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I got my own way, to go,  

And now I want,  

To take your minds; 

I, believe, if you could see, 

The blood between the lines, 

I, believe, that you could be, 

A better kind; 

Please lead the way so the unborn can play, 

On some greener hill; 

Laugh as the flames eat their burning remains, 

Fools die laughing still.
1
 

 

 

                                                 
1
 ‘Fools’, Deep Purple, Fireball, 1971, (Gillan, I., 

Glover, R., Lord, J., Blackmore, R., Paice, I.)   

 

 

 

 

I. Introduction 

 

Gerardus ‘t Hooft is a Dutch professor of 

physics at the University of Utrecht in the 

Netherlands. He is a winner of the Nobel 

Prize for physics. He is currently, and for 

some years has been, the Editor in Chief of 

the journal Foundations of Physics. He has 

kindly brought attention to my writings on 

black holes, big bang cosmology, and General 

Relativity, on his personal website. I’m 

honoured that Professor ‘t Hooft  has taken 

the time and trouble to inform people of my 

research proving the falsity of black hole 

theory, big bang cosmology, and Einstein’s 

General Theory of Relativity. Although he 
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ABSTRACT 

I extend my thanks to Professor Gerardus ‘t Hooft, Nobel Laureate in Physics, for making 

more widely known my work on black hole theory, big bang cosmology, and Einstein’s 

General Theory of Relativity, by means of his personal website, and for providing me 

thereby with the opportunity to address the subject matter - supported by extensive 

references to primary sources for further information - in relation to his many comments, 

by means of this dedicated paper. The extensive mathematical appendices herein are not 

prerequisite to understanding the text.  
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comments on the works of five particular 

scientists, he has allocated perhaps the most 

of his comments to me. 

 

Mr. ‘t Hooft [1] refers cryptically to the five 

scientists as Mr. L, Mr. C, Mr. DC, Mr. E, 

and Mr. AL, although it is a well known 

secret that Mr. L is Dr. Chung Lo of the 

Applied and Pure Research Institute, Mr. C is 

me, Mr. DC is Dimi Chakalov (independent 

researcher)
2
, Mr. E is Professor Myron W. 

Evans of the Alpha Institute for Advanced 

Study, and Mr. AL is Professor Angelo 

Loinger of the Dipartimento di Fisica, 

Universitá di Milano, Italy; for those Readers 

who were not aware of the well known secret. 

Mr. ‘t Hooft provided a link on his webpage 

to an interesting paper by Professor Loinger, 

but none, unfortunately, to me or the other 

scientists. I therefore elaborate herein on the 

many comments Mr. ‘t Hooft has made on his  

webpage concerning me and my scientific 

work. 

 

I shall begin by comparing the generic 

defining characteristics of all alleged black 

hole universes to all alleged big bang 

universes as they require no mathematics to 

fully understand.  

 

II. Black holes and big bangs in contrast 

 

There are four different types of black hole 

universes advanced by the astrophysical 

scientists; (a) non-rotating charge neutral, (b) 

non-rotating charged, (c) rotating charge 

neutral, (d) rotating charged. Black hole 

masses or ‘sizes’, are not types, just masses or 

sizes of the foregoing types. There are three 

purported types of big bang universes and 

they are characterised by their constant k-

curvatures; (a) k = -1, negative spacetime 

curvature and spatially infinite, (b) k = 0, flat 

spacetime and spatially infinite, (c) k = 1, 

positive spacetime curvature and spatially 

finite. Compare now the generic defining 

characteristics of all black hole universes with 

those of all big bang universes [2, 3, 4, 5]. 

                                                 
2
 http://www.god-does-not-play-dice.net  

 All black hole universes: 

 

(1) are spatially infinite 

(2) are eternal  

(3) contain only one mass 

(4) are not expanding (i.e. are static or   

      stationary) 

(5) are either asymptotically flat or   

      asymptotically curved. 

 

All big bang universes: 

 

(1) are either spatially finite (1 case; k = 1) or   

      spatially infinite (2 different cases; k = -1,  

      k = 0) 

(2) are of finite age (~13.8 billion years) 

(3) contain radiation and many masses  

(4) are expanding (i.e. are non-static) 

(5) are not asymptotically anything. 

 

Note also that no black hole universe even 

possesses a big bang universe k-curvature. 

 

Comparison of the defining characteristics of 

all black hole universes with all big bang 

universes immediately reveals that they are 

contradictory and so they are mutually 

exclusive; they can’t co-exist. No proposed 

black hole universe can be superposed with 

any other type of black hole universe, with 

any big bang universe, or with itself. 

Similarly, no proposed type of big bang 

universe can be superposed with any other 

type of big bang universe, with any black hole 

universe, or with itself. All proponents of 

black holes are blissfully unaware of these 

simple contradictions and so they combine 

(i.e. superpose) their black hole universes 

with black hole universes and with big bang 

universes to conjure up black hole big bang 

hybrid universes ad arbitrium, and without 

ever specifying what black hole universes in 

what big bang universes they intend.  

 

Furthermore, General Relativity is a nonlinear 

theory and so the Principle of Superposition is 

invalid therein. Let X be some alleged black 

hole universe and Y be some alleged big bang 

universe. Then the linear combination (i.e. 

superposition) X + Y is not a universe. Indeed, 
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X and Y pertain to completely different sets of 

Einstein field equations and so they have 

absolutely nothing to do with one another 

whatsoever.  

 

Despite the contradictory nature of the 

defining characteristics of black hole 

universes and big bang universes, and despite 

the fact that the Principle of Superposition is 

invalid in General Relativity, Mr. ‘t Hooft [1, 

6] superposes and says that multiple black 

holes exist, along with other matter such as 

stars and galaxies, and all together in some 

(unspecified) big bang universe [7].  

 

“We not only accept the existence of black 

holes, we also understand how they can 

actually form under various circumstances. 

Theory allows us to calculate the behavior of 

material particles, fields or other substances 

near or inside a black hole. What is more, 

astronomers have now identified numerous 

objects in the heavens that completely match 

the detailed descriptions theoreticians have 

derived. These objects cannot be interpreted 

as anything else but black holes. The 

‘astronomical black holes’ exhibit no clash 

whatsoever with other physical laws. Indeed, 

they have become rich sources of knowledge 

about physical phenomena under extreme 

conditions. General Relativity itself can also 

now be examined up to great accuracies.” [6] 

 

Mr. ‘t Hooft [7] begins his exposition of big 

bang creationism with the following words, 

 

“General relativity plays an important role in 

cosmology. The simplest theory is that at a 

certain moment “t = 0”, the universe started 

off from a singularity, after which it began to 

expand.” 

 

and he concludes from  the Friedman-

Robertson-Walker metrics that, 

 

“All solutions start with a ‘big bang’ at t = 

0.” [7] 

 

All so-called black hole solutions for various 

respective sets of Einstein field equations are 

also said to pertain to stars and other masses, 

including the Sun and the Earth. For instance, 

according to Mr. ‘t Hooft [7], 

 

“Einstein’s equation, (7.26), should be exactly 

valid. Therefore it is interesting to search for 

exact solutions. The simplest and most 

important one is empty space surrounding a 

static star or planet. There, one has 

 

Tµν = 0.” 

 

Consequently, all the generic defining 

characteristics listed above for black hole 

universes apply equally to stars and planets 

and such, and they too are supposed to subsist 

in some unspecified big bang universe. Black 

hole universes differ however to those of stars 

and planets described by the very same 

equations on a secondary level. For instance, 

all black holes have a so-called ‘event 

horizon’ within which is located an ‘infinitely 

dense singularity’ at which spacetime is 

‘infinitely curved’; stars and planets have no 

event horizons or singularities. Mr. ‘t Hooft [1, 

6, 7], as is usual for cosmologists, urges that 

singularities, which are actually just places in 

a mathematical expression where it is 

undefined, are physical entities. Mr. ‘t Hooft, 

along with the astrophysical scientists, reifies 

points in an equation where that equation is 

undefined.  

 

Since Einstein’s gravitational field is 

spacetime curvature, it follows that the 

cosmologists, including Mr. ‘t Hooft, 

necessarily maintain that Einstein’s gravity is 

infinite at a black hole singularity. These 

infinities of density, spacetime curvature, and 

gravity are also said to be physically real.  For 

instance, according to Hawking [8], 

 

“The work that Roger Penrose and I did 

between 1965 and 1970 showed that, 

according to general relativity, there must be 

a singularity of infinite density, within the 

black hole.”  

 

According to Carroll and Ostlie [9], 
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“A nonrotating black hole has a particularly 

simple structure. At the center is the 

singularity, a point of zero volume and 

infinite density where all of the black hole’s 

mass is located. Spacetime is infinitely curved 

at the singularity. . . . The black hole’s 

singularity is a real physical entity. It is not a 

mathematical artifact . . .” 

 

According to Dodson and Poston [10], 

 

“Once a body of matter, of any mass m, lies 

inside its Schwarzschild radius 2m it 

undergoes gravitational collapse . . . and the 

singularity becomes physical, not a limiting 

fiction.” 

 

According to Penrose [11], 

 

“As r decreases, the space-time curvature 

mounts (in proportion to r
−3

), becoming 

theoretically infinite at r = 0. 

 

And according to Mr. ‘t Hooft [1], 

 

“C is ‘self taught’, so he had no math courses 

and so does not know what almost means here, 

in terms of carefully chosen limiting 

procedures.” 

 

How does Mr. ‘t Hooft know if I have taken 

any mathematics courses or not? He doesn’t!  

He certainly never asked me about it. What 

evidence does he adduce for his charge? None! 

Mr. ‘t Hooft just invented this charge for his 

own convenience. And for what it’s worth, I 

have taken formal university courses in 

mathematics; not that it makes any difference 

to the scientific realities. 

 

As for “carefully chosen limiting procedures”, 

Dodson and Poston have already told us that a 

black hole singularity is “not a limiting 

fiction”.  Carroll and Ostlie have already told 

us that “The black hole’s singularity is a real 

physical entity. It is not a mathematical 

artifact”.  Hawking and Penrose have already 

told us that “there must be a singularity of 

infinite density, within the black hole.”  

Penrose has already told us that spacetime 

curvature becomes “theoretically infinite at r 

= 0.” 

 

It is not difficult to see when a limiting 

procedure is employed or not, and it is 

certainly not employed by the foregoing 

Authors, in their very own words. Such is the 

nature of the alleged black hole. 

 

There are two types of black hole singularity 

reported by cosmologists and astronomers, 

according to whether or not their black hole is 

rotating. In the case of no rotation the 

singularity is a point; in the case of rotation 

the singularity is the circumference of a circle. 

Cosmologists and astronomers call them 

‘physical singularities’; and so does Mr. ‘t 

Hooft [6]. These and other mathematical 

singularities of black hole equations are 

reified so as to contain the masses of black 

holes and to locate their event horizons. Black 

holes are said to range in size (by means of 

their masses) from micro to mini to 

intermediate to supermassive to ultra-

supermassive, up to billions of solar masses.  

 

Since singularities are actually only places in 

an equation where the equation is undefined, 

owing for example, to a division by zero, 

singularities are not real physical entities, 

contrary to the claims of the cosmologists and 

astronomers.   

 

Similarly, astrophysical scientists assert that 

there was a big bang singularity, also 

possessing various associated physically real 

infinities. According to Hawking [12], 

 

“At the big bang itself, the universe is thought 

to have had zero size, and to have been 

infinitely hot.”  

 

That which has zero size has no volume and 

hence can’t contain mass or have a 

temperature. What is temperature? According 

to the physicists and the chemists it is the 

motion of atoms and molecules. The more 

energy imparted to the atoms and molecules 

the faster they move about and so the higher 

the temperature. In the case of a solid the 
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atoms or molecules vibrate about their 

equilibrium positions in a lattice structure and 

this vibration increases with increased 

temperature. According to Pauling [13], 

 

“As the temperature rises, the molecules 

become more and more agitated; each one 

bounds back and forth more and more 

vigorously in the little space left for it by its 

neighbours, and each one strikes its 

neighbours more and more strongly as it 

rebounds from them.”   

 

Increased energy causes atoms or molecules 

of a solid to break down the long range order 

of its lattice structure to form a liquid or gas. 

Liquids have short range order, or long range 

disorder. Gases have a great molecular or 

atomic disorder. In the case of an ideal gas its 

temperature is proportional to the mean 

kinetic energy of its molecules [14, 15, 16], 

 

2

2

1

2

3
vmkT =  

 

wherein <v
2
> is the mean squared molecular 

speed, m the molecular mass, and k is 

Boltzman’s constant
3
. 

 

Now that which has zero size has no space for 

atoms and molecules to exist in or for them to 

move about in. And just how fast must atoms 

and molecules be moving about to be 

infinitely hot? Zero size and infinitely hot - 

there is no such thing. Nonetheless, according 

to Misner, Thorne and Wheeler [17],  

 

“One crucial assumption underlies the 

standard hot big-bang model: that the 

universe ‘began’ in a state of rapid expansion 

from a very nearly homogeneous, isotropic 

condition of infinite (or near infinite) density 

and pressure.” 

 

Just how close to infinite must one get to be 

“near infinite”? There are no such things as 

                                                 
3
 It has been shown that Boltzman’s constant is not 

constant, since Kirchhoff’s Law of Thermal Emission 

is not universal [100-103]. 

infinite or “near infinite” density and pressure 

either, just as nothing can have infinite 

gravity.   

 

Near infinities of various sorts are routinely 

entertained by cosmologists and astronomers. 

Here is another example; this time it’s 

Professor Lawrence Krauss [18] of Arizona 

State University, who says,  

 

“But is that, in fact, because of discovering 

that empty space has energy, it seems quite 

plausible that our universe may be just one 

universe in what could be almost an infinite 

number of universes and in every universe the 

laws of physics are different and they come 

into existence when the universe comes into 

existence.” 

 

Just how close to infinite is “almost an 

infinite number”? There is no such thing as 

“almost an infinite number” at all.  

 

Krauss [18] reaffirms Hawking’s zero size 

beginning of the big bang universes with the 

following, 

 

“There’s no real particles but it actually has 

properties but the point is that you can go 

much further and say there’s no space, no 

time, no universe and not even any 

fundamental laws and it could all 

spontaneously arise and it seems to me if you 

have no laws, no space, no time, no particles, 

no radiation, it is a pretty good 

approximation of nothing.”     

                                                                                 

Thus, the Universe sprang into existence from 

absolutely nothing, by some big bang 

creationism, “at time t = 0” [7] and nothing, 

apparently, is “a good approximation of 

nothing” [18].  And not only is nothing a 

good approximation of nothing, Krauss [18] 

says,  

 

“But I would argue that nothing is a physical 

quantity. It’s the absence of something.” 

 

Krauss [19] reiterated the big bang universes 

creation ex nihilo dogma, thus, 
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“There was nothing there. There was 

absolutely no space, no time, no matter, no 

radiation. Space and time themselves popped 

into existence which is one of the reasons why 

it is hard …” 

 

Yet despite the zero size, the infinities and 

near infinities possessed by nothing, and big 

bang creation ex nihilo, Hawking [12] still 

admits that, 

 

“energy cannot be created out of nothing” 

 

Thus stands yet another contradiction.  

 

III. A black hole is a universe 

 

Consider now a black hole universe; the type 

does not matter. Each and every black hole is 

indeed an independent universe by the very 

definition of a black hole, no less than the big 

bang universes are independent universes, 

although the proponents of black holes and 

big bangs, including Mr. ‘t Hooft, do not 

realise this.  

 

The black hole universe is not contained 

within its so-called ‘event horizon’ because 

its spacetime supposedly extends indefinitely 

far from its so-called ‘singularity’. Recall 

from the list of generic defining 

characteristics that all types of black hole 

universes are spatially infinite and eternal, 

and that they are either asymptotically flat or 

asymptotically curved. There is no bound on 

asymptotic, for otherwise it would not be 

asymptotic, and so every type of black hole 

constitutes an independent universe, bearing 

in mind also that each different type of black 

hole universe pertains to a different set of 

Einstein field equations as well, and therefore 

have nothing to do with one another 

whatsoever. Without the asymptotic condition 

one can write as many non-asymptotic non-

equivalent solutions to the corresponding 

Einstein field equations for the supposed 

different types of black holes as one pleases, 

none of which contains a black hole.  

 

According to the Dictionary of Geophysics, 

Astrophysics and Astronomy [20],   

 

“Black holes were first discovered as purely 

mathematical solutions of Einstein’s field 

equations. This solution, the Schwarzschild 

black hole, is a nonlinear solution of the 

Einstein equations of General Relativity. It 

contains no matter, and exists forever in an 

asymptotically flat space-time.” 

 

According to Penrose [11], 

 

“The Kerr-Newman solutions … are explicit 

asymptotically flat stationary solutions of the 

Einstein-Maxwell equation (λ = 0) involving 

just three free parameters m, a and e. … the 

mass, as measured asymptotically, is the 

parameter m (in gravitational units). The 

solution also possesses angular momentum, of 

magnitude am. Finally, the total charge is 

given by e. When a = e = 0 we get the 

Schwarzschild solution.”  

 

According to Wald [21], 

 

“The charged Kerr metrics are all stationary 

and axisymmetric … They are asymptotically 

flat…” 

 

I illustrate the black hole universe in figure 1. 

