proportional to the square of the Hawking-Unruh 

temperature near the event horizon of SBH, and the entropic density is directly proportional to the Hawking-Unruh one. 

 

A. Energy density being proportional to square of Hawking-Unruh temperature 

In [4], the Schwarzschild coordinates is used, and the energy density 𝜌𝑠𝑓  of the scalar field of SBH is (we work with ћ = c = G = k 

= 1 units) 

𝜌𝑠𝑓  = 6π2𝑀2𝑇𝐻−𝑈
4 ／45ε(ε＋δ)                                                        (1) 
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Where δ = nε is the film thickness, ε is the distance from the film to the horizon of SBH, and n = 1, 2, 3….  

Substituting the Hawking-Unruh temperature 𝑇𝐻−𝑈  = 1／8πM into (1), we obtain 

𝜌𝑠𝑓  = π𝑇𝐻−𝑈
2 ／60𝜀2(n＋1)                                                           (2) 

Therefore the energy density of the scalar field is proportional to the square of Hawking-Unruh temperature near the horizon. 

Recovering ћ, c, G and k, we obtain 

𝜌𝑠𝑓  = πc2k2𝑇𝐻−𝑈
2 ／60𝜀2(n＋1)ћ2G                                                   (3) 

So it belongs to quantum gravity. 

 

B. Entropic density being directly proportional to Hawking-Unruh temperature 

The entropic density 𝑠𝑠𝑓 of the scalar field near the horizon is [4] 

𝑠𝑠𝑓 = 8π2𝑀2／45𝛽3ε(ε＋δ)                                                          (4) 

where β is [4] 

 β = 8πM                                                                         (5) 

Substituting (5) and 𝑇𝐻−𝑈  = 1／8πM into (4), we obtain 

𝑠𝑠𝑓 = 𝑇𝐻−𝑈／360𝜀2(n＋1)                                                           (6) 

Therefore the entropic density is directly proportional to the Hawking-Unruh temperature. 

 

III. Relations of Gravitational Energy Density and Its Entropic Density with effective temperature far from 

Event Horizon 

In this section, we review [6] briefly; find that the gravitational energy density  is proportional to the square of the effective 

temperature far from the event horizon inside SBH, and its entropic density is directly proportional to the effective one. 

 

A. Relations for Coulomb-like gravitational fields 

First let us review [6] briefly. The gravitational fields can be classified two types: Coulomb-like gravitational fields and wave-like 

ones. In general they are mixed. For the Coulomb-like gravitational fields  

8π𝜌𝑔𝑟𝑎𝑣= 2α 2𝑊/3 and 𝑝𝑔𝑟𝑎𝑣= 0                                                    (7) 

where 𝜌𝑔𝑟𝑎𝑣  is the gravitational energy density, α is a constant, W = 𝑇𝑎𝑏𝑐𝑑𝑢
𝑎𝑢𝑏𝑢𝑐𝑢𝑑, 𝑇𝑎𝑏𝑐𝑑  is the Weyl tensor, 𝑢𝑎 , 𝑢𝑏, 𝑢𝑐, 𝑢𝑑are 

the timelike unit vectors, and 𝑝𝑔𝑟𝑎𝑣  is the isotropic pressure. The Schwarzschild geometry can be written in Gullstrand–Painlevé 

coordinates as 

d𝑠2 = －[1－(2m／r)]d𝑡2－2  2𝑚/𝑟 drdt＋d𝑟2＋𝑟2dΩ
2
                                  (8) 

where m is the constant mass parameter. The gravitational energy density and temperature is given at each point in the region r < 2m by 

𝜌𝑔𝑟𝑎𝑣  = 2αm／8π𝑟3                                                                 (9) 

𝑇𝑔𝑟𝑎𝑣  = m／2π𝑟2 |1 − (2𝑚/r)|                                                      (10) 

where 𝑇𝑔𝑟𝑎𝑣  is the effective temperature. Taking (10) to (9), we find 

𝜌𝑔𝑟𝑎𝑣  = απ[2－(r／m)]𝑇𝑔𝑟𝑎𝑣
2                                                          (11) 

It is the equation concerning the gravitational energy density and the effective temperature in the region r < 2m. Note that the isotropic 

pressure is zero. When r << 2m, we derive 

𝜌𝑔𝑟𝑎𝑣  = 2απ𝑇𝑔𝑟𝑎𝑣
2                                                                   (12) 

So the gravitational energy density is proportional to the square of the effective temperature far from the horizon inside SBH. It 

includes two regions far from horizon inside SBH: Singularity and vacuum. In (11) when r → 0, we gain (12) also, that is the 

gravitational energy density being proportional to the square of the effective temperature in the singularity and near the one. 

