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Abstract

Some novel physical consequences of the Extended Relativity Theory in C-spaces
(Clifford spaces) were explored recently. In particular, generalized photon dispersion
relations allowed for energy-dependent speeds of propagation while still retaining
the Lorentz symmetry in ordinary spacetimes, but breaking the extended Lorentz
symmetry in C-spaces. In this work we analyze in further detail the extended
Lorentz transformations in Clifford Space and their physical implications. Based on
the notion of “extended events” one finds a very different physical explanation of the
phenomenon of “relativity of locality” than the one described by the Doubly Special
Relativity (DSR) framework. A generalized Weyl-Heisenberg algebra, involving
polyvector-valued coordinates and momenta operators, furnishes a realization of an
extended Poincare algebra in C-spaces. In addition to the Planck constant h̄, one
finds that the commutator of the Clifford scalar components of the Weyl-Heisenberg
algebra requires the introduction of a dimensionless parameter which is expressed
in terms of the ratio of two length scales : the Planck and Hubble scales. We finalize
by discussing the concept of “photons”, null intervals, effective temporal variables
and the addition/subtraction laws of generalized velocities in C-space.

Keywords : Clifford algebras; Extended Relativity in Clifford Spaces; Doubly Special
Relativity; Quantum Clifford-Hopf algebras.

In the past years, the Extended Relativity Theory in C-spaces (Clifford spaces) and
Clifford-Phase spaces were developed [1], [2]. The Extended Relativity theory in Clifford-
spaces (C-spaces) is a natural extension of the ordinary Relativity theory whose general-
ized coordinates are Clifford polyvector-valued quantities which incorporate the lines, ar-
eas, volumes, and hyper-volumes degrees of freedom associated with the collective dynam-
ics of particles, strings, membranes, p-branes (closed p-branes) moving in a D-dimensional

∗Dedicated to the memory of Rachael Bowers and based on the plenary talk given at the 10-th
International Conference of Clifford Algebras held in Tartu, Estonia, August 2014
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target spacetime background. C-space Relativity permits to study the dynamics of all
(closed) p-branes, for different values of p, on a unified footing.

Our theory has 2 fundamental parameters : the speed of a light c and a length scale
which can be set equal to the Planck length. The role of “photons” in C-space is played
by tensionless branes. An extensive review of the Extended Relativity Theory in Clifford
spaces can be found in [1]. The polyvector valued coordinates xµ, xµ1µ2 , xµ1µ2µ3 , ... are
now linked to the basis vectors generators γµ, bi-vectors generators γµ ∧ γν , tri-vectors
generators γµ1 ∧ γµ2 ∧ γµ3 , ... of the Clifford algebra, including the Clifford algebra unit
element (associated to a scalar coordinate).

These polyvector valued coordinates can be interpreted as the quenched-degrees of
freedom of an ensemble of p-loops associated with the dynamics of closed p-branes, for
p = 0, 1, 2, ..., D−1, embedded in a target D-dimensional spacetime background. C-space
is parametrized not only by 1-vector coordinates xµ but also by the 2-vector coordinates
xµν , 3-vector coordinates xµνα, ..., called also holographic coordinates, since they describe
the holographic projections of 1-loops, 2-loops, 3-loops,..., onto the coordinate planes .
By p-loop we mean a closed p-brane; in particular, a 1-loop is closed string. When X is
the Clifford-valued coordinate corresponding to the Cl(1, 3) algebra in four-dimensions it
can be decomposed as

X = s 1 + xµ γµ + xµν γµ ∧ γν + xµνρ γµ ∧ γν ∧ γρ + xµνρτ γµ ∧ γν ∧ γρ ∧ γτ (1)

where we have omitted combinatorial numerical factors for convenience in the expansion
of eq-(1). To avoid introducing powers of a length parameter L (like the Planck scale Lp),
in order to match physical units in the expansion of the polyvector X in eq-(1), we can
set it to unity to simplify matters.