 

 
Figure 1 

 

As the ‘radial’ distance from the black hole 

singularity increases indefinitely the 

spacetime curvature asymptotically 

approaches either flat or curved spacetime; 

thus, if Rp is the radial distance, Rp → ∞. Note 

‘radius’ x 2 
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again that at the singularity gravity is infinite 

owing to infinite spacetime curvature there. 

This is what Mr. ‘t Hooft [6] calls a “physical 

singularity” or “curvature singularity”.  

Furthermore, as the ‘radial distance’ increases 

it approaches and then grows larger than the 

radius of the event horizon of the black hole, 

the so-called ‘Schwarzschild radius’, also 

sometimes called the ‘gravitational radius’.  

The ‘Schwarzschild radius’ is what Mr. ‘t 

Hooft and the astrophysical scientists call a 

‘coordinate singularity’, which they say can 

be removed by some change of coordinate 

system.  

 

Consider now a black hole ‘binary system’. 

Such a binary system is also supposed to be in 

some (unspecified) big bang universe. I have 

already shown above that no black hole 

universe can be combined with any other 

universe or with itself, and so the notions of a 

black hole binary system and black hole 

collisions and mergers are inconsistent with 

the theory of black holes itself. To reaffirm 

this conclusion refer to figure 2 in which two 

supposed black holes are depicted. 

 

 
 

Figure 2 

 

Recall again that the spacetimes of all black 

hole universes are either asymptotically flat or 

asymptotically curved, by definition. Note 

that in figure 2 it is immediately apparent that 

each black hole significantly disturbs the 

asymptotic nature of the spacetime of the 

other black hole and so neither of their 

spacetimes is asymptotically anything. Indeed, 

each black hole encounters an infinite 

spacetime curvature (infinite gravity) at the 

singularity of the other. This is true no matter 

how far from one another the black holes 

might be imagined, because there is no bound 

on asymptotic, for otherwise it would not be 

asymptotic. Thus the presence of another 

black hole violates the very definition of a 

black hole itself and so there can’t be multiple 

black holes. Thus the black hole is necessarily 

a one-mass universe, on the assumption that 

the related equations even contain a mass in 

the first place. Such a model bears no relation 

to reality. Nonetheless it is routinely claimed 

by cosmologists and astronomers that not 

only are there billions of black holes (types 

unspecified), they are all present in some big 

bang universe (also unspecified), none of 

which can be superposed. NASA scientists, 

for example, have reported that they have 

found 2.5 million black holes (types 

unspecified) with their WISE survey [22]. But 

then none of their black holes are 

asymptotically anything since each and every 

one of them encounters 2, 499, 999 infinite 

spacetime curvatures around it, and so none 

of their black holes even satisfies the 

definition of a black hole. And all these black 

hole universes, despite being eternal, are 

inside some big bang expanding universe of 

finite age, ~13.8 billion years. 

Notwithstanding, Daniel Stern [22], a 

Principal Scientist for the NASA/JPL WISE 

Survey, reports,   

 

“We’ve got the black holes cornered.” 

 

Astronomer Royal, Martin Rees [23], says, 

 

“Black holes, the most remarkable 

consequences of Einstein’s theory, are not 

just theoretical constructs. There are huge 

numbers of them in our Galaxy and in every 

other galaxy, each being the remnant of a star 

and weighing several times as much as the 

Sun. There are much larger ones, too, in the 

centers of galaxies.” 

 

All the different black hole ‘solutions’ are 

also applicable to stars and planets and such. 

Thus, these equations don’t permit the 

presence of more than one star or planet in the 
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universe.  In the case of a body such as a star, 

the only significant difference in figures 1 and 

2 is that the spacetime does not go to infinite 

curvature at the star, because there is no 

singularity and no event horizon in the case of 

a star (or planet).   

 

IV. Gravitational collapse 

 

Mr ‘t Hooft [1] adds his own invention to the 

notion of the mass of a black hole and its 

infinite gravity, in his discussion of the 

formation of a black hole. 

 

“Matter travels onwards to the singularity at 

r = 0, and becomes invisible to the outside 

observer. All this is elementary exercise, and 

not in doubt by any serious researcher. 

However, one does see that the Schwarzschild 

solution (or its Kerr or Kerr-Newman 

generalization) emerges only partly: it is the 

solution in the forward time direction, but the 

part corresponding to a horizon in the past is 

actually modified by the contracting ball of 

matter. All this is well-known. An observer 

cannot look that far towards the past, so he 

will interpret the resulting metric as an 

accurate realization of the Schwarzschild 

metric. And its mass? The mass is dictated by 

energy conservation. What used to be the 

mass of a contracting star is turned into mass 

of a ‘ball of pure gravity’. I actually don’t 

care much about the particular language one 

should use here; for all practical purposes the 

best description is that a black hole has 

formed.” [1] 

 

Note that Mr ‘t Hooft urges that a 

mathematical point (and indeed the 

circumference of a circle too) can contain 

matter. But that is quite impossible - one 

might just as well claim that the centre of 

mass of a body (a mathematical artifice) is a 

real object, and has an infinite density. Also 

note that this mass, from a star, that forms his 

black hole, produces a “ball of pure gravity”. 

However, the mathematical point he reifies, at 

his “singularity at r = 0”, for infinite gravity, 

is not a ball, and neither is the universe that 

contained his star in the first place.  

Recall that all the purported black hole 

solutions to Einstein’s field equations each 

constitute an independent universe that 

contains only one mass, that of the black hole 

itself, on account of the asymptotic nature of 

their respective spacetimes. Mr. ‘t Hooft [1, 6, 

7] refers only to asymptotically flat black hole 

universes, by virtue of his invoking of only 

Schwarzschild, Reissner-Nordström, Kerr, 

and Kerr-Newman black holes. Recall further, 

that all black hole equations, according to the 

proponents thereof, pertain to the ‘outside’ of 

a star without any change in their form; the 

only difference being that a star has no event 

horizon and no singularity, and so all the 

generic defining characteristics of all black 

hole universes also pertain to stars. 

Consequently, to result in any one of these 

solutions for the formation of a black hole it 

must begin with a universe that contains only 

one mass, such as a lone star. If Mr. ‘t Hooft, 

to form a black hole, begins, as he apparently 

does, with a universe full of stars, since he 

talks of clusters of stars [1], he does not begin 

with a relativistic universe, but a Newtonian 

universe. Indeed, according to Mr. ‘t Hooft 

[1], 

 

“And now there is a thing that L and C fail to 

grasp: a black hole can be seen to be formed 

when matter implodes. Start with a regular, 

spherically symmetric (or approximately 

spherically symmetric) configuration of 

matter, such as a heavy star or a star 

cluster.” 

 

Since a black hole is actually, according to the 

cosmologists’ actual definition of a black hole, 

a one mass universe, with the collapse of Mr 

‘t Hooft’s star into a black hole, the rest of the 

Universe must somehow completely 

disappear, but without falling into his newly 

formed black hole. Energy is therefore not 

conserved at all. And a Newtonian universe, 

which contains as many stars as one pleases 

to consider, can’t magically transform itself 

into a one-mass black hole universe by means 

of the irresistible ‘gravitational collapse’ of a 

single star. Since the black hole equations 

(metrics) also apply to a star or planet, the star 
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that ‘collapses’ to form a black hole must be 

the only mass in the Universe in the first place.  

Furthermore, the gravity at the singularity of a 

black hole is infinite because spacetime is 

supposedly infinitely curved there – so a finite 

amount of mass ‘collapses’ to produce infinite 

gravity! This finite mass is converted into 

infinite “pure gravity” by Mr. ‘t Hooft [1]. 

Moreover, according to him, matter no longer 

even induces spacetime curvature by its 

presence: gravity can exist without matter to 

cause it. Indeed, according to Mr. ‘t Hooft [1], 

 

“But where does the black hole mass come 

from? Where is the source of this mass? Rµν  

= 0 seems to imply that there is no matter at 

all, and yet the thing has mass! Here, both L 

and C suffer from the misconception that a 

gravitational field cannot have a mass of its 

own. But Einstein’s equations are non-linear, 

and this is why gravitational fields can be the 

source of additional amount of gravity, so 

that a gravitational field can support itself. In 

particle theories, similar things can happen if 

fields obey non-linear equations, we call these 

solutions "solitons". A black hole looks like a 

soliton, but actually it is a bit more 

complicated than that.” 

 

Mr. ‘t Hooft alters Einstein’s theory ad 

arbitrium so that he can have gravitational 

fields not caused by the presence of  material 

sources and that have a mass of their own. 

Contrast his notions with Einstein’s actual 

theory. According to Einstein [24], 

 

“We make a distinction hereafter between 

‘gravitational field’ and ‘matter’ in this way, 

that we denote everything but the 

gravitational field as ‘matter’. Our use of the 

word therefore includes not only matter in the 

ordinary sense, but the electromagnetic field 

as well.”  

 

Einstein [25] also asserts, 

 

“In the general theory of relativity the 

doctrine of space and time, or kinematics, no 

longer figures as a fundamental independent 

of the rest of physics. The geometrical 

behaviour of bodies and the motion of clocks 

rather depend on gravitational fields, which 

in their turn are produced by matter.” 

 

According to Pauli [26], 

 

“Since gravitation is determined by the matter 

present, the same must then be postulated for 

geometry, too. The geometry of space is not 

given a priori, but is only determined by 

matter.”  

 

According to Weyl [27], 

 

“Again, just as the electric field, for its part, 

depends upon the charges and is instrumental 

in producing mechanical interaction between 

the charges, so we must assume here that the 

metrical field (or, in mathematical language, 

the tensor with components ikg  ) is related to 

the material filling the world.” 

 

According to McMahon [28], 

 

“In general relativity, the stress-energy or 

energy-momentum tensor T
ab

 acts as the 

source of the gravitational field. It is related 

to the Einstein tensor and hence to the 

curvature of spacetime via the Einstein 

equation.”  

 

According to Carroll and Ostlie [9], 

 

“Mass acts on spacetime, telling it how to 

curve. Spacetime in turn acts on mass, telling 

it how to move.”  

 

According to Einstein [29], 

 

“space as opposed to ‘what fills space’, which 

is dependent on the coordinates, has no 

separate existence” 

 

According to Einstein [30], 

 

“I wish to show that space-time is not 

necessarily something to which one can 

ascribe a separate existence, independently of 

the actual objects of physical reality.” 
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Thus, Einstein’s gravitational field does not 

have a mass of its own at all, although it is 

fancied to possess energy and momentum [1, 

24, 31, 32]. 

 

Although, on the one hand, Mr. ‘t Hooft [1] 

alleges, incorrectly, that Einstein’s 

gravitational field does not require a material 

source, because it “can have a mass of its 

own”, he also, on the other hand, says that 

Einstein’s gravitational field must have a 

material source, 

 

“Clearly, the mass density, or equivalently, 

energy density ( )tx;
r

ρ  must play the role as a 

source. However, it is the 00 component of a 

tensor Tµν(x), the mass-energy-momentum 

distribution of matter. So, this tensor must act 

as the source of the gravitational field.” [6] 

 

Mr. ‘t Hooft [1] says he does not care about 

the language used in describing a black hole. 

Indeed; and so he foists his own language 

upon black hole mass and its related infinite 

gravity merely by means of linguistic 

licentiousness.  

   

Now gravity is not a force in General 

Relativity because it is curvature of spacetime 

according to Einstein, but gravity is a force in 

Newton’s theory. Nonetheless, Mr. ‘t Hooft 

invokes Newton’s gravitational forces to 

enable black hole forming ‘gravitational 

collapse’. Mr. ‘t Hooft [1] says of his 

collapsing star or star cluster, 

 

“Assume that it obeys an equation of state. If, 

according to this equation of state, the 

pressure stays sufficiently low, one can 

calculate that this ball of matter will contract 

under its own weight.” 

 

Mr. ‘t Hooft [6] also says,  

 

“One must ask what happens when larger 

quantities of mass are concentrated in a small 

enough volume. If no stable soution (sic) 

exists, this must mean that the system 

collapses under its own weight.”  

 

However, weight is a force, Newton’s force of 

gravity, not a curvature of spacetime. Despite 

the methods of Mr. ‘t Hooft, although also 

routine for astronomers and cosmologists, 

Newtonian forces of gravity can’t be invoked 

for gravity in General Relativity. As de Sitter 

[33] remarked, 

 

“In Einstein’s new theory, gravitation is of a 

much more fundamental nature: it becomes 

almost a property of space. … Gravitation is 

thus, properly speaking, not a ‘force’ in the 

new theory.”  

 

V. Black hole escape velocity 

 

They don’t realise it, but according to all 

proponents of black holes, of which Mr. ‘t 

Hooft is a typical example, their black holes 

all have both an escape velocity and no 

escape velocity simultaneously  at the very 

same place; which is of course quite 

impossible, and therefore again completely 

invalidates the theory of black holes. 

However, since none of the proponents of 

black holes understands what escape velocity 

means, this additional contradiction has also 

escaped them.  

 

On the one hand it is asserted by cosmologists 

and astronomers that their black holes have an 

escape velocity. According to the Dictionary 

of Geophysics, Astrophysics and Astronomy 

[20],   

 

“black hole A region of spacetime from which 

the escape velocity exceeds the velocity of 

light.”  

 

According to Hawking [8], 

 

“I had already discussed with Roger Penrose 

the idea of defining a black hole as a set of 

events from which it is not possible to escape 

to a large distance. It means that the 

boundary of the black hole, the event horizon, 

is formed by rays of light that just fail to get 

away from the black hole. Instead, they stay 

forever hovering on the edge of the black 

hole.”  
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According to the Collins Encyclopædia of the 

Universe [34],  

 

“black hole A massive object so dense that no 

light or any other radiation can escape from 

it; its escape velocity exceeds the speed of 

light.” 

 

According to O’Neill [35], 

 

“No particle, whether material or lightlike, 

can escape from the black hole” 

 

According to Mr. ‘t Hooft [6] the escape 

velocity of a black hole is at least the speed of 

light,  

 

“A black hole is characterized by the 

presence of a region in space-time from which 

no trajectories can be found that escape to 

infinity while keeping a velocity smaller than 

that of light.” 

 

According to Joss Bland-Hawthorn [36], 

Professor of Astrophysics at the Institute for 

Astronomy at the University of Sydney, 

 

“A black hole is, ah, a massive object, and it’s 

something which is so massive that light can’t 

even escape. … some objects are so massive 

that the escape speed is basically the speed of 

light and therefore not even light escapes. … 

so black holes themselves are, are basically 

inert, massive and nothing escapes.”  

 

So it is routinely claimed by proponents of 

black holes that they do have an escape 

velocity. Bland-Hawthorn’s escape velocity is 

a particularly curious one: if the escape 

velocity of a black hole is the speed of light 

and light travels at the speed of light, then 

surely light must not only leave or emerge, 

but also escape. However, Bland-Hawthorn 

assures all and sundry, on national television, 

that because the escape speed of a black hole 

is that of light, light can’t escape! 

 
Figure 3 

The small body escapes from the large body at speed 

vesc. 

 

Figure 3 simply depicts escape velocity. The 

small body escapes from the large body if it is 

initially propelled from the latter at the escape 

speed.  

 

On the other hand the proponents of black 

holes also routinely claim that nothing can 

even leave or emerge from a black hole, let 

alone escape from it. Things can go into a 

black hole but nothing can come out of it. A 

journey into a black hole is a one way trip 

since anything that crosses its event horizon is 

inexorably destined, say the cosmologists, to 

be obliterated by crashing into and merging 

with the black hole’s singularity. According 

to Chandrasekhar [37], 
 

“The problem we now consider is that of the 

gravitational collapse of a body to a volume 

so small that a trapped surface forms around 

it; as we have stated, from such a surface no 

light can emerge.” 

 

According to d’Inverno [38],  

 

“It is clear from this picture that the surface r 

= 2m is a one-way membrane, letting future-

directed timelike and null curves cross only 

from the outside (region I) to the inside 

(region II).” 

 

According to Hughes [39], 

 

“Things can go into the horizon (from r > 2M 

to r < 2M), but they cannot get out; once 

inside, all causal trajectories (timelike or null) 

take us inexorably into the classical 
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singularity at r =0. … The defining property 

of black holes is their event horizon. Rather 

than a true surface, black holes have a ‘one-

way membrane’ through which stuff can go in 

but cannot come out.” 

 

According to Taylor and Wheeler [40], 

 

“Einstein predicts that nothing, not even light, 

can be successfully launched outward from 

the horizon ... and that light launched 

outward EXACTLY at the horizon will never 

increase its radial position by so much as a 

millimeter.” 

 

According to O’Neill [35], 

 

“In the exceptional case of a ∂v photon 

parametrizing the positive v axis, r = 2M, 

though it is racing ‘outward’ at the speed of 

light the pull of the black hole holds it 

hovering at rest.” 

 

According to Dirac [41], 

 

“Thus we cannot have direct observational 

knowledge of the region r < 2m. Such a 

region is called a black hole, because things 

can fall into it (taking an infinite time, by our 

clocks, to do so) but nothing can come out.”   

 

According to Hawking and Ellis [42], 

 

“The most obvious asymmetry is that the 

surface r = 2m acts as a one-way membrane, 

letting future-directed timelike and null 

curves cross only from the outside (r > 2m) to 

the inside (r < 2m).”  

 

And according to Mr. ‘t Hooft [6], 

 

“It turned out that, at least in principle, a 

space traveller could go all the way in such a 

‘thing’ but never return. Not even light could 

emerge out of the central region of these 

solutions. It was John Archibald Wheeler who 

dubbed these strange objects ‘black holes’”. 

