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Abstract

The study of the chromatic number and vertex coverings of graphs has opened many
avenues of research. In this paper we combine these two concepts in a ratio, to investigate
the domination effect of the chromatic number, of the subgaph induced by a vertex
covering of a graph G (called the cover graph of G), on the original chromatic number of G,
where large number of vertices are involved. This is referred to as the chromatic-cover
domination. If this chromatic-cover ratio is a function of n, the order of graphs belonging to
a class of graph, then we discuss its horizontal asymptotic behavior and attach the graphs
average degree to the Riemann integral of this ratio, thus associating chromatic-cover area
with classes of graphs. We found that the chromatic-cover domination had a strongest
effect on complete graph, while this chromatic-cover domination had zero effect on star
graphs. We show that the chromatic-cover asymptote of all classes of graphs belong to the
interval [0,1], and conjecture that complete graphs are the only class of graphs having
chromatic-cover asymptote of 1 and that they also have the largest area . We construct a
class of graphs, using known classes of graph where vertices are replaced with cliques on q
vertices, thus generating sequences which converges to the chromatic-cover asymptote of
known classes of graphs. We use a particular sequence to construct a Farey chromatic-
cover sequence which is a subsequence of the famous Farey sequence.
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1. Introduction

All graphs in this paper are simple and loopless and on n vertices. We shall use
the graph-theoretical notation of [6].

Chromatic number, vertex covers and ratios

Much research has been done involving the chromatic number of a graph
(see[7]) and (minimum) vertex coverings of graph (see [1]). Ratios have been
an important aspect of graph theoretical definitions. Examples of ratios are:
expanders, (see [2]), the central ratio of a graph (see [3]), eigen-pair ratio of
classes of graphs (see [9]), Independence and Hall ratios (see [4]) and tree-
cover ratio of graphs (see [8].

In this paper we combine the two concepts of chromatic number and vertex
covering to form a ratio, associated with a connected graph G, involving the
chromatic number of the sugraph H(S) of G induced by a vertex cover S of G,
called the cover graph of G, and the chromatic number of G. This chromatic-
cover ratio allows for the investigation of the domination effect of the
chromatic number of the cover graph on the original chromatic number of G,
where a large number of vertices are involved — referred to as the chromatic-
cover domination. If the chromatic cover ratio is a function of n for a particular
class of graphs, then we investigated its asymptotic behavior (see [7] and [8]).
The chromatic-cover domination was determined for known classes of graph.
We found that, for the complete graph, the chromatic-cover domination was
the strongest, and for star graphs with rays of length one, no effect at all, while
for the sun graph the effect was average. By introducing the average degree of
a graph together with the Riemann integral of the chromatic-cover ratio we
associated chromatic —cover area with classes of graphs (see [7] and [8]). Using
known classes of graph we constructed a new graph by replacing end vertices
with cliques of order q creating sequences

g-1 1 22 3 (-1°
g+l 2227232 24277 2¢?

The first two converges to the chromatic-cover asymptote of complete graphs,
while the third to the chromatic-cover asymptote of the sun graph. We use



the root sequence associated with the first sequence to construct a Farey
chromatic-cover sequence which is a sub-sequence of the famous Farey
sequence.

2. Chromatic-cover ratio, asymptotes, domination and area

We combine the idea of chromatic number and vertex cover in the following
definitions to allow for the measure of the domination of the chromatic
number of a cover graph over the chromatic number of original graph for large
values of n.

Definition 2.1

Let G be a connected graph with minimum covering S of vertices. Let H(S) be
the subgraph of G induced by S, the cover graph of G.

The chromatic-cover ratio of a graph G of order n, with respect to S, is defined
as:

S|y(H(S
cov{yS (G)y= SHHED (o)

where y(G) is the chromatic number of G.

Definition 2.2

If Cov{;(S (G)}= f(n) forevery G € 3, where J is a class of graphs, then the

asymptotic behavior of f(n) is called the chromatic-cover asymptote of 3 and
denoted by (see [8] and [9]):

as c:ov{;(S (3}
Chromatic —cover domination

This asymptote give a measure of the domination effect of the chromatic
number of the cover graph on the chromatic number of the original graph, for
large values of n, referred to as the chromatic-cover domination.



Definition 2.3

If Cov{;(S (G)}= f(n) for every G € 3, where J is a class of graphs ,then the

chromatic-cover area is defined as(see [8] and [9]) :

S 2m S
Z = i Z i
AS(n) = jf(n)dn with AS(k) =0 where k is the smallest number of

vertices for which Cov{;(S (G)}= f(n) is defined, and 2m is the average
n

degree of G e 3.