The component s is the Clifford scalar component of the polyvector-valued coordinate
and dΣ is the infinitesimal C-space proper “time” interval

(dΣ)2 = (ds)2 + dxµ dx
µ + dxµν dx

µν + . . . (2)

that is invariant under Cl(1, 3) transformations and which are the Clifford-algebraic
extensions of the SO(1, 3) Lorentz transformations [1]. One should emphasize that dΣ is
not equal to the proper time Lorentz-invariant interval dτ in ordinary spacetime (dτ)2 =
gµνdx

µdxν = dxµdx
µ. Generalized Lorentz transformations (poly-rotations) in flat C-

spaces were discussed in [1]. In this work we shall provide an extensive analysis of the
C-space generalized Lorentz transformations and their physical implications.

Let us provide several examples of generalized Lorentz transformations in C-space. For
example, given γ02 the transformation involving the rotor R1 = cosh(β/2)−γ02 sinh(β/2)
corresponds to an ordinary Lorentz boost transformation along the X2 direction and
involving the ordinary temporal variable X0. The ordinary Lorentz boots generators are
given by the bivectors γµν , and which in turn are also expressed as the commutators
[γµ, γν ]. The physical significance of the latter commutators is that they represent a
“rotation” along the Xµ −Xν directions.

However, since one may also write the bivector γ02 as the commutator [γ12, γ01] =
−2γ02, the transformation involving the above rotor R1 also corresponds to an areal boost

2



along the X12 direction but involving the areal temporal coordinate X01. Namely, it is a
”rotation” along the X12 − X01 directions. Whereas the ordinary boost is a “rotation”
along the X2 −X0 directions.

After writing

(XB)′ ΓB = ( cosh(β/2) − γ02 sinh(β/2) ) ( XA ΓA ) ( cosh(β/2) + γ02 sinh(β/2) ) (3)

straightforward algebra yields the transformation of the following bivector coordinates

(X12)′ = X12 coshβ + X01 sinhβ (4a)

(X01)′ = X01 coshβ + X12 sinhβ (4b)

One has a mixing of the spatial and temporal areal bivector coordinates in the new frame
of reference.

Furthermore, since [γ013, γ123] ∼ γ02, the transformation involving the above rotor R1

also corresponds to a 3-volume boost along the X123 direction but involving the 3-volume
temporal coordinate X013. Namely, it is a ”rotation” along the X123 − X013 directions
giving

(X123)′ = X123 coshβ + X013 sinhβ (5a)

(X013)′ = X013 coshβ + X123 sinhβ (5b)

One has a mixing of the spatial and temporal trivector coordinates in the new frame of
reference. The ordinary Lorentz boosts of the vector coordinates give

(X2)′ = X2 coshβ + X0 sinhβ (6a)

(X0)′ = X0 coshβ + X2 sinhβ (6b)

while the remaining coordinates remain invariant and such that the quadratic form
XAXA = (XA)′(XA)′ remains invariant. Straightforward algebra leads to

− (X ′0)2 + (X ′1)2 − L−2 (X ′01)2 + L−2 (X ′12)2 − L−4 (X ′013)2 + L−4 (X ′123)2 =

− (X0)2 + (X1)2 − L−2 (X01)2 + L−2 (X12)2 − L−4 (X013)2 + L−4 (X123)2 (7)

The quadratic form is defined as

< X† X > = XA X
A = s2 + Xµ X

µ + Xµ1µ2 X
µ1µ2 + ...... Xµ1µ2.....µD X

µ1µ2....µD (8)

where X† denotes the reversal operation obtained by reversing the order of the gamma
generators in the wedge products. The symbol < ΓA ΓB > denotes taking the scalar
part in the Clifford geometric product of ΓA ΓB. It is the analog of the trace of a product
of matrices. Such scalar part can be obtained from the (anti) commutator relations of the
Clifford algebra generators as displayed in the Appendix. For example
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< γµ γ
ν > = δνµ, < γµ1µ2 γ

ν1ν2 > = − δ ν1ν2
µ1µ2

< γµ1µ2µ3 γ
ν1ν2ν3 > = − δ ν1ν2ν3

µ1µ2µ3
, < γµ1µ2µ3µ4 γ

ν1ν2ν3ν4 > = δ ν1ν2ν3ν4
µ1µ2µ3µ4

, ...... (9)

One should note the presence of ± signs in the right hand side of eqs-(9). They are
connected to the even/odd behavior of the reversal operation (γC)† = ±γC .