 

But escape velocity does not mean that things 

cannot leave or emerge, only that they cannot 

escape unless they are propelled at or greater 

than the escape velocity. Throw a ball into the 

air. Did it leave the Earth’s surface? Of course! 

Did it escape from the Earth’s gravity? No. 

This is simply depicted in figure 4. 

 

 
Figure 4 

The small body leaves or emerges but cannot escape 

because v < vesc. It falls back down after leaving or 

emerging. 
 

If the initial speed of the small body in figure 

4 is less than vesc then it will not escape; it will 

rise to some maximum distance depending 

upon its initial speed and then fall back down. 

Hence, escape velocity means that things can 

either leave or escape from the surface of 

some other body, depending upon initial 

speed of propulsion. But this is not so in the 

case of the black holes, because nothing is 

able to even leave a black hole event horizon. 

Even light hovers “forever” at the event 

horizon. Things can only go into a black hole; 

nothing can even leave its event horizon or 

emerge from below its event-horizon. The 

black hole event horizon is therefore often 

referred to as a “one-way membrane” [38, 39, 

42]. This is simply depicted in figure 5. 

 

 
Figure 5  

Nothing can even leave the black hole event horizon or 

emerge from beneath it. Light itself ‘hovers forever’ at 

the event horizon. The black hole event horizon has no 

escape velocity.  



www.sjcrothers.plasmaresources.com/index.html  13 

Thus, proponents of the black hole, including 

Mr. ‘t Hooft, do in fact claim that their black 

holes have and do not have an escape velocity 

simultaneously, and at the same place. 

Contra-hype!  Proponents of black holes don’t 

even understand escape velocity. 

 

It’s also important to note that escape velocity 

is an implicit two-body relation; one body 

escapes from another body (see figures 3 and 

4). There’s no meaning to escape velocity in a 

model of the Universe that contains only one 

mass, and such a model bears no relation to 

reality anyhow. But all black holes are 

independent universes which contain only one 

mass, on account of their asymptotic flatness 

or asymptotic curvedness. Despite this, 

proponents of black holes and big bangs, such 

as Mr. ‘t Hooft, talk about untold numbers of 

black holes present in some unspecified 

expanding big bang universe that also 

contains many masses other than black holes. 

 

The escape velocity of a black hole is, as I 

have already revealed, claimed by the 

proponents thereof, to be ≥ c, the speed of 

light in vacuo. Recall that Mr. ‘t Hooft [6] has 

also alluded to this when he claims that black 

holes have an escape velocity. In order to see 

how Mr. ‘t Hooft and the astrophysical 

scientists obtain the value of their black hole 

escape velocity consider Hilbert’s solution, 

with a positive constant m, for static empty 

spacetime described by Einstein’s so-called 

‘field equations’ Rµν = 0,  
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0 ≤ r                               (1) 

 

( )2222 sin ϕθθ ddd +=Ω  

 

In this expression both c and G are set to 

unity. Note that the coefficients of the squared 

differential elements (i.e. the components of 

the metric tensor) of (1) do not depend on the 

time t and so the black hole obtained from (1) 

is eternal (or static). According to the 

astrophysical scientists the quantity m in 

expression (1) is the mass of the body 

producing the gravitational field. Mr. ‘t Hooft 

[6] also identifies m in expression (1) as the 

gravity inducing mass, 

 

“Newton's constant G has been absorbed in 

the definition of the mass parameter: M = 

Gm.” 

 

The astrophysical scientists say that Hilbert’s 

metric (1) describes the gravitational field 

‘outside’ a body such as a star, and also a 

black hole. Expression (1) is almost always 

called ‘Schwarzschild’s solution’ by 

cosmologists. However, it is not 

Schwarzschild’s solution, which can be easily 

verified by reading Schwarzschild’s original 

paper [43]. Rewriting (1) with c and G 

explicitly, so that nothing is hidden, gives, 
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0 ≤ r                               (2) 

 

( )2222 sin ϕθθ ddd +=Ω  

 

According to Mr. ‘t Hooft [6] and all other 

proponents of black holes, there is a 

‘coordinate’ or ‘apparent’ singularity’ at, 

 

2

2

c

Gm
rr s ==                         (3) 

 

It is from equation (3) that they obtain the 

value of the ‘radius’ of the black hole event 

horizon, the so-called ‘Schwarzschild radius’.  

They mistakenly think that r in (1) and (2) is 

the radius therein.  

 

Solving (3) for c yields, 

 

sr

Gm
c

2
=                         (4) 

 

It is from equation (4) that the strange ‘escape 

velocity’ of a black hole is adduced as ≥ c by 

the proponents of black holes. However, 

equation (4) is nothing other than Newton’s 
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expression for escape velocity. Since 

Newton’s expression, although containing 

only one mass term, m, is an implicit two-

body relation, it cannot rightly appear in what 

is the solution to a one-body problem. It 

appears in (2) simply because the 

astrophysical scientists put it there, post hoc, 

in order to make a mass appear in it to satisfy 

the initial claim that Rµν = 0, where Tµν = 0, 

describes Einstein’s gravitational field outside 

a body such as a star, bearing in mind that 

Einstein’s gravitational field must have a 

material source. For example, according to 

Mr. ‘t Hooft [7], 

 

“Einstein’s equation, (7.26), should be exactly 

valid. Therefore it is interesting to search for 

exact solutions. The simplest and most 

important one is empty space surrounding a 

static star or planet. There, one has 

 

Tìí = 0”  

 

Note that Mr. ‘t Hooft thus acknowledges that 

Hilbert’s solution pertains to a static problem 

(“a static star or planet”) and that the space 

surrounding this hypothetical static star or 

planet is “empty space”. Indeed, according to 

Einstein [24], Tµν = 0 produces “The field 

equations of gravitation in the absence of 

matter”.  

 

Furthermore, since equation (3) is Newtonian 

it is the critical radius for the formation of the 

theoretical Michell-Laplace dark body, since r 

is the radius in Newton’s expression, but the 

Michell-Laplace dark body is not a black hole 

because it does not possess any of the 

characteristics of a black hole, other than 

possessing mass.   

 

VI. The radius of a black hole 

 

As noted above, the ‘Schwarzschild radius’ is, 

according to the astrophysical scientists, and 

Mr. ‘t Hooft [6, 7], the radius of the event 

horizon of a black hole, which they in fact 

obtain from Newton’s expression (4) for 

escape velocity. It is also claimed that bodies 

such as stars and planets have a 

Schwarzschild radius. One regularly finds in 

the literature, for example, that the 

Schwarzschild radius of the Sun is ~ 3km, and 

that of the Earth ~1cm. According to 

d’Inverno [38], 

 

“The Schwarzschild radius for the Earth is 

about 1.0 cm and that of the Sun is 3.0 km.”  

 

According to Wald [21],  

 

“For example, a Schwarzschild black hole of 

mass equal to that of the Earth, ME = 6 x 

10
27

g, has rs = 2GME/c
2
 ~ 1 cm. … A black 

hole of one solar mass has a Schwarzschild 

radius of only 3km.” 

 

According to McMahon [28], 

 

“For ordinary stars, the Schwarzschild radius 

lies deep in the stellar interior.”  

 

In Hilbert’s [44 - 46] equations (1) and (2), 

the quantity r therein has never been correctly 

identified by the astrophysical scientists. It 

has been variously and vaguely called the 

“areal radius” [11, 21, 37, 39, 47], the 

“coordinate radius” [13], the “distance” [27, 

48], “the radius” [6, 10, 20, 28, 48-59], the 

“radius of a 2-sphere” [60], the “radial 

coordinate” [9, 17, 20, 28, 37, 40, 42], the 

“reduced circumference” [39], the “radial 

space coordinate” [61]. What does Mr ‘t 

Hooft call it?  In his lecture notes on the 

theory of black holes, Mr. ‘t Hooft [6] says 

it’s the “radial coordinate”. In relation to the 

following metrical ground-form, 

 

( ) ( ) 22222 Ω++−= drdrrBdtrAds  

 

( )2222 sin ϕθθ ddd +=Ω  

 

Mr. ‘t Hooft [6] says it’s “the radius r”. In his 

lecture notes on General Relativity Mr. ‘t 

Hooft again calls it the “radius”, thus, 

 

“‘ordinary’ stars and planets contain matter 

(Tµν ≠ 0) within a certain radius r > 2M, so 

that for them the validity of the Schwarzschild 

solution stops there.” [7] 



www.sjcrothers.plasmaresources.com/index.html  15 

In 2007 and 2008 I had some email exchange 

with Mr. ‘t Hooft about his radial coordinate 

come radius come distance come whatever 

else, amongst other things. In September 2007 

he wrote to me that r in (2) is, 

 

“a gauge choice: it determines the coordinate 

r” [62] 

 

In May 2008 Mr. ‘t Hooft  wrote this to me, 

 

“As for 'r' in Schwarzschild, any choice for 

the radial coordinate would do, but, in the 

spherically symmetric case, the choice that 

turns the angular distance into that of a 

sphere with radius r is the most convenient 

one. In physics, we call that a coordinate 

choice or gauge choice. Yes, if you keep this r 

constant, then the curvature in the angular 

directions indeed happens te (sic) be that of a 

sphere with radius r. It is that by choice.” [62] 

 

From the above passage it is evident that Mr. 

‘t Hooft says that his “radial coordinate” r in 

Hilbert’s metric (since he calls Hilbert’s 

solution ‘Schwarzschild’s solution’) is also 

the “radius r”. No matter what they call it the 

astrophysical scientists always treat r in (1) 

and (2) as the radius, and refer to r = 0 as the 

origin, where their black hole’s mass is 

located, where spacetime is ‘infinitely curved’, 

and where the density is infinite! 

 

Despite his various claims as to the identity of 

r, in the very same email exchange with me 

Mr. ‘t Hooft wrote, 

 

“Of course, no astronomer in his right mind 

would claim that r stands for a spatial 

distance” [62] 

 

Notwithstanding his hypothesised right 

mindedness of astronomers, Mr. ‘t Hooft [7] 

also says, 

 

“...where r0 is the smallest distance of the 

light ray to the central source.” 

 

Here Mr. ‘t Hooft calls r = r0 a distance and 

also the radius (implicitly) in the one sentence, 

bearing in mind that he is referring to a 

spherically symmetric configuration. Stefan 

Gillessen is an astronomer at the Max Planck 

Institute for Extraterrestrial Physics; he [63] 

also says that r in (2) is “the radius”, and 

although also claiming in news reports and 

published papers in journals to have found a 

black hole, with his colleagues, at Sgt A*, he 

has admitted that not only did he and his 

colleagues not find a black hole at Sgt A*, 

nobody has ever found a black hole anywhere, 

amongst other admissions [63]. This has not 

stopped Gillessen from continued claims for a 

black hole at Sgt A* and from receiving 

research grants to study this nonexistent black 

hole [63].  

 

Note that Mr. ‘t Hooft has given four different 

‘definitions’ of  r, but none of them are 

correct, and neither are any of the other 

‘definitions’ proposed by the astrophysical 

scientists. Yet Mr. ‘t Hooft objects to my 

correct identification of what the radius is in 

Hilbert’s metric, and my correct identification 

of r therein, 

 

“Mr. C. adds more claims to this: In our 

modern notation, a radial coordinate r is used 

to describe the Schwarzschild solution, the 

prototype of a black hole. ‘That’s not a radial 

distance!’ he shouts. ‘To get the radial 

distance you have to integrate the square root 

of the radial component grr of the metric!!’ 

Now that happens to be right, but a non-issue; 

in practice we use r just because it is a more 

convenient coordinate, and every 

astrophysicist knows that an accurate 

calculation of the radial distance, if needed, 

would be obtained by doing exactly that 

integral.” [7] 

 

So although Mr. ‘t Hooft admits that I am 

right again, he nonetheless clings to his 

“radial coordinate r”, which he has already 

also said is the “radius r” [62], and other 

things besides. As for his claim that every 

astrophysicist knows what the radial distance 

in Hilbert’s metric really is, that is patently 

false, as Gillessen [63], a typical example, 

attests, as do my many citations above. The 
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‘Schwarzschild radius’ and the ‘gravitational 

radius’ also attest to the routine identification 

of r by astrophysical scientists as the radius in 

(1) and (2), by means of Newton’s expression 

for escape velocity (4), and the claim that in 

(2) 0 ≤ r with ‘the origin’ at r = 0. Contrary to 

Mr. ‘t Hooft’s assertion, the correct 

identification of r in (2) is not a “non-issue”, 

but a very important issue. 

 

It was during my aforementioned email 

exchange with Mr. ‘t Hooft that I informed 

him of the true identity of r in Hilbert’s metric; 

that r is in fact the inverse square root of the 

Gaussian curvature of the spherically 

symmetric geodesic surface in the spatial 

section of Hilbert’s metric. He subsequently 

acknowledged that I am correct, as quoted 

above. But here again, for convenience is 

what he said on this issue, 

 

“Yes, if you keep this r constant, then the 

curvature in the angular directions indeed 

happens te (sic) be that of a sphere with 

radius r. It is that by choice.” [62] 

 

Note that although Mr. ‘t Hooft admitted the 

truth of my argument about ‘curvature’ he 

still incorrectly says that r is the radius of a 

sphere, and that it is such by choice! Well, the 

fact that it is the inverse square root of the 

Gaussian curvature of a spherical surface 

means that it is not the radius of anything, and 

a sphere is not a surface because the former is 

three-dimensional but the latter is two-

dimensional.  As for there being any choice, 

that too is patently false because the metric 

determines what r is, not the arbitrary choice 

of astrophysical scientists and Mr. ‘t Hooft. 

This is a question of pure mathematics, as I 

will now prove, although I have expounded it 

in a number of my papers [64].  

 

The squared differential element of arc-length 

of a curve in any surface is given by the First 

Fundamental Quadratic Form for a surface, 

 

ds
2
 = E du

2
 + 2F du dv + G dv

2
         (5) 

 

wherein u and v are curvilinear coordinates 

and E = E(u,v), F = F(u,v), G = G(u,v). The 

only independent variables are u and v and so 

this is a two-dimensional metric. If either u or 

v is constant the resulting line-elements 

describe parametric curves in the surface. The 

differential element of surface area is given 

by, 

 

dvduFEGdA 2−=                 (6) 

 

Writing the coefficients in (5) in matrix form 

gives, 

 









=

GF
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the determinate of which is, 

 
2

FEGa −=  

 

and so the differential element of area can be 

written as, 

 

dvduadA =                    (6a) 

 

 

Definition 1 (Bending Invariant): In 

relation to the First Fundamental Quadratic 

Form for a surface, an expression which 

depends only on E, F, G and their first and 

second derivatives is called a bending 

invariant.  

 

Definition 2 (Spherical Surface): A surface 

of constant positive Gaussian curvature is 

called a spherical surface. 

 

Definition 3 (Pseudospherical Surface): A 

surface of constant negative Gaussian 

curvature is called a pseudo-spherical surface. 

 

Definition 4 (Plane Surface): The surface of 

constant zero Gaussian curvature is the plane 

surface. 

 

Theorem 1 - ‘Theorema Egregium’ of 

Gauss: The Gaussian curvature K at any 
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point P of a surface depends only on the 

values at P of the coefficients in the First 

Fundamental Form and their first and second 

derivatives. 

  

It follows from Definition 1 that the Gaussian 

curvature is a bending invariant.  Interestingly, 

Gaussian curvature is the only second-order 

differential invariant of 2-dimensional 

Riemannian metrics.   

 

It is of utmost importance to note that the 

intrinsic geometry of a surface is entirely 

independent of any embedding space;  

 

“And in any case, if the metric form of a 

surface is known for a certain system of 

intrinsic coordinates, then all the results 

concerning the intrinsic geometry of this 

surface can be obtained without appealing to 

the embedding space.” [65] 

 

Hilbert’s metric (2) consists of a timelike part 

and a spacelike part. The timelike part is that 

which contains dt; all the rest is the spacelike 

part. The spacelike part is three-dimensional. 

Using the spacelike part one can calculate the 

length of curves in the space, the radial 

distance to any point therein, the volume of 

some part thereof, the area of a surface therein, 

etc. A 3-dimensional spherically symmetric 

metric manifold has the following metrical 

ground-form [66], 

 

( ) ( )2222222 sin ϕθθ ddkdkkAds ++=    (7) 

 

Note that expression (7) is a positive-definite 

quadratic form.  

 

The spatial section of (2) is, 
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(8) 

 

This has the same metrical ground-form as (7), 

so it describes a 3-dimensional spherically 

symmetric space, provided the coefficient of 

dr
2
 is not negative, because (7) is a positive-

definite quadratic form. Thus, the coefficient 

of dr
2
 in (8) can never be negative if (8) is to 

describe a 3-dimensional spherically 

symmetric space. Since the intrinsic geometry 

of a surface is entirely independent of any 

embedding space, the properties of the surface 

embedded in (8) can be ascertained from the 

metric for the surface itself. The surface in (8) 

is described by, 

 

( )22222 sin ϕθθ ddrds +=              (9) 

 

Note that there are only two variables in this 

expression, θ and φ, since (9) is obtained from 

(8) by setting r = constant ≠ 0.  Since there 

are no cross terms in (9), i.e. no dθdφ, its 

metric tensor is diagonal. 