Examples:

2.1 The complete graph K, we have, with its cover graph, H(S) = K_1:

S CIs|z(H(s)  (n-1)(n-1) (n-1)°
cov{y” (Kp)}= nyG) - = 2 and

ascov{;(S(Kn)}:l

2
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A%n :ij(n)dn:(n—l)j—dn
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N n

S
Afg :0:>c:2In2—§
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2.2 The complete split-bipartite graph K, , we have, with S consisting of
2'2
one of the partite sets on gvertices, and its cove graph the set of n

isolated vertices:
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2.3 The cycle graph C,;, on an even number of vertices , we have with S

. ..n I
having size 2 by considering every second vertex of the cycle so that the

. n. .
cover graph consists of > isolated vertices :

n
GOLEY
T
S 1
asco{z° (Co)} =

S 2m 1 n
Lo ==—|f(ndn=2|>dn=2(-
ACn nj (n)dn _[4 n (4+c)
S
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2.4 The path graph P, on an even number of vertices, we have S having size

% by considering the first vertex of the path and then every second

. n . .
vertex so that the cover graph consists of > isolated vertices:
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2.5 The wheel Wy with n-1 spokes and where n is odd, we have the central

vertex and every second vertex of the cycle as S so that the cover graph

is the star graph with rays of length 1:

n-1
sizHesy (30 n

S _
COV{Z (Wn)}— n}((G) - n(3) - 3n
as cov{;(S Wp)}= %
S _ _
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2.6 Star graphs Sy jon n vertices with r rays of length 1, we have S the

central vertex:

sleHs) _O@) _ 1
nx(G) n(2) 2n

cov{z> (Sr1)}=

as cov{;(S (Sr1)}3=0
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2.7 Star graphs Sy 5 with m rays of length 2, and n=2r +1, we have S

consisting of the middle vertex of each ray so that the cover consists of
r isolated vertices.

n-1
Slr(HES) _(m@) _ 2 _n-1
2n 4n
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1

ascov{y” (Sr2)}=,

_2n-)n_Inn

S 2m 4(n-1) (n-1

£ ="—|f(n)dn= dn +C
Asr,2 nj() 2n J.4n n 4 4 )
AﬂfS _0mco—24 I3

Sr,2 4 4

2.8 The sun graph Sup on n vertices

For the sun graph on an even number of vertices- i.e. we have an even
n . . :
cycle on > vertices with end vertices added to each vertex of the cycle, we

take S to be the vertices of the cycle so that the cover graph is the cycle and

we have:
D))
S gy lSZHE) _ 7 1

as COV{;{S (Sun)}:%
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2.9 The fan graph F, on n vertices

Construct the fan graph F,on and odd number n > 3 of vertices by taking a

path on n-1 vertices and joining each vertex of the path to a single vertex,
the center of the fan graph.

The chromatic number of the fan graph is 3 and we take S as the center
vertex with every alternate vertex of path starting with the first vertex so

. n-1 . :
that the cover graph is a star graph on T+1vert|ces and has chromatic

number 2. Thus

n-1
(——+D(2)
S REFAGIC) ) _n+1,
COV{Z (Fn)}— nZ(Fn) - n(3) - 3n .
S 1
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S
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2.10 The Ladder graph L,,on n vertices

Let the ladder on N >4 vertices be formed by joining corresponding vertices
n . n .
of pathson > vertices each. We take > to be even so that the covering

graph will be found by taking alternating vertices of the first path and
different alternating vertices of the second so that its chromatic number is

1 and it will have 2+ 2 =g vertices. The chromatic number of the ladder

graph is 2.
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Theorem 2.1

+C)

The chromatic cover ratio, asymptote and area respectively for the following

classes 3 of graphs are:

2
1. Kn:@;l; (n—l)(n—2|nn—n_1—2In2—g)

>

ey
"4’

N | S
NS
-l>||—\

(— -1)

w
-hll—‘
-bll—‘

n+2 1
’ IT( _E)

Ak
Al
M|>S

n-11 4n- 4(2__)
3n '3 n

5. W, :

2(n=1) ,Inn In2

n (2 2)

63”2—0

n-112(n-1),n Inn 3 1In3

4n4n(4 4 4 )

7. Sr2



1 1 n 3
8. Suy:—; =;2(———
272 (4 2)
9. Fn:n+1;1; 4n_6(n+lnn—3—ln3)
3n 3 3n
11 3n-4,n
10. L, :—;=; —-1
4’4" (4 )
Theorem 2.2
Sl¥(H (S
If Cov{;(S (G)}:%: f(n) foreach G € 3, then

as COV{;(S (3)}<[0,1] for all such classes of graphs.