The quadratic form is invariant under the isometry transformations

X′ = R X L†, R R† = 1, L L† = 1 ⇒ < X′
†

X′ > = < X† X > (10)

due to the cyclic property of the scalar part projection

< X′
†

X′ > = < L X† R† R X L†, > = < L X† X L† > =

< L† L X† X > = < X† X > (11)

where R,L are Clifford-valued rotors acting on the right and left respectively.
The second example corresponds to the case when there is a mixing of different grades.

It involves the commutator [γ0123, γ3] ∼ γ012 and such that the transformation involving
the rotor R2 = cosh(β′/2)− γ012 sinh(β′/2) corresponds to a boost along the spatial X3

direction but involving now the temporal 4-volume polyvector-valued coordinate X0123.
The reason being that γ012 can be rewritten as the commutator of γ0123 and γ3, so we have
now “rotations” along the X3 −X0123 directions. Straightforward algebra yields now the
transformation of the following (poly) vector coordinates

(X3)′ = X3 cosh(β′) − L−3 X0123 sinh(β′) (12a)

(X0123)′ = X0123 cosh(β′) − L3 X3sinh(β′) (12b)

In this case one has a mixing of polyvector-valued coordinates of different grade. In the
new frame of reference the spatial X3 coordinate and the temporal 4-volume coordinate
X0123 are mixed.

Furthermore, since [γ03, γ123] ∼ γ012, the transformation involving the rotor R2 =
cosh(β′/2)− γ012 sinh(β′/2) also corresponds to a boost along the spatial trivector X123

direction but involving now the temporal bivector coordinate X03. These transformations
are

(X123)′ = X123 cosh(β′) − L X03 sinh(β′) (13a)

(X03)′ = X03 cosh(β′) − L−1 X123 sinh(β′) (13b)

In the above equations we have used the relations

γ2
01 = 1, γ†02 = −γ02, γ2

012 = 1, γ†012 = −γ012

{γ12, γ02} = 0, [γ0123, γ012] = − 2 γ3, {γ0123, γ012} = 0
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γ02 γ12 γ02 = −γ12, [γ012, γ3] = 2 γ0123, {γ012, γ3} = 0, .... (14)

cosh2(ξ)− sinh2(ξ) = 1, cosh2(ξ) + sinh2(ξ) = cosh(2ξ), sinh(2ξ) = 2 sinh(ξ) cosh(ξ)
(15)

Given in general a transformation of the form

( cosh(β/2) − ΓC sinh(β/2)) XA ΓA ( cosh(β/2) + ΓC sinh(β/2)) = X ′B ΓB (16)

one learns that

X ′B = XB cosh2(β/2) − XA sinh2(β/2) < ΓC ΓA ΓC ΓB > +

XA cosh(β/2) sinh(β/2) < [ΓA, ΓC ] ΓB > (17)

The generator ΓC of generalized Lorentz boosts is of the form (γ0µ1µ2...µn−1) with the
provision that under the reversal operation it changes sign

(γ0µ1µ2...µn−1)
† = − γ0µ1µ2...µn−1 (18a)

so that RR† = 1. This condition will restrict the values of n to be n = 2, 3, 6, ...and
obeying

(γ0µ1µ2...µn−1)
2 = 1 (18b)

Generalized spatial rotations don’t involve the temporal directions and are generated by
γµ1µ2...µm obeying

(γµ1µ2...µm)† = − γµ1µ2...µm (19)

and
(γµ1µ2...µm)2 = − 1 (20)

For instance, a generalized rotation in D > 4 and generated by γ12...6 involving the
parameter α12....6 yields a rotor whose Taylor series expansion becomes