 

Expression (9) has the form of (5), and so it is 

a particular First Fundamental Quadratic 

Form for a surface. This is easily seen by the 

following identifications, 

 

u = θ,  v = φ,  E = r
2
,  F = 0,  G = r

2
sin

2
θ   (10) 

 

Now calculate the Gaussian curvature K of 

this surface by using the relation, 

 

g

R
K 1212=                         (11) 

 

where R1212 is a component of the Riemann-

Christoffel curvature tensor of the first kind 

and g is the determinant of the metric tensor 

for (9). To apply (11) to (9), utilize the 

following relations for a diagonal metric 

tensor, 
λ

νρσµλµνρσ .RgR =  
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and all other i

jkΓ   vanish.  In the above, i, j, k 

= 1, 2; x
1
 = θ, x

2
 = φ.  Applying expressions 

(11) and (12) to (9) yields,   

 

2

1

r
K =                          (13) 

 

which is a positive constant Gaussian 

curvature, and hence, by Definition 2, (9) 

describes a spherical surface. 

 

From (13), 

K
r

1
=                        (14) 

 

and so r in (2) is the inverse square root of the 

Gaussian curvature of the spherically 

symmetric geodesic surface of the spatial 

section thereof.  Thus r is neither a radius nor 

a distance in (9) and (2). It is defined by (13) 

via the expression (11), and therefore has a 

clear and definite intrinsic geometric identity. 

The result (13) obtains because the surface (9) 

is independent of any embedding space 

whatsoever and so does not change if it is 

embedded into some higher dimensional 

space.  

 

Consequently, contrary to Mr. ‘t Hooft’s [1] 

claim, there is no choice in the ‘definition’ of 

r in Hilbert’s metric (2) because it is fully 

determined by the intrinsic geometry of the 

metric. Hence, r is not a ‘radial coordinate’, 

not a ‘distance’, not ‘a gauge choice that 

determines r’, and is not ‘the radius’, in (2). 

The ‘Schwarzschild radius’ is therefore not 

the radius of anything in (2), since it’s not 

even a distance in (2).  

 

 Despite this irrefutable mathematical fact, Mr. 

‘t Hooft [1] says, 

 

“‘r is defined by the inverse of the Gaussian 

curvature’, C continues, but this happens to 

be true only for the spherically symmetric 

case. For the Kerr and Kerr-Newman metric, 

this is no longer true. Moreover, the Gaussian 

curvature is not locally measurable so a bad 

definition indeed for a radial coordinate. And 

why should one need such a definition? We 

have invariance under coordinate 

transformations. If so desired, we can use any 

coordinate we like. The Kruskal-Szekeres 

coordinates are an example. The Finkelstein 

coordinates another. Look at the many 

different ways one can map the surface of the 

Earth on a flat surface. Is one mapping more 

fundamental than another?” 

 

It is trivially true that r in the Kerr and Kerr-

Newman metrics is not simply the inverse 

square root of the Gaussian curvature of a 

spherically symmetric geodesic surface in the 

spatial section thereof, because the Kerr and 

Kerr-Newman metrics are not spherically 

symmetric! However, this does not change the 

fact that r in the Kerr and Kerr-Newman 

metrics is neither the radius nor even a 

distance therein, and is defined in terms of the 

associated Gaussian curvature, as calculation 

of the Gaussian curvature of the surface in the 

spatial section of the Kerr and Kerr-Newman 

metrics again attests (see Appendix A). 

Consider the Kerr-Newman metric in the so-

called ‘Boyer-Lindquist coordinates’, 

 

−






 −∆
−= 2

2

22
2 sin

dt
a

ds
ρ

θ
 

              

              
( )

ϕ
ρ

θ
ddt

ara
2

222sin2 ∆−+
−  

 

              
( ) 22

2

22222

sin
sin

ϕθ
ρ

θ
d

aar ∆−+
+ + 

                         222
2

θρ
ρ

ddr +
∆

+  

(15) 
222 2 qamrr ++−=∆  

θρ 2222 cosar +=         

         

In this metric a supposedly accounts for 

angular momentum, q supposedly stands for 

electric charge, and m is to be the mass that 

carries the charge and angular momentum. 

Note that both c and G are again set to unity 

and so both disappear from the metric, just as 
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they do in Hilbert’s solution (1). Once again, 

the intrinsic geometry of the surface 

embedded in the metric is independent of the 

embedding space. The infinitely dense 

singularity of the Kerr-Newman metric for a 

black hole is the circumference of a circle! 

 

Furthermore, Mr. ‘t Hooft’s [1] claim that the 

correct identity of r in (2) is “a bad definition 

indeed for a radial coordinate” is quite 

nonsensical since the correct identification of 

r is not a ‘definition’ by the choice of 

astrophysical scientists or Mr. ‘t Hooft, and is 

not a ‘radial coordinate’ or ‘the radius’ (terms 

which Mr. ‘t Hooft uses equivalently).   

Contrary to Mr. ‘t Hooft’s claims, there is no 

choice in the matter; it is fixed by the 

geometry of the metric itself.  

 

Note that Mr. ‘t Hooft [1, 6, 7] appeals to the 

Kruskal-Szekeres ‘coordinates’ and the 

Eddington-Finkelstein ‘coordinates’, as if 

they change the foregoing geometrical facts. 

They don’t! In both these sets of ‘coordinates’ 

r maintains its identity as in (2). This is easily 

determined by inspection. Consider the so-

called ‘Kruskal-Szekeres extension’, 

 

( ) 22222

3
2 32

Ω−−=
−

drdudve
r

m
ds m

r

 

(16) 

( )2222 sin ϕθθ ddd +=Ω  

  

0 ≤ r 

 

The surface embedded in (16) is exactly the 

same as in (2). Consider the ‘Eddington-

Finkelstein extension’,  

 

2222 2
2

1 Ω−−







−= drdvdrdv

r

m
ds  

(17) 

( )2222 sin ϕθθ ddd +=Ω  

 

0 ≤ r 

 

The surface embedded in (17) is again 

precisely the same as in (2).  

 

Since the surface in both (16) and (17) is 

exactly that in (2), r in (16) and (17) has the 

very same identity as in (2).  Mr. ‘t Hooft’s [1] 

analogy of a mapping of the surface of the 

Earth to a flat surface, in various ways, is 

misleading because such mappings change the 

spherical surface of Earth into the flat plane, 

which, ipso facto, is not a spherical surface.  

The Gaussian curvature of the plane is zero; 

that of a spherical surface is not zero. 

 

Consider now the spatial section of the Kerr-

Newman metric, which is obtained by setting 

t = constant in the metric (15), 

 

++
∆

= 222
2

2 θρ
ρ

ddrds  

 

                
( ) 22

2

22222

sin
sin

ϕθ
ρ

θ
d

aar ∆−+
+   

                   
222 2 qamrr ++−=∆  

 θρ 2222 cosar +=                                    (18) 

 
Since expression (18) does not have the form 

of expression (7), it is not spherically 

symmetric. This is reaffirmed by the Gaussian 

curvature of the surface in the spatial section 

of (15), the latter obtained from (18) by 

setting r = constant ≠ 0, 

 

( ) 22

2

22222
222 sin

sin
ϕθ

ρ

θ
θρ d

aar
dds

∆−+
+=

 (19) 
222 2 qamrr ++−=∆  

θρ 2222 cosar +=  

 

Note that if a = 0 expression (19) reduces to 

expression (9) and (15) reduces to the 

Reissner-Nordström solution, which is 

spherically symmetric. If both a = 0 and q = 0 

then expression (15) reduces to Hilbert’s 

solution, in the form of expression (1). 

 

Expression (19) has the form of expression 

(10) and is therefore a particular First 

Fundamental Quadratic Form for a surface, 
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from which the Gaussian curvature can be 

calculated (see Appendix A). Once again the 

Gaussian curvature of (19) definitely 

identifies the quantity r in the Kerr-Newman 

metric (15), which does not change by (19) 

being embedded in (15), and so r is neither 

the radius nor even a distance in the Kerr-

Newman metric. The Gaussian curvature of 

the surface (19) is not a constant positive 

quantity (see Appendix A) and so, by 

Definition 2 it is not a spherical surface. 

Therefore, despite Mr. ‘t Hooft’s assertions, r 

in the Kerr-Newman metric is neither the 

radius nor even a distance therein and so it is 

not a “radial coordinate” (whatever he really 

means by this vague term) because it is 

strictly identified in relation to the Gaussian 

curvature of the surface in the spatial section 

thereof, entirely independent of any 

embedding space.   

 

What then is the actual radius in Hilbert’s 

metric (2)? Recall that Mr. ‘t Hooft [1] also 

admitted that my identification of the radius 

in Hilbert’s metric is actually correct. Let Rp 

denote the radius. Consider Hilbert’s metric in 

the following form, 
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−=

−

drdr
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dt
r
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0 ≤ r                          (20) 

 

( )2222 sin ϕθθ ddd +=Ω  

 

wherein α is merely a positive constant. Then 

the radius is given by, 

 

∫
−

=

r

dr
R p

α
1

 

And so, 

 

     ( ) 








 −+
+−=

α

α
αα

rr
rrR p ln    (21) 

 

 

If α is assigned the value α = 2Gm/c
2
 by 

means of Newton’s equation (4), then 

Hilbert’s metric (2) results in (20), but not 

Hilbert’s solution, because according to (21) 

when the radius Rp = 0, r = α. Values 0 ≤ r < 

α are impossible because they would make 

the radius Rp  take imaginary (i.e. complex) 

values.  

 

VII. Metric ‘extensions’ 

 

Since black hole universes have been proven 

fallacious in the previous sections herein, 

discussion of the so-called ‘metric extensions’ 

for them is merely a formal mathematical 

exercise, which I will limit here to the 

consideration of Schwarzschild spacetime 

because similar results obtain for the other 

equally phantasmagorial types of black hole 

universes (see Appendices A, B and C). 

 

Mr. ‘t Hooft [1] complains that I insist on a 

metric signature (+, −, −, −) for Hilbert’s 

metric (2). He says, 

 

“‘The horizon is a real singularity because at 

that spot the metric signature switches from 

(+, −, −, −) to (−, +, −, −)’, C continues. This 

is wrong. The switch takes place when the 

usual Schwarzschild coordinates are used, 

but does not imply any singularity. The switch 

disappears in coordinates that are regular at 

the horizon, such as the Kruskal-Szekeres 

coordinates. That’s why there is no physical 

singularity at the horizon.” [1] 

 

First consider the signature switch of 

Hilbert’s metric. The components of Hilbert’s 

metric tensor are, 

 
1

211200

2
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2
1
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−−=








−=

rc

Gm
g

rc

Gm
g  

 

θ22

33

2

22 sinrgrg −=−=       (22) 

 

When r > 2Gm/c
2
, g00 > 0, g11 < 0, g22 < 0, 

and g33 < 0; consequently the signature is (+, 

−, −, −). If 0 < r < 2Gm/c
2
, then g00 < 0, g11 > 

0, g22 < 0, and g33 < 0; consequently the 
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signature changes to (−, +, −, −). Such a 

signature change is inconsistent with that of 

Minkowski spacetime in which Special 

Relativity is couched, because Minkowski 

spacetime has the fixed Lorentz signature of 

(+, −, −, −). It is also inconsistent with the 

metric ground-form (7) for a 3-dimensional 

spherically symmetric space because then the 

spatial section is no longer positive definite. 

Also, Hilbert’s metric is actually undefined at 

r = 2Gm/c
2
 and at the ‘origin’ r = 0, owing to 

divisions by zero in both cases. The Dirac 

Delta Function does not in fact circumvent 

this.  

 

Furthermore, according to the astrophysical 

scientists, when 0 ≤ r < 2Gm/c
2
, the quantities 

t and r exchange their rôles, i.e. t becomes 

spacelike and r becomes timelike. Since time 

marches forwards they then maintain that 

anything that enters a black hole must collide 

and merge with its singularity because time 

drives it there inexorably; a time gradient 

becomes the driver. Some astrophysical 

scientists begin with the signature (−, +, +, +) 

for Hilbert’s metric as opposed to the more 

usual (+, −, −, −), but all the alleged effects 

are still the same. According to Misner, 

Thorne and Wheeler [17], who use the 

spacetime signature (−, +, +, +) for Hilbert’s 

solution (1), 

 

“The most obvious pathology at r = 2M is the 

reversal there of the roles of t and r as 

timelike and spacelike coordinates. In the 

region r > 2M, the t direction, ∂/∂t, is timelike 

(gtt < 0) and the r direction, ∂/∂r, is spacelike 

(grr > 0); but in the region r < 2M, ∂/∂t, is 

spacelike (gtt > 0) and ∂/∂r, is timelike (grr < 

0).  

 

“What does it mean for r to ‘change in 

character from a spacelike coordinate to a 

timelike one’? The explorer in his jet-powered 

spaceship prior to arrival at r = 2M always 

has the option to turn on his jets and change 

his motion from decreasing r (infall) to 

increasing r (escape). Quite the contrary in 

the situation when he has once allowed 

himself to fall inside r = 2M. Then the further 

decrease of r represents the passage of time. 

No command that the traveler can give to his 

jet engine will turn back time. That unseen 

power of the world which drags everyone 

forward willy-nilly from age twenty to forty 

and from forty to eighty also drags the rocket 

in from time coordinate r = 2M to the later 

time coordinate r = 0. No human act of will, 

no engine, no rocket, no force (see exercise 

31.3) can make time stand still. As surely as 

cells die, as surely as the traveler’s watch 

ticks away ‘the unforgiving minutes’, with 

equal certainty, and with never one halt along 

the way, r drops from 2M to 0. 

 

According to Chandrasekhar [37], 

 

“There is no alternative to the matter 

collapsing to an infinite density at a 

singularity once a point of no-return is passed. 

The reason is that once the event horizon is 

passed, all time-like trajectories must 

necessarily get to the singularity: ‘all the 

King’s horses and all the King’s men’ cannot 

prevent it.” 

 

According to Carroll [67], 

 

“This is worth stressing; not only can you not 

escape back to region I, you cannot even stop 

yourself from moving in the direction of 

decreasing r, since this is simply the timelike 

direction. (This could have been seen in our 

original coordinate system; for r < 2GM, t 

becomes spacelike and r becomes timelike.) 

Thus you can no more stop moving toward the 

singularity than you can stop getting older.” 

 

According to Vladmimirov, Mitskiévich and 

Horský [68],  

 

“For r < 2GM/c
2
, however, the component 

goo becomes negative, and grr , positive, so 

that in this domain, the role of time-like 

coordinate is played by r, whereas that of 

space-like coordinate by t. Thus in this 

domain, the gravitational field depends 

significantly on time (r) and does not depend 

on the coordinate t.” 
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In other words, for 0 ≤ r < 2Gm/c
2
, Hilbert’s 

static solution for a static problem becomes a 

non-static solution for a static problem (recall 

that Rµν = 0 is Einstein’s [24, 32, 33] fanciful 

field equations for his static gravitational field 

in the absence of matter). To amplify this, set 

t = r* and r = t*, and so for 0 ≤ r < 2m, metric 

(1) becomes [69], 
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dtdt
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0 ≤ t* < 2m                     (23) 

 

( )2222 sin ϕθθ ddd +=Ω  

 

which has the signature (−, +, −, −), which no 

longer has Lorentz character. It now becomes 

quite clear that this is a time-dependent metric 

since all the components of the metric tensor 

are functions of the timelike t*, and so this 

metric bears no relationship to the original 

time-independent (i.e. static) problem to be 

solved [69].  

 

Since it is claimed for Hilbert’s metric (1) that 

0 ≤ r, this r passes right through the event 

horizon at the ‘Schwarzschild radius’ r = 2m 

on its way down to r = 0. For instance, 

according to Misner, Thorne and Wheeler 

[17],  

 

“At r = 2M, where r and t exchange roles as 

space and time coordinates, gtt vanishes while 

grr is infinite.”  

 

In mathematical form this says, 
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and according to Dirac [41], Hilbert’s metric 

(1), in accordance with expressions (22),  

 

“becomes singular at r = 2m, because then g00 

= 0 and g11 = -∞.” 

 

This is however incorrect since division by 

zero is undefined. Despite this elementary 

mathematical fact the astrophysical scientists 

permit division by zero by a smooth passage 

of r down through r = 2m in Hilbert’s solution 

and claim that r and t exchange rôles [17, 37, 

67, 68] for 0 ≤ r < 2m according to expression 

(23).  

 

Recall that in Hilbert’s solution (2) Mr. ‘t 

Hooft [1, 6, 7] and the astrophysical scientists 

claim that the ‘Schwarzschild radius’ r = rs = 

2Gm/c
2
 is a removable ‘coordinate 

singularity’, and that r = 0 is the ‘true’ or 

‘physical singularity’ or ‘curvature 

singularity’. Mr. ‘t Hooft [1, 6, 7] employs the 

usual methods of the cosmologists by 

invoking the so-called ‘Kruskal-Szekeres 

coordinates’ and ‘Eddington-Finkelstein 

coordinates’.  It is by means of these 

‘coordinates’ that Mr. ‘t Hooft [1] asserts that 

the switch in signature manifest in expression 

(23) is circumvented, despite (23) still being 

retained to argue for what happens after 

passing down through r = 2Gm/c
2
 due to an 

exchange of the rôles of t and r. The very 

notion that such ‘coordinates’ are necessary is 

based on the false idea that r in Hilbert’s 

metric (2) is the radius (distance) therein and 

hence must be able to take the values 0 ≤ r. 