 

B. Relations for the wave-like gravitational fields 

In [6], for the wave-like gravitational fields 

8π𝜌𝑔𝑟𝑎𝑣  = β 4𝑊 and 𝑝𝑔𝑟𝑎𝑣= 𝜌𝑔𝑟𝑎𝑣／3                                              (13) 

For the SBH, the gravitational energy density is given at each point in region r < 2m by 
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𝜌𝑔𝑟𝑎𝑣  =  6βm／𝑟3                                                                (14) 

Taking (10) to (14), we find 

𝜌𝑔𝑟𝑎𝑣  =  6βπ[2－(r／m)]𝑇𝑔𝑟𝑎𝑣
2                                                       (15) 

When r << 2m and r → 0, we obtain 

𝜌𝑔𝑟𝑎𝑣  = 2 6βπ𝑇𝑔𝑟𝑎𝑣
2                                                                (16) 

It is very similar to (12). Therefore the gravitational energy density is proportional to the square of the effective temperature far from 

the horizon inside SBH, whether the gravitational fields are Coulomb-like or wave-like.  

 

C. Relations of entropic density 

For the Coulomb-like gravitational fields, its entropic density 𝑠𝑔𝑟𝑎𝑣  is [6] 

δ𝑠𝑔𝑟𝑎𝑣  = δ (𝜌𝑔𝑟𝑎𝑣v)／𝑇𝑔𝑟𝑎𝑣                                                            (17) 

where v = 𝑧𝑎𝜂𝑎𝑏𝑐𝑑 d𝑥𝑏d𝑥𝑐d𝑥𝑑 and we can set an arbitrary constant to zero. Substituting (11) into (17) and integral, we get 

𝑠𝑔𝑟𝑎𝑣  = απ[2－(r／m)]𝑇𝑔𝑟𝑎𝑣                                                           (18) 

This is the equation concerning the entropic density and the effective temperature in the region r < 2m. When  r << 2m and r → 0, we 

derive 

𝑠𝑔𝑟𝑎𝑣  = 2απ𝑇𝑔𝑟𝑎𝑣                                                                    (19) 

So the entropic density is directly proportional to the effective temperature far from the horizon inside SBH.  

For the wave-like gravitational fields, substituting (15) into (17) and integral, we obtain 

𝑠𝑔𝑟𝑎𝑣  =  6βπ[2－(r／m)]𝑇𝑔𝑟𝑎𝑣                                                        (20) 

When r << 2m and r → 0, we derive 

𝑠𝑔𝑟𝑎𝑣  = 2 6βπ𝑇𝑔𝑟𝑎𝑣                                                                 (21) 

Therefore the entropic density is directly proportional to the effective temperature far from the horizon inside SBH, whether the 

gravitational fields are Coulomb-like or wave-like. 

 

IV. Relations of HDE Density and Its Entropic Density with Gibbons-Hawking Temperature 

In this section, we review [7, 8, 9], obtain that the HDE density is proportional to square of the Gibbons-Hawking temperature, and 

its entropic density is directly proportional to the Gibbons-Hawking one. 

 

A. HDE density being proportional to square of Gibbons-Hawking temperature 

In [7, 8, 9], the equation of HDE model can be rewritten as 

𝜌𝑑𝑒  = 3𝑐𝐿
2Mpl

2 𝐿−2                                                                   (22) 

where 𝜌𝑑𝑒  is the HDE density, 𝑐𝐿 ≥ 0 is a dimensionless model parameter, MPl ≡ 1／ 8πG is the reduced Planck mass and L is the 

cosmic cutoff. 