R = eα
12...6 γ12.....6 = cos(α12....6) + γ012.....6 sin(α12...6) (21)

due to the condition (γ12.....6)2 = − 1 which is similar to having the imaginary unit
i2 = −1 and the expression eiθ = cos(θ) + i sin(θ). Whereas a generalized Lorentz boost
is like having a “rotation” with an imaginary “angle” leading to the hyperbolic functions

R = eβ
012...5 γ02.....5 = cosh(β012....5) + γ012.....5 sinh(β12...5) (22)

due to the condition (γ012.....5)2 = 1.
Eq-(17) only simplifies considerably in the very special case when the values of the

polyvector valued indices A,B,C are such that
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< ΓC ΓA ΓC ΓB > = − 1, < [ΓA, ΓC ] ΓB > = ± 2 (23)

and it leads to the type of transformations displayed above. In general, for a given set of
values of B,C, one must sum over all the A indices in eq-(17). For this reason the most
general expression for X ′B given by eq-(17) is more complicated than that given by the
above equations. Another special case occurs when

< ΓC ΓA ΓC ΓB > = 1, < [ΓA, ΓC ] ΓB > = 0 (24)

leading to X ′B = XB so that these particular polyvector coordinate components remain
invariant.

One should emphasize that the functional form of the most general transformations are
even more complicated than those described in eq-(17). Let us write the rotor associated
with a “rotation” along the XA − XB directions in C-space with parameter αAB, after
writing the commutation relations [ΓA,ΓB] = f C

AB ΓC , as follows

R = eα
AB [ΓA,ΓB ] = eα

AB fCAB ΓC = eβ
CΓC , βC = αAB f C

AB (25)

where f C
AB are the structure constants of the algebra. There is a summation over the C

indices (but not over the A,B indices) in eq-(25) and the reversal condition reads

[ΓA, ΓB]† = − [ΓA, ΓB] ⇒ R R† = 1 (26)

and which is satisfied in particular when Γ†A = −ΓA; Γ†B = −ΓB giving Γ†C = −ΓC . This
is a result of the relations (ΓAΓB)† = (ΓB)†(ΓA)† = ΓBΓA. In the most general case, for
arbitrary dimensions, due to the summation over the C polyvector indices in eq-(25), the
rotor R cannot be expressed in the form displayed in eq-(16) after performing a Taylor
series expansion of the exponentials. For instance

eβ
01γ01 + β023γ023 6=

(
cosh(β01) + γ01 sinh(β01)

) (
cosh(β023) + γ023 sinh(β023)

)
(27)

as a result of the Baker-Campbell-Hausdorf formula. Because [γ01, γ023] 6= 0 the left hand
side of eq-(27) does not factorize.

We shall study next another different approach to the construction of generalized
Lorentz transformations involving only polyvector components of equal grade. One may
define a generalized Lorentz algebra in terms of anti-Hermitian operators J AB = −J BA

as 1

[ J AB, J CD ] = − GAC J BD + GAD J BC − GBD J AC + GBC J AD (28)

where A,B,C, .... are polyvector-valued indices. One must emphasize that J AB 6=
[ΓA,ΓB], except in the case J µν = 1

4
[γµ, γν ]. To simplify matters, the generalized metric

1We choose anti-Hermitian operators in order to avoid having to introduce i factors in the right hand
side of the commutators
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GAB = GBA shall be chosen to be GAB = 0 when the grade A 6= grade B. And for the
same grade metric components g[a1a2...ak] [b1b2...bk] of GAB, the metric can decomposed into
its irreducible factors as antisymmetrized sums of products of ηab given by the following
determinant [8]

GAB ≡ det


ηa1b1 . . . . . . ηa1bk

ηa2b1 . . . . . . ηa2bk

−−−−−−−−−−− −−−−−−−−−−−−−−
ηakb1 . . . . . . ηakbk

 = GBA

(29)
The spacetime signature is chosen to be (−,+,+, ....,+).