However, by means of equation (21) it is clear 

that the radius does in fact take the values 0 ≤ 

Rp. It has already been proven in Section VI 

above that r in all the black hole solutions Mr. 

‘t Hooft [1, 6, 7] utilises is neither the radius 

nor a distance and that this is also the case for 

the Kruskal-Szekeres and Eddington-

Finkelstein ‘coordinates’. Consequently, any 

a priori assertion as to the range of r in (2) 

has no valid basis [44]. Expression (21) 

determines, from the metric itself, the range 

on r in (2). To examine this issue further, 

consider Schwarzschild’s [43] actual solution, 
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( ) 3
1

33 α+= rR  

 

0 ≤ r                           (24) 

 

Here α is a positive but otherwise 

indeterminable constant, and 
222

zyxr ++=  where x, y, z are the usual 

Cartesian coordinates for 3-dimensional 

Euclidean space, the metric for which is, 

 
2222 dzdydxds ++=               (25) 

 

Converting (25) into spherical coordinates 

yields, 

 

( )222222 sin ϕθθ ddrdrds ++=  

(26) 

0 ≤ r 

 

Note that when r = 0, Schwarzschild’s metric 

is undefined, and the radius Rp is zero, 

consistent with equation (21).  To see this just 

substitute r in (21) with R(r) as defined in 

equations (24).  

 

Metric (26) is the spatial section of 

Minkowski’s spacetime metric, which is 

given by, 

 

( )22222222 sin ϕθθ ddrdrdtcds +−−=         

                                                                     (27) 

0 ≤ r 

 

Note that for every value of r in (27) there 

corresponds a unique value of the radius Rp 

for (24). The quantity r in (26) is not only the 

inverse square root of the Gaussian curvature 

of the spherically symmetric surface 

embedded therein, but is also the radius for 

the spherically symmetric 3-space (26), which 

is easily affirmed by a trivial calculation, 

 

rdrR
r

p == ∫0                  (28) 

 

The spatial section of Schwarzschild’s actual 

solution is given by, 

 

( )22222

1

2 sin1 ϕθθ
α

ddRdR
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−=
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( ) 3
1

33 α+= rR                  (29) 

 

0 ≤ r 

 

Note that if α = 0, Schwarzschild’s metric (24) 

reduces to the flat spacetime of Minkowski 

(27) and the spatial section (29) of 

Schwarzschild’s metric reduces to that for 

ordinary Euclidean 3-space (26).  

 

The metric of (29) is undefined when r = 0, 

owing to a division by zero; otherwise it has 

the form of expression (7) and is thus a 

positive-definite quadratic form. Metric (29) 

can never be indefinite, i.e. its signature 

cannot change from (+, +, +) to (−, +, +), 

because (7) is always a positive-definite 

quadratic form.  Similarly, metric (26) has the 

form of (7) and is a positive-definite quadratic 

form. It too can’t change signature from (+, +, 

+) to (−, +, +). To be consistent with (7), (26) 

and (29), the spatial section (8) of Hilbert’s 

metric must also be a positive-definite 

quadratic form. This means that Hilbert’s 

metric (2) can’t change its signature from (+, 

−, −, −) to (−, +, −, −), as expression (21) 

reaffirms. But it is by means of a change of 

signature of (2), producing (23), on the false 

assumption that r in (2) is the radius, that the 

Kruskal-Szekeres and Eddington-Finkelstein 

‘coordinates’ are based, and employed by Mr. 

‘t Hooft and the cosmologists.  

 

To amplify that there can be no change of 

signature in (2), consider Brillouin’s [69] 

solution, 
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mrRc 2+=  

 

0 ≤ r                           (30) 
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Here m is a positive constant and c = 1. 

 

Now consider Droste’s [70] solution (again c 

= 1), 
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rR =  
 

α ≤ r                           (31) 

 

Solutions (24), (30), and (31) are equivalent. 

However, Hilbert’s solution is not equivalent 

to them on account of 0 ≤ r in (2).  

 

I have shown elsewhere [71 - 79] that all 

solutions equivalent to Schwarzschild’s are 

generated by (using c = 1), 
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( ) nnn

oc rrR
1
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 ∈r  R   ∈n R
+       

 (32)  

 

where r0 is an entirely arbitrary real number 

and n an entirely arbitrary positive real 

number. For instance, setting r0 = 0, n = 1, r ≥ 

r0, Brillouin’s solution (30) is obtained. 

Setting r0 = 0, n = 3, r ≥ r0, Schwarzschild’s 

actual solution (24) is obtained. Setting r0 = α, 

n = 1, r ≥ r0, Droste’s solution (31) is 

obtained. Expressions (32) generate an 

infinite set of equivalent solutions. 

Expressions (32) are easily rendered in 

isotropic form as well (see [79] and Appendix 

D). The signature is always (+, −, −, −) in 

accordance with (27), except at r = r0 where 

the metric is undefined.  

 

Expressions (32) are not, from a purely 

mathematical perspective, restricted to values 

of r ≥ r0. The only value for which the metric 

(32) is undefined is r = r0, and so there is only 

one singularity in (32). However, the radius 

for (32) is defined for all r and the radius 

Rp(r0) = 0 for all arbitrary r0 for all arbitrary n.  

 

Hilbert’s solution has no representation by 

(32) because it is not equivalent to any 

solution generated by it. Only Hilbert’s 

metrical form, which is the same as Droste’s, 

obtains from (32). Values Rc < α are not 

possible. Rc can only take the value of 0 if α = 

0, in which case only Minkowski spacetime is 

produced [71 - 79].   

 

Since (32) generates all the possible 

equivalent solutions in Schwarzschild form, if 

any one of them is extendible then all of them 

must be extendible. In other words, if any one 

of (32) can’t be ‘extended’ then none can be 

extended. Thus, if Hilbert’s solution is valid it 

must require that in Schwarzschild’s actual 

solution –α ≤ r. Similarly this must require 

that –α ≤ r in Brillouin’s solution, and 0 ≤ r in 

Droste’s solution. It is evident from (32) that 

this is impossible. To amplify, consider the 

specific case r0 = 0, n = 2, for which (32) 

yields, 
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According to Hilbert’s solution this would 

require the range –α
2
 ≤ r

2
 in (33). However, 

although r can now take any real value 

whatsoever, r
2
 cannot take values < 0. Thus, 

(33) cannot be ‘extended’ by any means. 

Since (33) is equivalent to (24), (30), and (31), 

none of the latter can be made equivalent to 

Hilbert’s solution (2) either. Consequently, 

the supposed extension of Hilbert’s metric to 

values 0 ≤ r < 2m by means of the Kruskal-
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Szekeres ‘coordinates, the Eddington-

Finkelstein ‘coordinates’, and also the 

Lemaître ‘coordinates’, are all fallacious. 

Thus, in Hilbert’s metric 0 ≤ r < 2m is not 

valid [44 - 46, 71 - 79]. Mr. ‘t Hooft’s [1, 6, 7] 

claims for the Kruskal-Szekeres and 

Eddington-Finkelstein ‘coordinates’ are both 

standard and patently false.  

 

Putting Rc from (32) into the Kruskal-

Szekeres form yields, 
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This does not extend Hilbert’s metric to 0 ≤ r  

since the minimum value of Rc is Rc(r0) = α 

for all r0 for all n. Metric (34) is not singular 

at Rc(r0) but it is degenerate there since then 

u
2
 = v

2
. 

 

Putting Rc from (32) into the Eddington-

Finkelstein form yields, 
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This too does not extend Hilbert’s metric to 0 

≤ r since the minimum value of Rc is Rc(r0) = 

α for all r0 for all n. Metric (35) is not singular 

anywhere, but it is degenerate at Rc(r0).  

 

The Lemaître ‘extension’ has the form, 
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Putting Rc from (32) into the Lemaître form 

yields, 
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Once again this does not extend Hilbert’s 

metric to 0 ≤ r because the minimum value of 

Rc is Rc(r0) = α for all r0 for all n, at which the 

minimum value of 3(ρ – τ)/2 is α
2/3

.  Once 

again, metric (37) is not singular at Rc(r0), or 

anywhere for that matter. 

 

Mr. ‘t Hooft and the astrophysical scientists 

claim that the Riemann tensor scalar 

curvature invariant (also called the 

Kretschmann scalar) must be unbounded at 

their ‘physical’ or ‘curvature’ singularity. 

They then claim that this justifies their 

‘extension’ of Hilbert’s solution to 0 ≤ r < 2m. 

However, there is nothing in General 

Relativity or in pure mathematics that 

requires this condition to be met. In fact, it is 

not required at all because such curvature 

invariants are fully determined by the metric, 

not by any a priori assumed condition foisted 

upon it.  

 

The Kretschmann scalar f is defined in terms 

of the Riemann-Christoffel curvature tensor 

of the first kind, as follows, f = R
αβµν

Rαβµν.   

 

In the case of the Schwarzschild form it is 

given by, 
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212

cR
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where from (32), 
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Thus, 
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Since (32) and all its equivalent solutions are 

inextendible the maximum value of f occurs at 

r = r0, irrespective of the value of r0 and 

irrespective of the value of n. Now Rc(r0) = α 

and so the maximum value of the 

Kretschmann scalar is, 
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40
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α
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This is a finite curvature invariant for the 

Schwarzschild form.  

 

Similarly, when r = r0 the Gaussian curvature 

K of the spherically symmetric geodesic 

surface in the spatial section of the 

Schwarzschild form takes the value, 

 

2
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α
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which is also a finite curvature invariant, and 

is independent of the values of r0 and n. 

Owing to (32) the curvature invariants f and K 

are always finite. 

 

For the Schwarzschild form both f and K are 

curvatures that depend only upon position. 

There is another curvature that is of 

importance, which depends upon both 

position and a pair of directions determined 

by two vectors; it is called the Riemannian (or 

sectional) curvature Ks, and is given by, 
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where U = iU  and V = iV  are two 

linearly independent contravariant vectors of 

appropriate dimension. The Riemannian 

curvature of a metric space is a generalisation 

of the Gaussian curvature for a surface to 

spaces of dimension higher than 2. It is 

therefore not surprising that the Riemannian 

curvature reduces to Gaussian curvature in the 

case of dimension 2 (see equation (11) above), 

which is entirely independent of direction 

vectors – it is dependent only upon position.   

 

In the case of a diagonal metric tensor the 

expression for the Riemannian curvature is 

simplified somewhat. The metric tensor of the 

spatial section of the Schwarzschild form is 

diagonal, and the Riemannian curvature for it 

is found to be given by (see Appendix B), 
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where in turn Rc is given by expression (32) 

(and expression (A17) in Appendix A) and 

the Wijkl by the determinant product, 
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The most important result of all this is that 

when r = r0 in (32), the Riemannian curvature 

of the spatial section of the Schwarzschild 

form is, 

22

1

α
−=sK  

 

which is entirely independent of any direction 

vectors U and V. This is another finite valued 

curvature invariant for the Schwarzschild 

form, and reaffirms that the Schwarzschild 

form cannot be extended.   
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Thus, there are no curvature singularities, no 

‘infinite curvatures’, in the Schwarzschild 

form, contrary to the standard claims. All 

curvature invariants take finite values 

everywhere in the Schwarzschild form.  

 

Similar results obtain for the other alleged 

black hole forms. For instance, the 

Kretschmann scalar for the Reissner-

Nordström form is [72], 
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In this case when r = r0 the Kretschmann 

scalar takes the value [72, 80], 
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which is finite irrespective of the values of r0 

and n.  

 

At r = r0 the Gaussian curvature K for the 

spherically symmetric geodesic surface in the 

spatial section of the Reissner-Nordström 

form has the finite value (see Appendix A), 
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Note that if q = 0 all these curvature 

invariants reduce to that for the 

Schwarzschild form. 

 

The Riemannian curvature for the spatial 

section of the Reissner-Nordström form is 

given by (see appendix B), 
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where again, in turn, Rc is given by expression 

(A17) and the Wijkl by the determinant product, 
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Once again, when r = r0 in (A17), the 

Riemannian curvature of the spatial section of 

the Reissner-Nordström form is, 
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or explicitly,  
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since in this case Rc(r0) = ξ, where, according 

to expression (A17), 
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Note that if q = 0, the Riemannian curvature 

reduces to that for the Schwarzschild form. 
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Thus, there are no curvature singularities in 

the Reissner-Nordström form either [72, 73, 

80], once again contrary to the standard 

claims.  

 

Similar curvature invariants can be deduced 

for the Kerr and Kerr-Newman forms by 

means of equations (A17) (see Appendices A 

and B). 

 

That none of the ‘black hole’ metrics can be 

extended to produce a black hole is reaffirmed 

yet again by considering the acceleration of a 

point in the Schwarzschild form. Doughty [81] 

has shown that the acceleration β of a point 

along a radial geodesic in the Schwarzschild 

manifold is given by the following form (see 

Appendix C), 
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From expressions (32), the radial acceleration 

is given explicitly, 
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Then r → r0 ⇒β →∞, for all r0 for all n. 

 

In the case of the Reissner-Nordström form 

(see Appendix C) the acceleration of a point 

along a radial geodesic is given by, 

 

222

2

2

2

qRRR

qR

ccc

c

+−

−
=

α

α
β  

 

 

 
442

2
22

2 ααα
ξ <−+= qq                                              

 

( ) nnn

oc rrR
1

ξ+−=  

 

∈r R   ∈n R
+

 

 

which naturally reduces to that for the 

Schwarzschild form when q = 0; once again, r 

→ r0 ⇒  β →∞, for all r0 for all n.  

 

Consequently,  

 

∞→⇒→ β0rr  

 

constitutes an invariant and hence reaffirms 

that the Schwarzschild and the Reissner-

Nordström forms cannot be extended. 

 

Nevertheless, unbeknown  to the cosmologists, 

and Mr. ‘t Hooft, the acceleration approaches 

∞ where, according to them, there is no matter! 

[44]. The mass of their black holes is located, 

they say, at their ‘curvature’ singularity, at 

their ‘origin’ r = 0, where their spacetime is 

‘infinitely curved’. 

 

VIII. Black hole universes contain no mass 

 

Mr. ‘t Hooft [1] mocks me because I argue 

that black holes don’t exist on the grounds 

that no mass is present in the relevant field 

equations in the first place. The first section 

that he devotes to me on his webpage is titled, 

"Black holes do not exist, they are solutions 

of the equation for the Ricci tensor Rµν = 0, so 

they cannot carry any mass. And what is 

usually called a "horizon" is actually a 

physical singularity." [1] 

 

Another section of his webpage, dedicated to 

me, is titled, 
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"You can’t have massive objects near a black 

hole; and you can’t have multiple black holes 

orbiting one another" [1] 

 

As I have already shown above, multiple 

black holes are inconsistent with the very 

definition of a black hole, and can’t exist in 

any of the alleged big bang universes either. 

Nonetheless Mr. ‘t Hooft superposes his many 

unspecified black holes upon some 

unspecified big bang universe. Also recall that 

the very same black hole equations also 

describe a star of the corresponding type. 

Since the alleged black hole is a one-mass 

universe according to its definition, it is 

physically meaningless. Stars exist, but they 

are not one-mass universes, so they too can’t 

be modelled by black hole equations. But Mr. 

‘t Hooft vilifies me for arguing that the 

Einstein field equations Rµν = 0 contain no 

matter because in this case the energy-

momentum tensor is zero (i.e. Tµν = 0). He 

goes on and on about test particles, and 

complains that,  

 

“Mr. C attacks some generally accepted 

notions about black holes. It appears that the 

introduction of test particles is inadmissible 

to him. A test particle, freely falling in a 

gravitational field, feels no change in energy 

and momentum, and mathematically, we 

describe this situation in terms of comoving 

coordinate frames. This does not fit in C’s 

analysis, so, test particles are forbidden. A 

test particle is an object with almost no mass 

and almost no size, such as the space ship 

Cassini orbiting Saturn.” [1] 

 

Mr. ‘t Hooft [1] also complains about me, 

 

“He has a problem with the notion of test 

particles, which are objects whose mass 

(and/or charge) is negligible for all practical 

purposes, so that they can be used as probes 

to investigate the properties of field 

configurations. Again, this is a question of 

making valid approximations in physics. A 

space ship such as the Cassini probe near 

Saturn, has mass, but it is far too light to have 

any effect on the planets and moons that it 

observes, so, its orbit is a geodesic as long as 

its engines are switched off. No physicist is 

surprised by these facts, but for C, 

approximations are inexcusable. For him, the 

Cassini probe cannot exist. Astrophysicists 

studying black holes routinely make the same 

assumptions. A valid question is: could the 

tiny effects of probes such as Cassini have 

explosive consequences for black holes or 

other solutions to Einstein’s equations? You 

don’t have to be a superb physicist - but you 

must have better intuitions than C - to 

conclude that such things do not happen.” 

 

Although Mr. ‘t Hooft harps on his test 

particles, they are located in some big bang 

universe that also allegedly contains many 

large masses, such as stars, galaxies, and 

untold numbers of black holes, despite the 

fact that the equations (metrics) for stars and 

black holes, being one and the same, don’t 

contain any other masses whatsoever by their 

very definitions, and neither do any of the big 

bang universes.   