Proof

There are 5 possibilities for y(G);|S|; x(H(S)), where

k,t,s,k', p,g,k",t',q",w,u,v,w't",v' are non-negative constants :
ln-kin—-t;n—s

2n-k';p;q

3n—-k'";n-t';q'

4.w;u;v

5whn—-t"v; w>V
In case 1 ascov{;(S (3}=1.

In cases 2,3 and 4 ascov{;(S (3)}=0.

\' ) \ . \"
In case 5aSCOV{;(S (3)}=—; since w'>Vv' we have 0<—<1
w W

2.1 Corollary

The chromatic-cover domination is the greatest for complete graphs, and is 0
for star graphs with rays of length 1, and average for sun graphs.

10
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Conjecture 1

The complete graph possesses the strongest chromatic-cover domination of all
classes of regular graphs and star graphs.

Conjecture 2

The complete graph possesses the largest chromatic-cover area of all classes of
graphs.

3. The g-clique chromic-cover partners and sequences

3.1 The sun graph and its g-clique chromatic-cover partner

For the sun graph on an even number of vertices- i.e. we have an even cycle
n . . .

on E vertices with end vertices added to each vertex of the cycle, we take S to

be the vertices of the cycle so that H(S) is the cycle and showed that:

n
sixHesy @

couly” (Sun} =Gy n 2
ascov{;(S(Sun)}:%

This graph is regarded as chromatic-cover domination balanced when a large
number of vertices are involved. We use this ratio to construct the Kq -

chromatic-cover partner of G = Su,, with respect to S as follows:

For g=2 we take each vertex u not in S (the cycle) adjacent to v on the cycle
and replace It with K5 and join every vertex of K, to v. Thus we have a

triangle incident with each vertex of the cycle. Thus the new graph

, n , 2n
H ::2 =Ky - Par; (Sup,) on n vertices has a cycle on — vertices and —

remaining vertices not on the cycle. This graph has chromatic number 3. The
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2n
vertices of S will be taken as the subgraph of H which is a sun graph on ?

vertices. Then

2n

()2 2
S, Koy |S|Z(H(S) ‘3 4 2

K
The general construction of H " 9 - Kq - Par; (Sup) involves replacing each

vertex u not on the cycle, u adjacent to v on the cycle, with a g-clique K¢ and
join every vertex of this clique to v. We will then have a graph on n vertices
. n . n . .
with the cycle on ——vertices and q—vertlces not on the cycle. This new
q+1 q-+1

graph will have chromatic number g+1 and S will be the graph with a cycle on

n . . . . . .
—1vert|ces, each vertex of the cycle joined to a clique of size g-1 so that its
g+

chromatic number is g and is on qq—nlvertices. Hence:
+
gn
SHE) (r +1)(Q) 02

Sy Kay_ =
coviy®(Hp " )}= nz(G)  n(q+2) _(q+1)2

We therefore have associated a sequence:
22 32 42 q2

324252 (q+1)?

K
With the K -chromatic-cover partnerH 9= Ko — Par; (Sup) of the sun
n

graph which converges to 1, the chromatic-cover asymptote of complete
graphs.

3.2 The g-cliqgue chromatic-cover partner of the star graph with rays of length 1
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Consider the star graph on n vertices with r rays of length 1-i.e. K; ,_1.To form
the g-clique chromatic-cover partner of K; ,_1 we replace each vertex u,

except the center vertex v, with a g-clique where q>2 and join every vertex of
(n-1)

each clique connected to the center vertex v. There will be g-cliques

connected to v vertices so that the total number of vertices will be n. The

chromatic number of the new partner graph will be g+1 and the covering S will

be on (n-1)

(g —1) +1vertices, g-1 vertices from each g-clique and the center

vertex, and will have chromatic number g. Thus the chromatic-cover ratio of

. K S .
this partner graph H " 4= Kq —Pary, (K1) will be:

[(n _1)(q _1) +1]q
SAHES) _ _(1-D(@-D+q

nz(G) n(q+1) n(q+1)

cov{y S (Hp )} =

_ng-n-q+1+g ng-n+1
ng+n ng-+n

Fixing g and dividing top and bottom by n gives us the ratio (for large values of
n):

9-1 this yields sequence:
q+1

123 9g-1

325" g1l

This sequence also converges to 1.
3.3 The g-cligue chromatic-cover partner of star graphs with r rays of length 2.