One can verify next that a realization of the algebra (28) can be obtained in terms
of polyvector-valued coordinates and momenta X̂A, P̂B operators obeying the generalized
Weyl-Heisenberg algebra

[X̂A, P̂B] = i (h̄)(|A|+|B|)/2 GAB, GAB = GBA (30)

where |A|, |B|, = grade of A,B, respectively.
The C-space polyvector-valued momentum is defined as

P = M dX

dΣ
= PA ΓA = π + pµ γµ + pµν γµ ∧ γν + ...... (31)

where (dΣ)2 =< dX† dX >. Σ is the analog of “proper time” in C-space. To match
physical units, powers of a suitable mass/length parameter must be introduced in eq-(31).
Like the Planck mass and length. If X and P are taken to have length and momentum
dimensions, respectively, then M has mass dimensions. By inspection one learns that
the commutator of the zero grade components, the scalar parts of X̂A and P̂B, does not
involve h̄ but a dimensionless parameter that can be given by the ratio of an ultraviolet
LP and infrared Hubble scale RH as follows

[ŝ, π̂] = i
LP
RH

G∗∗ (32)

G∗∗ is the scalar-scalar component of the generalized metric GAB. The classical limit
is attained when LP/RH → 0 so that the above commutator vanishes. This ratio
LP/RH is also related to the observed vacuum energy density ρ ∼ (LP/RH)2 (MP )4 ∼
10−122 (Planck Mass)4.

Hence, if J AB = 0 when the grade A 6= grade B, a Weyl-Heisenberg algebra allows to
find a realization of the dimensionless anti-Hermitian generators J AB in eq-(28) as follows

J AB =
i

h̄(|A|+|B|)/2

(
X̂A P̂B − X̂B P̂A

)
= − J BA, J AB = 0 if |A| 6= |B| (33)

X̂A and P̂B are Hermitian operators.
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To sum up, when |A| = |B|, GAB 6= 0,J AB 6= 0; and GAB = 0,J AB = 0 for |A| 6= |B|,
a generalization of the Poincare algebra involving polyvector-valued indices is given by
the commutators in eq-(28) and

[ J AB, P̂C ] = − GAC P̂B + GBC P̂A, [P̂A, P̂B] = 0, [X̂A, X̂B] = 0, (34)

where P̂A are the polymomentum operators and J AB are the generalized Lorentz gener-
ators. The [J AB,J CD], [J AB, P̂C ], .... commutators obey the Jacobi identities.

A question still remains whether or not it is possible to construct the generators of
the algebra displayed by eq-(28) in terms of a judicious superposition of Clifford algebra
generators like

J AB = MAB
C ΓC (35)

By inspection one learns that J AB 6= [ΓA,ΓB], nor proportional to the commutators,
except in the case J µν = 1

4
[γµ, γν ]. Therefore, the coefficients MAB

C 6= fABC are not given
by the structure constants. Inserting the ansatz of (35) into the commutators (28) leads
to an algebraic set of equations involving MAB

C , f
AB
C , G

AB as the indices A,B,C run from
1 to 2D. It is unknown (to our knowledge) if a solution for the coefficients MAB

C exists
given the complexity of the (anti) commutator relations in any dimension provided in the
Appendix. A computer algebra package would be required.

We learnt from Special Relativity that the concept of simultaneity is relative. The
typical example arises when a moving observer inside a train sees the front and back doors
of a train opening simultaneously. Due to the spatial separation (∆X3 6= 0) between the
two doors, an observer at rest in the platform will see the doors opening at different
times

(∆X0)′ = ∆X0 cosh(β) + ∆X3 sinh(β) 6= 0, (36)

despite ∆X0 = 0 due to the fact that ∆X3 6= 0.
Something analogous, and more general, occurs in C-space. Let us denote by ∆X3 =

X3
(2) − X3

(1), ∆X0123 = X0123
(2) − X0123

(1) the spatial and 4-volume separation, respectively,
between two events 1 and 2 in a given frame of reference in a flat C-space. From eqs-(12)
it follows that in the new frame of reference one has

(∆X3)′ = ∆X3 cosh(β′) − L−3 ∆X0123 sinh(β′) (37a)

(∆X0123)′ = ∆X0123cosh(β′) − L3 ∆X3sinh(β′) (37b)

if ∆X0123 6= 0 one has that (∆X3)′ 6= 0 despite that ∆X3 = 0. Therefore, because
(∆X3)′ 6= 0 the observer in the new frame of reference does not experience events 1,2 at
the same location.