 

It is not difficult to prove mathematically that 

Rµν = 0 actually contains no matter 

whatsoever and is therefore physically 

meaningless, and hence the black hole a 

figment of irrational imagination. First, 

according to Einstein [24, 32], his 

gravitational field equations are, 

 

Rµν - ½Rgµν = -κTµν                  (38) 

 

If in (38) the Einstein tensor Gµν =  Rµν - 

½Rgµν is used, these equations are compactly 

written as, 

 

Gµν = -κTµν                      (39) 

 

 

The Einstein tensor describes spacetime 

geometry (i.e. Einstein’s gravitational field) 

and the material sources of his gravitational 

field are denoted by the energy-momentum 

tensor Tµν. Matter is the cause of Einstein’s 

gravitational field as it induces by its presence 

curvature in his spacetime. Thus Einstein’s 

field equations couple his gravitational field 
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to its material sources. In words Einstein’s 

field equations are just, 

 

spacetime geometry = -κ(material sources) 

 

Recall that according to Einstein [24], 

everything except his gravitational field is 

matter. 

 

Einstein [24, 32] says that the field equations 

for his static gravitational field in the absence 

of matter are, 

 

Rµν = 0                          (40) 

 

In words these equations are simply, 

 

spacetime geometry = 0 

 

Although equations (40) are not coupled to 

any material sources, since all matter is 

removed by setting Tµν = 0 (in which case R = 

0 in (38)), Einstein nonetheless claims that 

equations (40) contain a massive source 

because they allegedly describe the 

gravitational field outside a body such as the 

Sun.  Thus Einstein on the one hand removes 

all material sources by setting Tµν = 0 and on 

the other hand immediately reinstates the 

presence of a massive source with words 

(linguistic legerdemain) by alluding to a body 

outside of which equations (40) apply. After 

all, his gravitational field must be caused by 

matter: his gravitational field does not conjure 

itself up from nothing, and everything but the 

gravitational field is matter. Indeed, Einstein 

[31] refers to the ‘Schwarzschild solution’ for 

equations (40) as follows, 
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M denotes the sun’s mass centrally 

symmetrically placed about the origin of co-

ordinates; the solution (109a) is valid only 

outside this mass, where all the Tµν vanish.” 

 

According to Einstein his equation (109a) 

contains a massive source, at “the origin”, yet 

also according to Einstein his equations (40), 

from which (109a) is obtained, contain no 

matter. Thus Einstein’s argument is a 

contradiction and therefore false. This 

contradiction is readily amplified by 

comparison to the ‘field equations’, 

 

Rµν = λgµν                      (41) 

 

 

In words these equations are, 

 

spacetime geometry = λ(metric tensor) 

 

Here λ is the so-called ‘cosmological 

constant’, which is said to be tiny in 

magnitude. The solution for equations (41) is 

de Sitter’s empty universe. It’s empty because 

it contains no matter: 

 

“This is not a model of relativistic cosmology 

because it is devoid of matter.” [37]  

 

“the de Sitter line element corresponds to a 

model which must strictly be taken as 

completely empty.” [82] 

 

“the solution for an entirely empty world.” 

[83]  

 

“there is no matter at all!” [84]  

 

Now note that in both equations (40) and (41) 

the energy-momentum tensor is zero (Tµν = 0). 

Thus, according to Einstein and his followers 

when the energy-momentum tensor is zero 

material sources are both present and absent. 

However, matter cannot be both present and 

absent by the very same mathematical 

constraint.  

 

Since de Sitter’s universe is devoid of matter 

by virtue of Tµν = 0, the ‘Schwarzschild 
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solution’ must also be devoid of matter by the 

very same condition. Thus, equations (40) 

contain no matter. But it is upon equations (40) 

that all black holes rely. Thus, once again, no 

black hole solution has any physical meaning 

and so black holes are not predicted by 

General Relativity at all – they don’t have any 

basis in any theory or observation, since 

Newton’s theory does not predict black holes 

either, contrary to the claims of the 

astrophysical scientists [85]; and nobody has 

ever found a black hole [63]. Nonetheless, 

according to Hawking and Ellis [42], 

 

“Laplace essentially predicted the black 

hole…” 

 

According to the Cambridge Illustrated 

History of Astronomy [86],  

 

“Eighteenth-century speculators had 

discussed the characteristics of stars so dense 

that light would be prevented from leaving 

them by the strength of their gravitational 

attraction; and according to Einstein’s 

General Relativity, such bizarre objects 

(today’s ’black holes’) were theoretically 

possible as end-products of stellar evolution, 

provided the stars were massive enough for 

their inward gravitational attraction to 

overwhelm the repulsive forces at work.” 

 

In part C of Box 24.1 in their book 

‘Gravitation’, Misner, Thorne and Wheeler 

[17] include the Michell-Laplace dark body 

under the heading of ‘BLACK HOLES’. In 

section 24.2 they include a copy of the cover 

of Laplace’s paper ‘Exposition du Syetème du 

Monde’, and a page from his paper, in French, 

beside two papers, one by Oppenheimer and 

Volkov, the other by Oppenheimer and 

Snyder, on neutron stars and gravitational 

contraction respectively, and a paper by 

Baade and Zwicky on neutron stars. All these 

papers are denoted as ‘Figure 24.1’, with this 

caption: 

 

“Two important arrivals on the scene: the 

neutron star (1933) and the black hole (1795, 

1939). No proper account of either can forego 

general relativity.” 

 

According to Chandrasekhar [37],  

 

“That such a contingency can arise was 

surmised already by Laplace in 1798. Laplace 

argued as follows. For a particle to escape 

from the surface of a spherical body of mass 

M and radius R, it must be projected with a 

velocity v such that ½v
2
 > GM/R; and it 

cannot escape if v
2
 < 2GM/R. On the basis of 

this last  inequality, Laplace concluded that if 

R < 2GM/c
2
 =Rs (say) where c denotes the 

velocity of light, then light will not be able to 

escape from such a body and we will not be 

able to see it!  

 

“By a curious coincidence, the limit Rs 

discovered by Laplace is exactly the same that 

general relativity gives for the occurrence of 

the trapped surface around a spherical mass.” 

 

But it is not “a curious coincidence” that 

General Relativity gives the same Rs 

“discovered by Laplace” because the 

Newtonian expression for escape velocity (4) 

is deliberately inserted post hoc into Hilbert’s 

solution (2) by the proponents of the black 

hole in order to make a mass appear in 

equations that contain no material source.  

 

The Michell-Laplace dark body is not a black 

hole [87 - 90]. It possesses an escape velocity 

at its surface, but the black hole has both an 

escape velocity and no escape velocity 

simultaneously at its ‘surface’ (i.e. event 

horizon); masses and light can leave the 

Michell-Laplace dark body, but nothing can 

leave the black hole; it does not require 

irresistible gravitational collapse to form, 

whereas the black hole does; it has no 

(infinitely dense) singularity, but the black 

hole does; it has no event horizon, but the 

black hole does; it has ‘infinite gravity’ 

nowhere, but the black hole has infinite 

gravity at its singularity; there is always a 

class of observers that can see the Michell-

Laplace dark body, but there is no class of 

observers that can see the black hole; the 
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Michell-Laplace dark body persists in a space 

which by consistent theory contains other 

Michell-Laplace dark bodies and other matter 

and they can interact with themselves and 

other matter, but the spacetime of all types of 

black hole pertains to a universe that contains 

only one mass (but actually contains no mass 

by mathematical construction) and so cannot 

interact with any other masses; the space of 

the Michell-Laplace  dark body is 3-

dimensional and Euclidean, but the black hole 

is in a 4-dimensional non-Euclidean (pseudo-

Riemannian) spacetime; the space of the 

Michell-Laplace dark body is not 

asymptotically anything whereas the 

spacetime of the black hole is asymptotically 

flat or asymptotically curved; the Michell-

Laplace dark body does not ‘curve’ a 

spacetime, but the black hole does. Therefore, 

the Michell-Laplace dark body does not 

possess the characteristics of the black hole 

and so it is not a black hole. 

 

Mr. ‘t Hooft’s [1] test particle in the 

spacetime of Rµν = 0 has no meaning either 

since Rµν = 0 is physically meaningless. Not 

only does Rµν = 0 contain no matter it also 

violates other physical principles of General 

Relativity. According to Einstein [32] his 

Principle of Equivalence and his Special 

Theory of Relativity must hold in his 

gravitational field,  

 

“Let now K be an inertial system. Masses 

which are sufficiently far from each other and 

from other bodies are then, with respect to K, 

free from acceleration. We shall also refer 

these masses to a system of co-ordinates K', 

uniformly accelerated with respect to K. 

Relatively to K' all the masses have equal and 

parallel accelerations; with respect to K' they 

behave just as if a gravitational field were 

present and K' were unaccelerated. 

Overlooking for the present the question as to 

the 'cause' of such a gravitational field, which 

will occupy us later, there is nothing to 

prevent our conceiving this gravitational field 

as real, that is, the conception that K' is 'at 

rest' and a gravitational field is present we 

may consider as equivalent to the conception 

that only K is an 'allowable' system of co-

ordinates and no gravitational field is present. 

The assumption of the complete physical 

equivalence of the systems of coordinates, K 

and K', we call the 'principle of equivalence'; 

this principle is evidently intimately 

connected with the law of the equality 

between the inert and the gravitational mass, 

and signifies an extension of the principle of 

relativity to co-ordinate systems which are in 

non-uniform motion relatively to each other. 

In fact, through this conception we arrive at 

the unity of the nature of inertia and 

gravitation.” [32] 

 

“Stated more exactly, there are finite regions, 

where, with respect to a suitably chosen space 

of reference, material particles move freely 

without acceleration, and in which the laws of 

the special theory of relativity, which have 

been developed above, hold with remarkable 

accuracy.” [32] 

 

Note that both the Principle of Equivalence 

and Special Relativity are defined in terms of 

the a priori presence of multiple arbitrarily 

large finite masses and photons. There can be 

no multiple arbitrarily large finite masses and 

photons in a spacetime that contains no matter 

by mathematical construction, and so neither 

the Principle of Equivalence nor Special 

Relativity can manifest therein. But  Rµν = 0 is 

a spacetime that contains no matter by 

mathematical construction. Furthermore, Mr. 

‘t Hooft’s test particle, be it the “space ship 

Cassini orbiting Saturn” or otherwise, must 

surely constitute a finite region in which 

Special Relativity must hold in accordance 

with Einstein’s tenets, assuming that Special 

Relativity is valid in the first place, and if so, 

multiple arbitrarily large finite masses and 

photons must be able to be present anywhere. 

This is impossible for Rµν = 0.  

 

It follows from this that Einstein’s field 

equations do not in fact reduce to Rµν = 0 

when Tµν = 0.  

 

Notwithstanding the facts, the astrophysical 

scientists see black holes in multitudes, 
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throughout the galaxies, at the centres of 

galaxies, in binary systems, and colliding and 

merging. According to Chandrasekhar [37], 

 

“From what I have said, collapse of the kind I 

have described must be of frequent 

occurrence in the Galaxy; and black-holes 

must be present in numbers comparable to, if 

not exceeding, those of the pulsars. While the 

black-holes will not be visible to external 

observers, they can nevertheless interact with 

one another and with the outside world 

through their external fields. 

 

“In considering the energy that could be 

released by interactions with black holes, a 

theorem of Hawking is useful. Hawking’s 

theorem states that in the interactions 

involving black holes, the total surface area 

of the boundaries of the black holes can never 

decrease; it can at best remain  unchanged (if 

the conditions are stationary). 

 

“Another example illustrating Hawking’s 

theorem (and considered by him) is the 

following. Imagine two spherical 

(Schwarzschild) black holes, each of mass 

½M, coalescing to form a single black hole; 

and let the black hole that is eventually left be, 

again, spherical and have a mass M.” 

 

According to Hawking [8], 

 

“Also, suppose two black holes collided and 

merged together to form a single black hole. 

Then the area of the event horizon of the final 

black hole would be greater than the sum of 

the areas of the event horizons of the original 

black holes.” 

 

 And according to Mr. ‘t Hooft [6], 

 

“We not only accept the existence of black 

holes, we also understand how they can 

actually form under various circumstances. 

Theory allows us to calculate the behavior of 

material particles, fields or other substances 

near or inside a black hole. What is more, 

astronomers have now identified numerous 

objects in the heavens that completely match 

the detailed descriptions theoreticians have 

derived.” 

 

IX. Big bang universes are one-mass 

universes 

 

All big bang models treat the universe, after 

the initial bang from nothing (or, semantically, 

a reified mathematical ‘singularity’), as being 

entirely filled by a single continuous 

indivisible homogeneous distribution of 

matter of uniform macroscopic density and 

pressure. This continuous distribution of 

matter is given the form of an idealised fluid 

that completely fills the universe. For instance, 

according to Tolman [82], 

 

“… it must be remembered that these 

quantities apply to the idealized fluid in the 

model, which we have substituted in place of 

the matter and radiation actually present in 

the real universe.”  

 

“We may, however, introduce a more specific 

hypothesis by assuming that the material 

filling the model can be treated as a perfect 

fluid.” 

 

The multiple black holes merging or colliding 

or capturing other matter or forming binary 

systems, the many stars and galaxies, and the 

radiation too that appear in big bang models is 

therefore inconsistent with the very basis of 

the models, and are obtained by invalid 

application of the Principle of Superposition. 

Tolman [82] reveals this explicitly,  

 

“We can then treat the universe as filled with 

a continuous distribution of fluid of proper 

macroscopic density ρoo and pressure po, and 

shall feel justified in making this 

simplification since our interest lies in 

obtaining a general framework for the 

behaviour of the universe as a whole, on 

which the details of local occurrences could 

be later superposed.” 

 

However, the Principle of Superposition is not 

valid in General Relativity. Nonetheless, 

superposition is inadmissibly applied to 
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obtain multiple masses, radiation and multiple 

black holes in big bang creation models.  

 

Mr. ‘t Hooft [1, 6, 7] talks of multiple black 

holes, and other matter such as stars and 

planets, presumably in some big bang 

universe. In 2008 Mr. ‘t Hooft [62] wrote in 

an email to me, 

 

“Black holes can be in the vicinity of other 

black holes.”  

 

Hence, his big bang universes are riddled with 

infinite ‘gravitational fields’ at the 

singularities of all his black holes, where 

spacetime curvature is infinite, and where the 

density is also infinite thereby violating into 

the bargain the uniform macroscopic density 

of all the one-mass big bang models.  None of 

Mr. ‘t Hooft’s black holes are asymptotically 

anything in his multiple black hole universe, 

and this violates the very definition of the 

black hole as well.  

 

X. Einstein’s gravitational waves and the 

usual conservation of energy and 

momentum 

 

Mr. ‘t Hooft [1] first mentions me in the 

section of his webpage titled “Einstein’s 

equations for gravity are incorrect, they have 

no dynamical solutions, and do not imply 

gravitational waves as described in 
numerous text books."  In this section he 

derides Dr. Lo, but includes me, as follows, 

 

“Apparently, he fails to understand where the 

energy in a gravitational wave packet comes 

from, thinking that it is not given by Einstein’s 

equations, a misconception that he shares 

with Mr. C. Due to the energy that should 

exist in a gravitational wave, gravity should 

interact with itself. Einstein’s equation should 

have a term describing gravity’s own energy. 

In fact, it does. This interaction is 

automatically included in Einstein’s 

equations, because, indeed, the equations are 

non-linear, but neither L nor C appear to 

comprehend this.” [1] 

 

Mr. ‘t Hooft has offered no evidence to 

support his claim that I think that Einstein’s 

gravitational energy  “is not given by 

Einstein’s equations”; and for good reason – 

there is none. This is another false allegation 

that he has conveniently conjured up by 

means of his imagination. None of my papers 

[64] even remotely suggests Mr. ‘t Hooft’s 

claim, and neither does our email 

communications [62].  

 

Mr. ‘t Hooft goes on to explain his division of 

a metric gµν into two parts; a flat spacetime 

background g
o
µν and a dynamical part g

1
µν, in 

order to account for Einstein’s alleged 

gravitational waves; thus gµν = g
o
µν + g

1
µν. He 

then makes the following remarks [1], 

 

“The stress-energy-momentum tensor can 

then be obtained routinely by considering 

infinitesimal variations of the background 

part, just like one does for any other type of 

matter field; the infinitesimal change of the 

total action (the space-time integral of the 

Lagrange density) then yields the stress-

energy-momentum tensor. Of course, one 

finds that the dynamical part of the metric 

indeed carries energy and momentum, just as 

one expects in a gravitational field. As hydro-

electric plants and the daily tides show, 

there’s lots of energy in gravity, and this 

agrees perfectly with Einstein’s original 

equations. In spite of DC calling it ‘utter 

madness, this procedure works just perfectly. 

L and C shout that this stress-energy-

momentum tensor is a ‘pseudotensor’.”  

 

Let’s now investigate how Einstein fed the 

conservation of energy and momentum of his 

gravitational field and its material sources 

into his field equations. 

 

It must first be noted that when Einstein talks 

of the conservation of energy and momentum 

he means that the sum of the energy and 

momentum of his gravitational field and its 

material sources is conserved in the usual way 

for a closed system, as experiment attests, for 

otherwise his theory would be in conflict with 
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a vast array of experiments and therefore 

invalid.  Einstein [32] emphasises that, 

 

“It must be remembered that besides the 

energy density of the matter there must also 

be given an energy density of the 

gravitational field, so that there can be no 

talk of principles of conservation of energy 

and momentum of matter alone.” 