Substituting the Gibbons-Hawking temperature 𝑇𝐺−𝐻 = 1／2πL into (22), we gain 

𝜌𝑑𝑒  = 12𝜋2𝑐𝐿
2Mpl

2 𝑇𝐺−𝐻
2 =3π𝑐𝐿

2Mp
2𝑇𝐺−𝐻

2 ／2                                               (23) 

where MP≡ 1／ G is the Planck mass. So the holographic dark energy density is proportionate to square of the Gibbons-Hawking 

temperature.  

 

B. HDE entropic density being directly proportional to Gibbons-Hawking temperature 

In [9], the HDE entropy 𝑆𝑑𝑒  is 

𝑆𝑑𝑒  = πMpl
2 𝐿2                                                                      (24) 

The HDE entropic density 𝑠𝑑𝑒 is 

𝑠𝑑𝑒 = πMpl
2 𝐿2／𝐿3 = πMpl

2 ／L = 2𝜋2Mpl
2 𝑇𝐺−𝐻                                            (25) 

Therefore the HDE entropic density is directly proportional to the Gibbons-Hawking temperature.  
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V. Conclusion 

In this paper, we have obtained the energy density of the scalar field [4] being proportional to the square of the Hawking-Unruh 

temperature near the horizon, and that the entropic density is directly proportional to the Hawking-Unruh one; found the equation 

concerning the gravitational energy density and the effective temperature in the region r < 2m [6] inside SBH; derived that the 

gravitational energy density  is proportional to the square of the effective temperature far from the horizon in SBH interior, whether the 

gravitational fields of SBH are Coulomb-like or wave-like; obtained that their entropic density are directly proportional to the effective 

one. These equations are true in the singularity and near one of SBH also. Also we have got that the HDE density [7] is proportional to 

square of the Gibbons-Hawking temperature, and its entropic density is directly proportional to the Gibbons- Hawking one.  

Eq. (2), (12), (16), and (23) are s imilar. Eq. (2) belongs to the Hawking radiation; (12) and (16) belong to the quantum gravity. It is 

well-known that the Hawking radiation is produced by the quantum gravity, so Eq. (2) has the relation with (12) and (16). Eq. (12), (16) 

and (23) are similar also. Eq. (23) belongs to the dark energy which can produce the repulsion; therefore it has the relation with (12) 

and (16). Their entropic density is also. We suggest that these relations are interesting and significant for SBH and HDE. 

 

References  

[1] J. Stefan, Wien. Ber., 79 (1879), 391 

[2] L. E. Boltzmann, Wied. Ann. Phys., 22 (1884), 291 

[3] Meng Q M, Jiang J J, Liu J L, et al, Physical Journal, 2009, 58 (1): 78-82 

[4] DENG De-Li, Journal of Guizhou University (Natural Sciences), 27, 4 (2010), 1000-5269(2010)04-0022-03 

[5] A. I. Fisenko, V. Lemberg, arXiv: 1403.6868 

[6] T. Clifton, G. F. R. Ellis and R. Tavakol, Class. Quantum Grav.30 (2013) 125009 (15pp) 

[7] M. Li, Phys.Lett. B, 603 (2004) 1; arXiv: 0403127 [hep-th] 

[8] K.Ke, M. Li, Phys. Lett. B 606 (2005) 173-176 

[9] Q-G. Huang and M. Li, arXiv: 0404229 [astro-ph] 

[10] S.W. Hawking, Nature, 248, (1974) 30; Commun. Math. Phys. 43 (1975)199-220 

[11] W.G. Unruh, Phys.Rev.D10, (1974) 3194 

[12] G.W. Gibbons and S.W. Hawking, Phys. Rev. D 15, 2738 (1977) 

[13] J.W. Lee, J. Lee, and H.C. Kim, J. Cosmol. Astropart. Phys. 0708 (2007) 005 

[14]LI Miao, LI Xiao-Dong, WANG Shuang, and WANG Yi, Commun. Theor. Phys. 56 (2011) 525–604 

[15] S. Mohanty and A. Nautiyal, arXiv: 1404.2222 [hep-ph] 