An “extended” event in C-space described by eqs-(37) can be envisaged as follows. An
observer assigns to a physical event the coordinate values XA where the index A spans
2D values corresponding to the dimension of a Clifford algebra in D-dim. In particular
X3, X0123. Event 1 can be described in terms of a spherical bubble (a closed 3-brane)
moving in spacetime whose 4-volume (swept by the 3-brane at a given time X0

(1)) is

given by X0123
(1) . The center of mass of such bubble is given by the Xµ

(1) coordinates, in
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particular X3
(1) represents the z-component. Whereas event 2 is described in terms of

another spherical bubble of different size in spacetime whose 4-volume at a given time
X0

(2) is given by X0123
(2) . The center of mass of such bubble is given now by Xµ

(2) coordinates,

in particular X3
(2). If the centers of mass of the small and large bubble coincide one has

that ∆X3 = 0, while ∆X0123 6= 0 since the bubbles are of different size. Consequently
one learns from eq-(37a) that (∆X3)′ 6= 0 in the new frame of reference : namely, the
centers of mass of the bubbles in the new frame of reference do no longer coincide.

Concluding, the concept of spacetime locality is relative due to the mixing of 4-volume
coordinates with spacetime vector coordinates under generalized Lorentz transformations
in C-space. In the most general case, there will be mixing of all polyvector valued coordi-
nates. This was the motivation to build a unified theory of all extended objects, p-branes,
for all values of p subject to the condition p+ 1 = D. Therefore, the Extended Relativity
Theory in C-spaces (Clifford spaces) were provides a very different physical explanation of
the phenomenon of “relativity of locality” than the one described by the Doubly Special
Relativity (DSR) framework [7].

Recently it was found in [4] that the constant (energy-independent) speed of pho-
ton propagation is always compatible with the generalized photon dispersion relations
in C-spaces. Another important consequence was that the generalized C-space photon
dispersion relations allowed also for energy-dependent speeds of propagation while still
retaining the Lorentz symmetry in ordinary spacetimes, while breaking the extended
Lorentz symmetry in C-spaces. This does not occur in DSR nor in other approaches, like
the presence of quantum spacetime foam.

To finalize we shall discuss the concept of “photons” and generalized velocities in
C-space. Superluminal particles were studied within the framework of the Extended
Relativity theory in Clifford spaces (C-spaces) in [5]. As discussed in detailed by [1], [3]
one can have tachyonic (superluminal) behavior in ordinary spacetime while having non-
tachyonic behavior in C-space. Hence from the C-space point of view there is no violation
of causality nor the Clifford-extended Lorentz symmetry. The analog of “photons” in C-
space are tensionless strings and branes [1].

Let us take the spacetime signature to be (−,+,+,+, ......,+) and factorize the C-
space interval in eq-(2) as follows by bringing the c2(dt)2 factor outside the parenthesis

(dΣ)2 = c2(dt)2

(
L2

c2
(
ds

dt
)2 − 1 +

1

c2
(
dXi

dt
)2 +

1

L2c2
(
dXij

dt
)2 − 1

L2c2
(
dX0i

dt
)2 ........

)
(38)

where the spatial index i range is 1, 2, ..., D − 1. The Clifford space associated with the
Clifford algebra in 4D is 16-dimensional and has a neutral/split signature of (8, 8) [3], [1].
For example, the terms (dX0i)

2, (dX0ij)
2, (dX0123)2 will appear with a negative sign, while

the terms (dXij)
2, (dXijk)

2 will appear with a positive sign.
There are many possible combination of numerical values for the 16 terms inside

the parenthesis in eq-(27). As explained in [3], [1], superluminal velocities in ordinary
spacetime are possible, while retaining the null interval condition in C-space (dΣ)2 = 0,
associated with tensionless branes. The null interval in C-space (dΣ)2 = 0 can be
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attained, for example, if each term inside the parenthesis is ±1 respectively. Since there
are 8 positive ( +1) terms and 8 negative ( −1) terms one has that 8− 8 = 0 and the null
interval condition (dΣ)2 = 0 is still satisfied despite having superluminal speeds.