 

Mr. ‘t Hooft [1] acknowledges Einstein, 

 

“The truth is that gravitational energy plus 

material energy together obey the energy 

conservation law. We can understand this just 

as we have explained it for gravitational 

waves.” 

Consider Einstein’s field equations in the 

following form, 

               







−−= uvuvuv TgTR

2

1
κ               (42) 

According to Einstein when Tuv = 0, and 

hence T = 0, this reduces to, 

                               Ruv = 0                          (43) 

The solution to (43) is Schwarzschild’s 

solution. It is routine amongst astrophysical 

scientists to consider a ‘weak’ gravitational 

field and a very slow moving ‘particle’ in 

relation to the ‘Schwarzschild solution’ to 

finally obtain an expression for the 

component of the metric tensor g00 in terms of 

the Newtonian potential function φ. The 

inclusion of φ in g00, although standard, is ad 

hoc, by means of a false analogy with 

Newton’s theory, as explained above in 

relation to equation (4). Equations (43) are 

Einstein’s analogue of the Laplace equation.  

Eventually the divergence of the Newtonian 

potential function is often equated to R00 to 

obtain the Poisson equation by assuming a 

particular form for T00. One can’t use the 

‘Schwarzschild solution’ to effect this 

analogue of the Poisson equation since (43) is 

allegedly an analogue of the Laplace equation. 

When Einstein developed his analogue of the 

Poisson equation he had no ‘Schwarzschild 

solution’ to work with. Instead he began with 

his analogue of the Laplace equation and 

attributed energy and momentum to his 

gravitational field, the latter he described by 

the following form of (43), with a constraint 

[24, 33],  
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Einstein writes the Christoffel symbol of the 

second kind as, 
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Einstein [24] proceeded from his analogue of 

the Laplace equation, equations (44), to his 

analogue of the Poisson equation. Using 

equations (44) he first alleged the 

conservation of the energy-momentum of his 

gravitational field by introducing his so-called 

‘pseudotensor’, t
α
σ, via a Hamiltonian form of 

equations (44). According to Einstein [24] the 

components of his pseudotensor are, 

“the ‘energy components’ of the gravitational 

field”.  

His conservation law for his gravitational 

field alone is by means of an ordinary 

divergence of t
α
σ, not a tensor divergence, 

since t
α
σ is not a tensor, and therefore in 

conflict with his tenet that all the equations of 

physics be covariant tensor expressions. He 

and his followers to this day attempt to justify 

this procedure on the basis that t
α
σ acts ‘like a 

tensor’ under linear transformations of 

coordinates. Nevertheless, this does not make 

t
α
σ a tensor. After a long-winded set of 

calculations Einstein [24] produces the 

ordinary divergence, 
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0=
∂

∂

α

α
σ

x

t
                       (45) 

and proclaims a conservation law, but only 

for the energy and momentum of his 

gravitational field,  

 

“This equation expresses the law of 

conservation of momentum and energy for the 

gravitational field.”  [24] 

Einstein then replaces equations (44) with the 

following, 

( ) 
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1=− g  

Equations (46) are still Einstein’s proposed 

analogue of the Laplace equation. To get his 

analogue of the Poisson equation he simply 

adds a term for the material sources of his 

gravitational field, namely, his energy-

momentum tensor T
σ
µ, thus

4
,  

“The system of equation (51) shows how this 

energy-tensor (corresponding to the density ρ 

in Poisson’s equation) is to be introduced into 

the field equations of gravitation. For if we 

consider a complete system (e.g. the solar 

system), the total mass of the system, and 

therefore its total gravitating action as well, 

will depend on the total energy of the system, 

and therefore on the ponderable energy 

together with the gravitational energy. This 

will allow itself to be expressed by 

introducing into (51), in place of the energy-

components of the gravitational field alone, 

the sums t
σ
µ + T

σ
µ of the energy-components 

of matter and of gravitational field. Thus 

instead of (51) we obtain the tensor equation 

( ) ( ) ( )
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4
 Einstein’s equation (51) is equation (46) herein. 

1=− g  

where we have set T = T
µ
µ (Laue’salar). 

These are the required general equations of 

gravitation in mixed form.” [24] 

 

Recall that Mr. ‘t Hooft [1] invoked “a 

‘pseudotensor’” in relation to the 

conservation of the energy and momentum of 

Einstein’s shadowy gravitational waves, and 

mocks me for my rejection of it. The overt 

problem is that Einstein’s pseudotensor is not 

a tensor and is therefore coordinate dependent. 

This is not in keeping with Einstein’s 

requirement that all the equations of physics 

must be coordinate independent by means of 

tensor relations.  

 

“It is to be noted that t
α
σ is not a tensor” [24] 

 

“Let us consider the energy of these waves. 

Owing to the pseudo-tensor not being a real 

tensor, we do not get, in general, a clear 

result independent of the coordinate system.”  

[41] 

  

“It is not possible to obtain an expression for 

the energy of the gravitational field satisfying 

both the conditions: (i) when added to other 

forms of energy the total energy is conserved, 

and (ii) the energy within a definite (three 

dimensional) region at a certain time is 

independent of the coordinate system. Thus, 

in general, gravitational energy cannot be 

localized. The best we can do is to use the 

pseudo-tensor, which satisfies condition (i) 

but not (ii). It gives us approximate 

information about gravitational energy, which 

in some special cases can be accurate.” [41] 

 

However, besides coordinate dependence 

there is an even more compelling reason to 

reject Einstein’s pseudotensor; it is a 

meaningless concoction of mathematical 

symbols and therefore can’t be used to 

represent any entity, to model any phenomena, 

or to make any calculations! 

 

Definition 5 (Class of a Riemannian 

Metric): Let φ be a Riemannian metric in the 
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n variables x
1
, …, x

n
. If σ is sufficiently large 

then n + σ functions y
1
, …, y

n + σ
 of the x

i
 can 

be chosen such that, 

 

φ = (dy
1
)
2
 + … + (dy

n + σ
)
2
. 

 

Let m be the smallest possible value for σ 

such that, 

 

( )
2

1
0

−
≤≤

nn
m . 

 

Then m is called the class of the Riemannian 

metric φ. [90] 

 

Theorem 2: Metrics of zero class (of any 

number of variables n) are characterised by 

the necessary and sufficient condition that 

their Riemann-Christoffel curvature tensor 

vanishes identically. [91] 

 

In General Relativity the Riemann-Christoffel 

curvature tensor does not vanish identically 

[24].  

 

Theorem 3: Metrics φ of class zero have no 

non-zero differential invariants. Metrics of 

non-zero class have no first order differential 

invariants. The invariants greater than one 

are the invariants of φ, the Riemann-

Christoffel curvature tensor, and its covariant 

derivatives. [91] 

Now Einstein’s pseudotensor t
α
σ is defined as 

[24, 32], 
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wherein κ is a constant and δ
α
σ is the 

Kronecker-delta. Contract Einstein’s 

pseudotensor by setting σ = α to yield the 

invariant t = t
α
α, thus, 
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Since the α
βσΓ  are functions only of the 

components of the metric tensor and their first 

derivatives, t is seen to be a first-order 

intrinsic differential invariant [91, 92], i.e. it 

is an invariant that depends solely upon the 

components of the metric tensor and their first 

derivatives. However, by Theorem 3 this is 

impossible. Hence, by reductio ad absurdum, 

Einstein’s pseudotensor is a meaningless 

concoction of mathematical symbols, and 

therefore, contrary to Einstein, the 

astrophysical scientists, and Mr. ‘t Hooft, it 

can’t be used to make any calculations, to 

represent any physical quantity, or to model 

any physical phenomena, such as Einstein’s 

ghostly gravitational waves.  

The Landau-Lifshitz [93] pseudotensor is 

often used in place of Einstein’s; however, it 

suffers from precisely the same defects as 

Einstein’s and it is therefore also a 

meaningless concoction of mathematical 

symbols. All the so-called gravitational 

‘pseudotensors’ share these fatal defects.  

Einstein and the astrophysical scientists 

nonetheless permit his pseudotensor, and do 

calculations with it, as does Mr. ‘t Hooft [1] 

who says, 

 

“…and there’s nothing wrong with a 

definition of energy, stress and momentum 

that’s frame dependent, as long as energy and 

momentum are conserved.” 

The conservation of energy and momentum 

Mr. ‘t Hooft refers to is that usual for a closed 

system, as determined by experiments.  

From Einstein’s equation (52) the total 

energy-momentum E, of his gravitational 

field and its material sources, is, 

 E   = (t
σ
µ + T

σ
µ)                  (47) 

This is still not a tensor expression, so 

Einstein can’t take a tensor divergence. He 

then takes the ordinary divergence to get [24],  

( )
0=

∂

+∂

α

σ
µ

σ
µ

x

Tt
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www.sjcrothers.plasmaresources.com/index.html  38 

and proclaims the usual conservation laws of 

energy and momentum for a closed system, 

“Thus it results from our field equations of 

gravitation that the laws of conservation of 

momentum and energy are satisfied.” [24] 

Compare now equation (42) with the 

equivalent forms,  
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Thus by (49), according to Einstein, if T
µ
ν = 0 

then R
µ

v = 0. But by (50), if R
µ

v = 0 then T
µ

v = 

0. In other words, R
µ

v and T
µ

v must vanish 

identically – if there are no material sources 

then there is no gravitational field, and no 

universe.  Bearing this in mind, and in view of 

(40) and (41), consideration of the 

conservation of energy and momentum, and 

tensor relations, Einstein’s field equations 

must take the following form [92, 94], 

0=+ µ
ν

µ
ν

κ
T

G
                   (51) 

Comparing this to expression (47) it is clear 

that the G
µ
ν/κ actually constitute the energy-

momentum components of Einstein’s 

gravitational field, which is rather natural 

since the Einstein tensor G
µ
ν describes the 

curvature of Einstein’s spacetime (i.e. his 

gravitational field), and that (51) also 

constitutes the total energy-momentum of 

Einstein’s gravitational field and its material 

sources. Unlike (47), expression (51) is a 

tensor expression. The tensor (covariant 

derivative) divergence of the left side of (51) 

is zero and therefore constitutes a 

conservation law for Einstein’s gravitational 

field and its material sources T
µ
ν.  

However, the total energy-momentum of (51) 

is always zero, the Guv/κ and the Tuv must 

vanish identically (i.e. when  Tuv = 0,  Guv = 0, 

and vice-versa, producing the identity 0 = 0), 

and gravitational energy can’t be localised 

[92]. Moreover, since the total energy-

momentum is always zero the usual 

conservation laws for energy and momentum 

for a closed system can’t be satisfied. General 

Relativity is therefore in conflict with a vast 

array of experiments on a fundamental level.  

The so-called ‘cosmological constant’ can be 

easily included as follows, 

( )
0=+

+ µ
ν

µ
ν

µ
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κ

λ
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gG
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In this case the energy-momentum 

components of Einstein’s gravitational field 

are given by (G
µ
ν + λg

µ
ν)/κ. The G

µ
ν, g

µ
ν, and 

T
µ
ν must all vanish identically, and all the 

same consequences ensue just as for equation 

(51). Thus, if there is no material source, not 

only is there no gravitational field, there is no 

universe, and Einstein’s field equations 

violate the usual conservation of energy and 

momentum for a closed system and are 

thereby in conflict with a vast array of 

experiments.  

Recall that Mr. ‘t Hooft [1] splits the metric 

tensor into two parts, a flat ‘background’ 

spacetime and a dynamical spacetime, as 

follows, 

gµν = g
o
µν + g

1
µν                 (53) 

This procedure is the so-called ‘linearisation’ 

of Einstein’s field equations. With this 

procedure Mr. ‘t Hooft [1] says, 

“The dynamical part, g
1
µν, is defined to 

include all the ripples of whatever 

gravitational wave one wishes to describe.” 

 

The linearisation procedure leads to the 

following alleged gravitational wave equation 

in empty spacetime, 

 

□2
g

1
µν = 0                     (54) 
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where the d’Alembertian operator is defined, 
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and where c is the speed of light in vacuo. 

Quite often, as in the case of Hilbert’s 

solution (1), c is set to unity, in which case 

the d’Alembertian operator is,  
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From expression (54) it is claimed that the 

speed of propagation of Einstein’s 

gravitational waves is the speed of light in 

vacuo. For instance, according to Foster and 

Nightingale [95], 

 

“… we see that gravitational radiation 

propagates through empty spacetime with the 

speed of light.”  

 

However, the speed of propagation of these 

alleged gravitational waves is coordinate 

dependent and therefore not unique. For 

instance, concerning equation (54), Eddington 

[83] noted that, 

 

“… the deviations of the gravitational 

potentials are propagated as waves with unit 

velocity, i.e. the velocity of light. But it must 

be remembered that this representation of the 

propagation, though always permissible, is 

not unique. ... All the coordinate-systems 

differ from Galilean coordinates by small 

quantities of the first order. The potentials gµν 

pertain not only to the gravitational influence 

which is objective reality, but also to the 

coordinate-system which we select arbitrarily. 

We can ‘propagate’ coordinate-changes with 

the speed of thought, and these may be mixed 

up at will with the more dilatory propagation 

discussed above. There does not seem to be 

any way of distinguishing a physical and a 

conventional part in the changes of the gµν.  

 

“The statement that in the relativity theory 

gravitational waves are propagated with the 

speed of light has, I believe, been based 

entirely upon the foregoing investigation; but 

it will be seen that it is only true in a very 

conventional sense. If coordinates are chosen 

so as to satisfy a certain condition which has 

no very clear geometrical importance, the 

speed is that of light; if the coordinates are 

slightly different the speed is altogether 

different from that of light. The result stands 

or falls by the choice of coordinates and, so 

far as can be judged, the coordinates here 

used were purposely introduced in order to 

obtain the simplification which results from 

representing the propagation as occurring 

with the speed of light. The argument thus 

follows a vicious circle.” 

 

Recall that Einstein’s pseudotensor represents 

the energy-momentum of his gravitational 

field alone.  Mr. ‘t Hooft [1] says, 

 

“Actually, one can define the energy density 

in different ways, since one has the freedom to 

add pure gradients to the energy density, 

without affecting the total integral, which 

represents the total energy, which is 

conserved. Allowing this, one might consider 

the Einstein tensor Gµν itself to serve as the 

gravitational part of the stress-energy-

momentum tensor, but there would be 

problems with such a choice. 

 

“The definition using a background metric 

(which produces only terms that are 

quadratic in the first derivatives) is much 

better, and there’s nothing wrong with a 

definition of energy, stress and momentum 

that’s frame dependent, as long as energy and 

momentum are conserved. In short, if one 

wants only first derivatives, either frame 

dependence or background metric 

dependence are inevitable. 

 

“…In spite of DC calling it ‘utter madness’, 

this procedure works just perfectly. L and C 

shout that this stress-energy-momentum 

tensor is a ‘pseudotensor’.” 

However, all attempts to account for the 

energy-momentum of Einstein’s gravitational 

field, and hence his ‘gravitational waves’, by 

means of a pseudotensor are futile. 
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Consequently, General Relativity violates the 

usual conservation of energy and momentum 

for a closed system as determined by 

experiments. Equation (51) is the form that 

Einstein’s field equations must take. 

Consequently, the search for Einstein’s 

gravitational waves has from the outset been a 

search for that which does not exist. It is no 

wonder that no such waves have ever been 

detected.  

XI. Functional analysis 

Mr. ‘t Hooft [1] says of the five scientists he 

vilifies, 

 

“These self proclaimed scientists in turn 

blame me of ‘not understanding functional 

analysis’.” 

 

Mr. ‘t Hooft has offered no evidence for this 

allegation either. All we have is his word for 

it. I don’t know whether or not any of the 

other four scientists Mr. ‘t Hooft vilifies on 

his webpage has made this accusation against 

him, but certainly I have never done so. In our 

email exchange I have accused him of other 

things, but strangely he has not cared to 

mention them, whereas I hide nothing [62]. 

 

In his final email, copied to me in 2008 but 

addressed to another, Mr. ‘t Hooft wrote, 

 

“O, yes, excerpts from my mail will probably 

emerge on some weblogs, drawn out of 

context and ornamented with comments.” 

 

I refer readers again to [62] for confirmation 

of Mr. ‘t Hooft’s context and to the 

contextualization of my ‘ornaments’.  

 

DEDICATION 

 

In memory of my brother, 

 

Paul Raymond Crothers 

12
th

 May 1960 – 25
th

 December 2008 

 

and my Uncle, 

 

Gary Christopher Crothers 

3
rd

 June 1935 – 10
th

 November 2013 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

APPENDIX A – GAUSSIAN CURVATURE 

 

Gaussian curvature is an intrinsic geometric property of a surface. As such it is independent of any 

embedding space. All black hole spacetime metrics contain a surface from which various invariants 

and geometric identities can be deduced by purely mathematical means. The Kerr-Newman form 

subsumes the Kerr, Reissner-Nordström, and Schwarzschild forms. The Gaussian curvature of the 

surface in the Kerr-Newman metric therefore subsumes the Gaussian curvatures of the surfaces in 

the subordinate forms too. The Gaussian curvature reveals the type of surface and uniquely 

identifies the terms that appear in its general form. The Gaussian curvature demonstrates that no so-

called black hole metric can in fact be extended to produce a black hole. The Gaussian curvature of 

the surface in the Kerr-Newman metrical ground-form and its subordinate metrics is determined as 

follows. 
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The Kerr-Newman metric in Boyer-Lindquist coordinates is, 
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If r = constant ≠ 0 and t = constant, (A1) reduces to, 
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Metric (A2) is a particular form of equation (5) of the First Fundamental Quadratic Form for a 

surface. The components of the metric tensor of (A2) are, 
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To facilitate the calculation of the Gaussian curvature of the surface described by (A2), make the 

following substitutions, 
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From equations (12), 
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bearing in mind the symmetry α
γβ

α
βγ Γ=Γ . 