For each end vertex u, connected to the middle vertex v, of the star graph with
r rays of length 2, replace it with a g-clique and join each vertex of each clique
to the vertex v of this star graph.
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n-1
There will be n=1+r +rq vertices all together with r = ] g-cliques and

n-1 . . .
r= —1vert|ces connected directly to the center vertex so that the chromatic-
q-+

cover partner graph will be on n vertices We actually have r (g+1)-cliques
connected directly by an edge to the center vertex. The chromatic number of
the partner will be g+1. Take S to be (minimum vertex cover) g-1 vertices from
each clique and a middle vertex plus the center vertex so that S has size:

(n-1)(a)
(9+1)

+1 and chromatic number q.

The chromatic-cover ratio of this graph will be:

[(n _1)(q) +l]

q
Sy Kay_ SIx(HS) _~ (g+1) _[(n-D(@)+g+1q
coviz™ (Hn ")k = ny(G) n(q+1) T n(g+D(q+1)
_ ng®+q
n(q2+2q+1)

Fixing g and dividing all terms by n .e get the ratio (for n large):

q2

(q+1)°

cover partner of the sun graph:

yielding the sequence identical to the sequence of the chromatic-

LA S
32 42582 (q+1)?

3.4 The g-clique chromatic-cover partner of the complete end-extend graph

Take the complete end-extend graph ( take the complete graph on at least two
vertices and attach an end vertex to each of its vertices) and replace each end
vertex u (joined to v) with a clique of order q and join each vertex of the clique
to v, so that we have a g-clique chromatic partner graph on n vertices with

n n
and —1 (g+1)-cliques and a clique T on —— vertices made up of a single
+

g+1
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vertex from each of the (g+1)-cliques. We take S as the collection of q vertices
from each clique where one is from T. The chromatic number of the new
partner graph will be g+1 and that of the cover graph g.

The chromatic-cover ratio of this g-clique partner graph G will be, with

n
(q+1) <(q-1):

aq
_ 9

s K Slx(H(S) _ (g+1)
H q = = -
cov{y” (H, ")} ny(G) n(q+1) (q +1)2

This gives rise to the sequence:

2234 g
32°42'5%2 (q+1)?

Which converges to 1.

3.5 The g-clique chromatic-cover partner of the fan end-extend graph

Take the fan end-extend graph (the fan graph on at least three vertices and
attach an end vertex to each of its vertices of its path- not its center vertex)
and replace each end vertex u (joined to v) with a clique of order g and join
each vertex of the clique to v, so that we have a g-clique chromatic partner
n
-1

2 vertices from

graph Q on n vertices with g—lvertices on the path and

the cliques.

The chromatic number of Q is g and we take S to be the center vertex together
with g-1 vertices from each clique so that the chromatic number is g-1. Thus:
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(2—1)
2 yq-1)+1(g-1
(5 @D+ U@ 0 oyg-1+2q1-1)

S|x(H(S) _

SrKan_
corz"(hh ="n@ - ng 2qnq

(ng—n-2q+2+2q)(q-1) _ n(g-1)*+2(q-1)
2nq2 2nq2

which has asymptote:

-————— which gives rise to sequence:

(q-1)°
2q2

1 22 3 (q-D°
22223272427 2¢?

3.6 The g-clique chromatic-cover partner of the end-extend ladder graph

Form the end-extend ladder graph by joining and end vertex u to each vertex
of the ladder graph. Then form the g-clique chromatic cover partner by
replacing each end vertex u (joined to v) with a g-clique and join each vertex of
the clique to v. Thus each vertex of the original ladder graph will now belong
to a clique of order g+1. The chromatic number of the partner will be g+1 and
we take S to be q vertices from each (q+1)-clique where we include the vertex
of the ladder subgraph. Each of the 2 paths of the original ladder will give rise

to vertices in the partner graph. We take S to be q vertices from

2(g+1)
each clique where one vertex comes from the original ladder graph. The
chromatic number of the cover graph will be q so that the chromatic-cover
ratio of the g-clique partner graph will be:

()
1™ @)
S Kayy _ [SIZ(H(S) _ " (q+1)
cov{z" (L ="y = n(q+1)
(a-1)°

5 which converges to 1.

q
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Theorem 3.1

The following sequences arise from the g-clique partner of the classes of
graphs:

£RE g
3242527 (q+1)?
2 associated g-cliqued partner.

for the, ladder, complete and stars with rays of length

12§;l for the star graph with rays of length 1 associated g-cliqued
345 q+1
partner

1 22 32 (q-1°
22223272427 2¢?

for the fan associated with g-cliqued partner.