A very different combination of numerical values, as compared to the previous one,
leading also to a null interval condition in C-space (dΣ)2 = 0, occurs when

1

c2

(
(
dX1

dt
)2 + (

dX2

dt
)2 + (

dX3

dt
)2

)
= 1 (39a)

1

L2c2

(
(
dX12

dt
)2 + (

dX13

dt
)2 + (

dX23

dt
)2

)
=

1

L2c2

(
(
dX01

dt
)2 + (

dX02

dt
)2 + (

dX03

dt
)2

)
(39b)

1

L4c2

(
(
dX012

dt
)2 + (

dX013

dt
)2 + (

dX023

dt
)2

)
=

1

L4c2
(
dX123

dt
)2 (39c)

1

L6c2
(
dX0123

dt
)2 =

L2

c2
(
ds

dt
)2 (39d)

Another description of C-space “photons” can then be given in terms of an effective
temporal variable T comprised of all the temporal coordinates in the interval of eq-(38).
In order to simplify matters let us work with D = 3 instead of D = 4. The effective
temporal variable T is defined as

c2(dT )2 ≡ c2(dt)2 +
1

c2
(
dX01

dt
)2 +

1

c2
(
dX02

dt
)2 +

1

L2c2
(
dX012

dt
)2 (40)

so that the C-space interval can be rewritten, after factoring out the c2(dT )2 term, as

(dΣ)2 = − c2(dT )2

(
1 − L2

c2
(
ds

dT
)2 − 1

c2
(
dX1

dT
)2 − 1

c2
(
dX2

dT
)2 − 1

L2c2
(
dX12

dT
)2

)
(41)

The last expression has the same functional form as the ordinary spacetime interval in
MInkowski space. Namely one can write the C-space interval (dΣ)2 in the form

(dΣ)2 = − c2(dT )2 ( 1 − V 2

c2
) (42)

where the generalization of the magnitude-squared of the spatial velocity divided by c2 is

V 2

c2
≡ L2

c2
(
ds

dT
)2 +

1

c2
(
dX1

dT
)2 +

1

c2
(
dX2

dT
)2 +

1

L2c2
(
dX12

dT
)2 (43)

Another description of C-space Photons is obtained from the null C-space interval condi-
tion (dΣ)2 = 0 which is equivalent to setting V 2/c2 = 1 in eq-(43) and where the velocity
squared is defined with respect to the effective temporal variable T .
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To finalize let us write down the addition law of generalized velocities based on the
extended Lorentz transformations described in this work. Upon defining β = −β′ in
eqs-(12) and differentiating gives

dX ′3 = dX3 coshβ + L−3 dX0123 sinhβ (44a)

dX ′0123 = dX0123 coshβ + L3 dX3 sinhβ (44b)

such that

dX ′3
dX ′0123

=
dX3

dX0123
+ L−3 tanhβ

1 + L3 dX3

dX0123
tanhβ

(45)

Using the following definitions of the generalized velocities (in c = 1 units)

V3 ≡
dX3

dX0123

, V ′′3 ≡ L−3 tanhβ, (46)

corresponding, respectively, to the generalized velocity V3 of a polyparticle with respect to
the temporal 4-volume X0123 coordinate (as measured in a given frame of reference) and
the generalized velocity V ′′3 of a moving observer associated with the generalized boost
transformation with parameter β. Hence, eq-(46) can be rewritten as

V ′3 =
V3 + V ′′3

1 +
V3 V ′3
L−6

(47)

leading to the addition law of the generalized velocities. In particular, one can see that
if the maximal generalized velocity is identified with the quantity cL−3, after restoring
the speed of light that was set to unity, we have that the addition/subtraction law of the
maximal generalized velocities cL−3 yields always the maximal generalized velocity

V ′3 =
V3 ± V ′′3

1 ± V3 V ′′3
L−6c2

=
L−3c ± L−3c

1 ± L−3c L−3c
L−6c2

= L−3c
1 ± 1

1 ± 1
= L−3 c (48)

so that the maximal velocity cL−3 is never surpassed and it is a C-space relativistic
invariant quantity. Meaning also that if the velocities of two polyparticles in a given
reference frame is maximal cL−3, their relative velocity is also maximal resulting from the
subtraction law in eq-(48).

