Attest the moment of inertia is wrong

GuagSan Yu
(Haerbin·Macro·Dynamics Institute. 150066, P. R. China)
E-mail: yuguagsan@sohu.com

Abstract: Moment of inertia $I = mr^2$ is wrong. In it of formula deduce process, have serious mistake. This is the can testify.

Key Words: Moment of inertia; Inertia-torque

According the expression:

$$\tau = I \cdot \alpha = m \cdot r^2 \cdot \frac{d\omega}{dt} \quad (01)$$

Here: $m \cdot r^2$ namely is the Moment of inertia the "I".

But by the expression (01):

$$m \cdot r^2 \cdot \frac{d\omega}{dt} = m \cdot r \cdot r \cdot \frac{d\omega}{dt} = m \cdot r \cdot \frac{du}{dt} \quad (02)$$

So, in the (02) the $m \cdot r$ and $r \cdot \frac{du}{dt}$, two r is to differ.

In the $m \cdot r$, the r is the position vector of the object mass.

And that $r \cdot \frac{d\omega}{dt}$, the r is the position vector of the angular acceleration.

So, in the (02), none but the $m \cdot r$, is to bear on the inertia of the rotation.

And that $r \cdot \frac{d\omega}{dt}$, did not relate to with the inertia of the rotation.

So, Moment of inertia $I = mr^2$ is wrong.

I will to the moment of inertia changes a name, that be called Inertia-torque.

Inertia-torque namely: $I = mr \quad (03)$

The $I = mr^2$ is wrong. Because, the m changes with the inverse proportion of r^2 at this time.

But in the nature, only have with light wave etc. That spherical wave spreads, change with the square inverse proportion of the space. The m changes with the inverse proportion of r, is absurd.

Inertia-torque: $I = mr \quad (03)$ and $\tau = r \times ma$ analogy. In the R and M with the inverse proportion the change, its value is constant.

I attest the moment of inertia $I = mr^2$ is wrong. Because this mistake, in rotation dynamics, engender a series of and important mistake. These are all to await in to the do correct.