4. Farey g-chromatic-cover sequences and diagrams

The Farey sequence of order n is the sequence FY, of completely reduced

fractions between 0 and 1 which, when in lowest terms, have denominators
less than or equal to n, arranged in order of increasing size. (see [5]). Farey

sequences are named after the British geologist John Farey, Sr., whose letter
about these sequences was published in the Philosophical Magazine in 1816.

For example, the sequence FYs is as follows:

01112132341

15435253451

Interestingly, the root-sequence (term by term square-root) associated with
the first sequence in theorem 3.1 is:

2 34

3'4'5
Forms a subsequence of the Farey sequence- generally a n-2 subsequence of
FY,.

This sequence is a root chromatic-cover (n-2) sub-sequence of FYg.
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The unit-mirror sequence of this sub-sequence is:

111, . .

g,z,g i.e. the sum of corresponding terms of the root chromatic-cover
sequence and the unit-mirror sequence is 1- these pairs are called the unit-
mirror pairs.

Finally we form the Farey chromatic-cover sequence by taking the union of
these 2 sequences and arranging terms in ascending order to form a 2n-4
subsequence of the Farey sequence:

111234

5'4'3'3'4’5

11
Note that the pairs —,—
533
duo-pairs, i.e. pairs whose difference has 2 in the numerator.

4 2
,g each have difference E and they are called

The Farey q-chromatic-cover diagram for q=5 is shown in figure 1 below:

| YV |
0 1/51/4 1/31/2 2/3 3/4 4/5 1
Figure 1: The Farey 5-chromatic-cover diagram

In the diagram neighbors are joined, the unit-mirror pairs are joined and the
duo-pairs are joined

The Farey 6-chromatic-cover diagram is shown in figure 2 below with 6
intersections.



1/6 1/51/41/31/22/3 3/4 4/5 5/6

Figure 2: The Farey 6-chromatic-cover diagram

Total number of intersections generally will be 2+(qg-5)4.
Theorem 4.1

If the neighbors of the Farey g-chromaitc cover sequence:

a a+l o . . 1 1
. ——,—— have unit-mirror associate neighbors: B". ——,——.
a+l a+?2 a+l a+?2
) , _ 1 1
Swop entries of B’ to keep ascending order: B ———,——
a+2 a+l

Then the midpoints of A and B are unit-mirror pairs.

Proof
2
The midpoint of A is: a +l[a+1— i +l[(a+1) a(a+2)]
a+l 2a+2 a+1 a+l1 2° (a+2)(a+l
a 1 1 _2a(a+2)+1 2a° +4a+1

a+l 2 (a+2)(a+l)” 2(a+2)(a+l) 2(a+2)(a+l)
The midpoint of B is:

1 +l 1 1. 1 +£ (a+2)—(a+1)]
a+2 2 a+l a+2° a+2 2 (a+2)(a+l)

19
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1 1 1
= + = ]
a+2 2 (a+2)(a+l)

_ 2(a+n+1 2a+3
C2((a+2)(a+1) 2((@+2)(a+l)’

Midpoint of A plus midpoint of B is:

2a% +4a+1 2a+3 aZ+3a+2

2(a+2)(a+1) ’ 2((a+2)(a+l) (a+2)(a+1)

This completes the proof

Thus through the chromatic-covser ratio of the g-cliqued partner of the
complete graph we have connected the complete graph to a variation of the
Farey sequence.

5. Conclusion

In this paper we combined the two concepts of chromatic number and vertex
covering to form a ratio, associated with a connected graph G, involving the
chromatic number of the cover graph of G and the chromatic number of G.
This chromatic-cover ratio allowed for the investigation of the domination
effect of the chromatic number of cover graph on the original chromatic
number of G, where a large number of vertices are involved — referred to as
the chromatic-cover domination. If the chromatic cover ratio is a function of n
for a particular class of graphs, then we investigated its asymptotic behavior.
The chromatic-cover domination was determined for known classes of graph.
We found that, for the complete graph, the chromatic-cover domination was
the strongest, and for star graphs with rays of length one, no effect at all, while
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for the sun graph the effect was average. By introducing the average degree of
a graph together with the Riemann integral of the chromatic-cover ratio we
associated chromatic —cover area with classes of graphs. Using known classes
of graph we constructed new classes of graphs using g-cliques and created
sequences. We used one of these sequences to create a Farey g-chromatic-
cover sequence which is a 2n-4 subset of the famous Farey sequences and
prove that the midpoints of unit-mirror neighbor pairs from this Farey g-
chromatic-cover sequence are also unit-mirror pairs.

We conjectured that the chromatic-cover domination is the strongest for
complete graphs over all classes of regular graphs. We also believe that
complete graphs possess the greater chromatic-cover area of all classes of
graphs
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