Following the same procedure in eqs-(13) as performed above one arrives at

V ′123 =
V123 + V ′′123

1 +
V1233 V ′1233

L2 c2

, V123 = c
dX123

dX03

, V ′′123 = c L tanh(β), V ′123 = c
dX ′123

dX ′03

(49)

where the maximal generalized velocity V123 is now cL. In general, the maximal values of
the generalized velocities are c and cLn where n is a positive, negative integer. The case
n = 0 corresponds to a generalized velocity associated with polyvector-valued coordinates
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of the same grade 2. Namely, c (dXµ1µ2....µn/dX0ν1ν2....νn−1) such that the maximal velocity
is the speed of light. More research is warranted to explore many more novel consequences
of Clifford Space Relativity. Progress in the construction of generalized gravitational
theories in Clifford spaces can be found in [8]. We must remark that one has not been
trying to “squeeze” new physics out of Clifford algebras in this work. One the contrary,
it is the physics of p-branes that led us to Clifford space relativity in the first place.

APPENDIX

In this Appendix we shall write the (anti) commutator relations for the Clifford algebra
generators.

1

2
{ γa, γb } = gab 1;

1

2
[ γa, γb ] = γab = − γba, a, b = 1, 2, 3, · · · ,m (A.1)

[ γa, γbc ] = 2 gab γc − 2 gac γb, { γa, γbc } = 2 γabc (A.2)

[ γab, γcd ] = − 2 gac γbd + 2 gad γbc − 2 gbd γac + 2 gbc γad (A.3)

In general one has [6]

pq = odd, [γm1m2....mp , γ
n1n2....nq ] = 2 γn1n2....nq

m1m2....mp
− 2p!q!

2!(p− 2)!(q − 2)!
δ

[n1n2

[m1m2
γ
n3....nq ]
m3......mp] +

2p!q!

4!(p− 4)!(q − 4)!
δ

[n1....n4

[m1....m4
γ
n5....nq ]
m5......mp] − ............ (A.4)

pq = even, { γm1m2....mp , γ
n1n2....nq } = 2 γn1n2....nq

m1m2....mp
− 2p!q!

2!(p− 2)!(q − 2)!
δ

[n1n2

[m1m2
γ
n3....nq ]
m3......mp] +

2p!q!

4!(p− 4)!(q − 4)!
δ

[n1....n4

[m1....m4
γ
n5....nq ]
m5......mp] − ............ (A.5)

pq = even, [γm1m2....mp , γ
n1n2....nq ] =

(−1)p−12p!q!

1!(p− 1)!(q − 1)!
δ

[n1

[m1
γ
n2....nq ]
m2....mp] −

(−1)p−12p!q!

3!(p− 3)!(q − 3)!
δ

[n1n2n3

[m1m2m3
γ
n4....nq ]
m4......mp] + ....... (A.6)

pq = odd, { γm1m2....mp , γ
n1n2....nq } =

(−1)p−12p!q!

1!(p− 1)!(q − 1)!
δ

[n1

[m1
γ
n2....nq ]
m2....mp] −

2We should note that the coordinate X0 ≡ ct is chosen to have length dimensions.
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(−1)p−12p!q!

3!(p− 3)!(q − 3)!
δ

[n1n2n3

[m1m2m3
γ
n4....nq ]
m4......mp] + ....... (A.7)

The generalized Kronecker delta is defined as the determinant

δa1a2.....akb1b2.....bk
≡ det


δa1b1 . . . . . . δa1bk
δa2b1 . . . . . . δa2bk

−−−−−−−−−−− −−−−−−−−−−−−−−
δakb1 . . . . . . δakbk

 (A.8)
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