 

According to (A3) the metric tensor is diagonal and so from equations (12), 
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Using expressions (A7), expression (A6) reduces to, 
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From (A7), 
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Putting (A9) into (A8) gives, 
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Now, 
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and from (A4), g11 = h. Hence,  
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From (A3) and (A4) the determinant g of the metric tensor is, 

 

 

θθβ 22

2211 sinsin fhggg ===                                        (A12) 

 

 

The Gaussian curvature K is, 
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Putting (A11) into (A13) yields, 
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After simplifying terms, (A14) becomes,  
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It is clearly evident from (A15) that the Gaussian curvature is not a positive constant and so the 

surface (A2) is not a spherical surface. Thus, the Kerr-Newman metric (A1) is not spherically 

symmetric.  

 

By virtue of (A15) the quantity r in the Kerr-Newman metric is neither the radius nor a distance 

therein, as it is defined by (A15) owing to the intrinsic geometry of the metric (A2). Since the 

intrinsic geometry of a surface is independent of any embedding space the quantity r in (A2) retains 

its identity when (A2) is embedded in the Kerr-Newman spacetime (A1).  

 

Note that if the alleged angular momentum is zero, i.e. a = 0, then by (A4) and (A5),  
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and so (A15) reduces to, 
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The Kerr-Newman metric (A1) then reduces to the Reissner-Nordström metric for an alleged 

charged non-rotating body, including the corresponding ‘black hole’, since the charge is not zero 

(i.e. q ≠ 0). By (A16) the Reissner-Nordström metric is spherically symmetric, and the quantity r 

therein is neither the radius nor a distance.  

 

If both a and q are zero, the Kerr-Newman metric (A1) reduces to Hilbert’s metric and the Gaussian 

curvature of the surface therein is again given by (A16), and so r therein is neither the radius nor a 

distance in Hilbert’s metric.  

 

Since the metric of (A1) is a generalisation of Schwarzschild’s metric, it is in turn a certain element 

of an infinite set of equivalent metrics, but for an incorrect range on r. It has been shown [71 - 79] 

that the correct form of the Kerr-Newman solution, although also physically meaningless, is 

obtained from, 
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Here r0 and n are entirely arbitrary. Since Rc(r0) = ξ for all r0 for all n, none can be extended. If a = 

0 and q = 0, then (A17) reduces to the Schwarzschild form, equations (32), none of which can be 

extended. The expressions (A17) generate an infinite set of equivalent metrics which cannot be 

extended.  

 

When θ = 0 and θ = π 
 

From (A4), (A5), when θ = 0 and θ = π,  
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Then (A15) reduces to, 
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Putting expressions (A18) into (A19) yields, 
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and so with (A20) 
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By (A21) the minimum value of Rc is Rc(r0) = ξ. Thus at θ = 0 and at θ = π the maximum of K is the 

invariant, 
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When θ = π/2 

 

From (A4), (A5), when θ = π/2, 
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Then (A15) reduces to, 
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Then from (A17), 
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and so with (A27), 
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By (A28) the minimum value of Rc is Rc(r0) = ξ. Thus at θ = π/2 the maximum of K is the invariant, 
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Note that if a = 0 then (A22) and (A29) reduce to, 
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for a spherical surface, and the associated invariant at Rc(r0) is,  
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where ξ is given by (A17). For a = 0, q ≠ 0 then (A32) is, 
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which is an invariant for the Reissner-Nordström form. If both a = 0 and q = 0 then this reduces to, 
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which is an invariant for the Schwarzschild form.  

 

Note that in all cases the Gaussian curvature of the surface in the spatial section is finite everywhere.  
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There is no black hole  

 

By (A17) the minimum value for ∆ is, 

 

θ22

min sina=∆                                                     (A35) 

 

which occurs when r = r0, irrespective of the values of r0 and n. ∆min = 0 only when θ = 0 and when 

θ = π, in which cases (A17), and hence (A1), are undefined.  

 

Similarly, the minimum value of ρ
2
 is,  

 

θξρ 2222

min cosa+=                                                 (A36) 

 

which occurs when r = r0, irrespective of the values of r0 and n. Since ξ is always greater than zero, 

ρ
2
 can never be zero.  

 

Since (A1) is generated from (A17) in the case of r0 = ξ, n = 1, r > r0, it cannot be extended, and ρ
2
 

can never be zero. This is perhaps amplified by the case of r0 = 0, n = 2 in (A17). Then, 

 

( ) 2
1
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which is defined for all real values of r and can never be zero. If (A1) can be extended then so must 

(A17), and hence the case of (A37). But the case (A37) cannot be extended. Thus (A1) cannot be 

extended either.  

 

There is only ever one singularity in every equivalent metric generated by (A17), and this can only 

occur at r = r0, whether or not a = 0 or q = 0 or both are zero. 

 

Thus, there is no event horizon and no static limit, and hence no black hole, associated with (A1), or 

any other of the metrics generated by (A17), all of which are equivalent. 

 

There is no event horizon associated with any output from (A17), whether or not a and q are zero or 

not. Thus, there is no black hole in any case.  

  

 

 

 

APPENDIX B – RIEMANNIAN CURVATURE 

 

Riemannian (or sectional) curvature generalises to dimensions higher than 2 the Gaussian curvature 

of a surface. Consequently, in the case of a surface the Riemannian curvature reduces to Gaussian 

curvature. The Riemannian curvature of the Kerr-Newman form subsumes that for the Kerr, 

Reissner-Nordström, and Schwarzschild forms, and can be determined for the spatial sections 

thereof and for the whole ‘4-dimensional’ metrics respectively. In this Appendix consideration will 

only be given to the Schwarzschild and Reissner-Nordström forms. Calculations for the Kerr and 

Kerr-Newman forms follow similar lines. Once again, the Riemannian curvature demonstrates yet 

again that none of the so-called black hole metrics can be extended to produce a black hole. 
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The Riemannian curvature KS at any point in a metric space of dimensions n > 2 depends upon the 

Riemann-Christoffel curvature tensor of the first kind Rijkl, the components of the metric tensor gik, 

and two arbitrary n-dimensional linearly independent contravariant direction vectors U
i
 and V

i
, as 

follows: 
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Definition 6: If the Riemannian curvature at any point is independent of direction vectors at that 

point then the point is called an isotropic point.  

 

It follows from (A13) and Definition 6 that all points of a surface are isotropic.  

 

 

Riemannian curvature of the spatial section of the Schwarzschild form 

 

The spatial section of the Schwarzschild form is, from expressions (32), 

 

 

222222

1

2 sin1 ϕθθ
α

dRdRdR
R

ds ccc

c

++







−=

−

 

( ) nnn

oc rrR
1

α+−=  

 

∈r R   ∈n R
+                              

 (B1) 

 

The metric tensor is diagonal, 
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The components of the metric tensor are, 
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The components of the Riemann-Christoffel curvature tensor of the second kind are determined by, 
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Since (B2) is diagonal, the Christoffel symbols of the second kind can be calculated using the 

following relations, 
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Make the following assignments, 

 

ϕθ === 321
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There are 15 Christoffel symbols of the second kind to be considered. Calculation determines that 

there are only 7 non-zero such terms, 
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The number of components of the Riemann-Christoffel curvature tensor that are not identically zero 

is n
2
(n

2
 – 1)/12, where n is the number of dimensions of the metric space, which in this case is 3. 

Thus there are 9(9 – 1)/12 = 6 components to consider. Calculation determines that there are only 3 

non-zero components of the Riemann-Christoffel curvature tensor of the second kind, 
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The components of the Riemann-Christoffel curvature tensor of the first kind, Rijkl, are determined 

by, 
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Putting expressions (B3) and (B7) into (B8) yields, 
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Let i
U   and i

V  be two arbitrary linearly independent contravariant direction vectors. Then for the 

problem at hand the Riemannian curvature Ks is given by, 
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Since the metric tensor is diagonal the non-zero Gijkl are calculated by, 
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The non-zero Gijkl are calculated, 
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Putting (B9) and (B12) into (B10) yields, 
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Now Rc(r0) = α nr ∀∀ 0 , in which case (B13) is, 
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α
−=sK                                                             (B14) 

 

 

which is entirely independent of the direction vectors i
U  and i

V , and independent of θ. Thus r0 

produces an isotropic point. This reaffirms that the Schwarzschild form cannot be extended.  

 

Comparing (B14) with (A34) gives, 
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K
K S −=                                                             (B15) 

 

 

Thus, at r = r0 the Riemannian curvature of the spatial section of the Schwarzschild form is the 

negative of half the Gaussian curvature of the spherical surface in the spatial section of the 

Schwarzschild form. (B15) is another curvature invariant for the Schwarzschild form.  

 

(B13) depends on θ. When θ = 0 and θ = π, (B13) becomes (B14). When θ = π/2, (B13) becomes, 
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This reaffirms that the Schwarzschild form cannot be extended. 

 

 

 

Riemannian curvature of the spatial section of the Reissner-Nordström form 

 

If a = 0 in expressions (A17), the Reissner-Nordström form is obtained, thus, 
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The spatial section is, 
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The metric tensor is diagonal, 
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The components of the metric tensor are, 
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Make the following assignments, 

 

 

ϕθ === 321
xxRx c  

 

 

There are 15 Riemann-Christoffel symbols of the second kind to consider. Calculation determines 

that there are only 7 non-zero such terms, 
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There are 6 components of the Riemann-Christoffel curvature tensor to consider. Calculation 

determines that there are only 3 non-zero such terms, 
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There are only 3 non-zero Gijkl, 

 

( ) ( )
θ

α

θ

α
24

232322

24

131322

4

1212 sin
sin

c

cc

c

cc

c RG
qRR

R
G

qRR

R
G =

+−
=

+−
=  

 

The Riemannian curvature KS is, 
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Note that if q = 0, (B20) reduces to (B13) for the spatial section of the Schwarzschild form. Also 

note that for (B20) Rc(r0) = ξ, where ξ is given by (B16), in which case the Riemannian curvature is, 
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which is entirely independent of the direction vectors i
U and i

V , and of θ. Thus, r = r0 produces an 

isotropic point. This reaffirms that the Reissner-Nordström form cannot be extended.  
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Taking ξ from (B16) the Riemannian curvature is, 
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Once again, if q = 0, then (B21) reduces to (B14) for the spatial section of the Schwarzschild form, 

as easily seen from (B21b). (B21) is a curvature invariant for the Reissner-Nordström form.   

 

(B20) depends on θ. When θ = 0 and θ = π, (B20) becomes, 
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(B21c) produces isotropic points. When θ = π/2, (B20) becomes, 
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Riemannian curvature of the Schwarzschild form 

 

The Schwarzschild form is, 
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The metric tensor is diagonal, 
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The components of the metric tensor are, 
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Make the following assignments, 

 

 

ϕθ ==== 3210
xxRxtx c  

 

 

There are 28 Christoffel symbols of the second kind to consider. Calculation shows that there are 

only 9 non-zero such terms, 
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Since the dimension of the space is 4 there are 16(16-1)/12 = 20 components of the Riemann-

Christoffel curvature tensor to consider. Calculation determines that are only 6 non-zero such terms, 
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Since the metric tensor is diagonal there are only 6 non-zero components of the Gijkl, 
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The Riemannian curvature for the Schwarzschild form is therefore, 
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 (B25) 

 

By (B22), Rc(r0) = α irrespective of the values of r0 and n, in which case (B25) reduces to, 
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α
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Thus, (B26) is entirely independent of the direction vectors i
U and i

V , and of θ. Thus, r = r0 

produces an isotropic point, which again shows that the Schwarzschild form cannot be extended. 

 

Comparing (B26) to (A34) gives, 

 

2

K
K S =                                                                (B27) 

 

 

Hence, at r = r0 the Riemannian curvature of the Schwarzschild form is half the Gaussian curvature 

of the spherical surface in the spatial section of the Schwarzschild form.  
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(B26) is the negative of (B14): at r = r0 the Riemannian curvature of the Schwarzschild form is the 

negative of the Riemannian curvature of the spatial section thereof. (B27) is another curvature 

invariant for the Schwarzschild form.  

 

(B25) depends on θ. When θ = 0 and θ = π, (B25) becomes, 
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When θ = π/2, (B25) becomes, 
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Riemannian curvature of the Reissner-Nordström form 

 

The Reissner-Nordström form is, 

 

 

( )22222

1

2

2
2

2

2
2 sin11 ϕθθ

αα
ddRdR

R

q

R
dt

R

q

R
ds cc

cccc

+−







+−−








+−=

−

 

 

( ) nnn

c rrR
1

0 ξ+−=  

 



www.sjcrothers.plasmaresources.com/index.html  60 

442

2
22

2 ααα
ξ <−+= qq  

 

∈r  R       ∈n  R
+
                                                        (B28) 

 

The metric tensor is diagonal, 
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The components of the metric tensor are, 
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Make the following assignments, 

 

 

ϕθ ==== 3210
xxRxtx c  

 

 

There are 28 Christoffel symbols of the second kind to consider. Calculation shows that there are 

only 9 non-zero such terms, 
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There are 20 components of the Riemann-Christoffel curvature tensor to consider. Calculation 

shows that there are only 6 non-zero such terms, 
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Since the metric is diagonal the only non-zero Gijkl are, 
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The Riemannian curvature for the Reissner-Nordström form is, 
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Rc(r0) = ξ irrespective of the values of r0 and n, in which case (B31) reduces to, 
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where ξ is given by (B31). (B32) is entirely independent of the direction vectors i
U and i

V , and of 

θ. Thus, r = r0 produces an isotropic point, which again shows that the Reissner-Nordström form 

cannot be extended. By (B31), (B32) is, 
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Comparing (B32) with (B21) it is noted that at r = r0 (B32) is the negative of the Riemannian 

curvature of the spatial section of the Reissner-Nordström form. Note also that if q = 0, then 

expressions (B31) and B(32) reduce to those for the Schwarzschild form, expressions (B25) and 

(B26) respectively. (B32) is an invariant for the Reissner-Nordström form.  

 

(B31) depends upon θ. When θ = 0 and θ = π, (B31) becomes, 
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When θ = π/2, (B31) becomes, 
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(B31c) 

Similar results can be obtained for (A1), reaffirming that (A1) cannot be extended, in accordance 

with (A17). 
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APPENDIX C – THE ACCELERATION INVARIANT 

 

Doughty [81] obtained the following expression for the acceleration β of a point along a radial 

geodesic for the static spherically symmetric metrics, 
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Since the Hilbert and Reissner-Nordström metrics are particular cases of respective infinite sets of 

equivalent solutions generated by expressions (A17) when a = 0, expression (C1) becomes, 
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In (C2), 
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Consequently, the acceleration is given by, 
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Since q
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 < α

2
/4, (C4) becomes,  
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In all cases, whether or not q = 0, ∞→⇒→ β0rr , which constitutes an invariant condition, and 

therefore reaffirms that the Schwarzschild and Reissner-Nordström forms cannot be extended, and 

hence do not to produce black holes. 

 

Expression (C1) appears at first glance to be a first-order intrinsic differential invariant since it is 

superficially composed of only the components of the metric tensor and their first derivatives. This 

is however, not so, because expression (C1) applies only to the radial direction, i.e. to the motion of 

a point along a radial geodesic. In other words, (C1) involves a direction vector. Consequently, 

although (C1) is a first-order differential invariant, it is not intrinsic. First-order differential 

invariants exist, but first-order intrinsic differential invariants do not exist [91, 92]. That (C1) 

involves a direction vector is amplified by the Killing vector. Let Xa be a first-order tensor (i.e. a 

covariant vector). Then for it to be a Killing vector it must satisfy Killing’s equations, 

 

 

0;; =+ abba XX                                                              (C6) 

 

 

where Xa;b denotes the covariant derivative of Xa.  

 

The condition for hypersurface orthogonality is [38, 45], 

 

 

0];[ =bca XX                                                               (C7) 

 

 

Conditions (C6) and (C7) determine a unique timelike Killing vector that fixes the direction of time 

[44]. By means of this Killing vector the four-velocity v
i
 is [45], 
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a

a

a
a

XX

X
v =                                                               (C8) 

 

 

The absolute derivative of the four-velocity along its own direction gives the four-acceleration β
a 

[45], 

 

du

Dv
a

a =β                                                                (C9) 

 

 

The norm of the four-acceleration is [45], 

 

a

a βββ −=                                                           (C10) 

 

 

Applying (C6) through (C10) to the Reissner-Nordström form from (A17) yields (C5), 
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Consequently, expression (C1) is not intrinsic; it is a first-order differential invariant which is 

constructed with the metric and an associated direction vector, as the limitation of (C1) to motion of 

a point along a radial geodesic implies. Recall that first-order intrinsic differential invariants do not 

exist [91, 92].  

 

When q = 0 (C5) reduces to, 

 

c

c
R

R
α

α
β

−

=

12 2

                                                       (C11) 

 

 

which can of course be calculated directly from (C1) for the Schwarzschild form (32) from (A17). 

In all cases ∞→⇒→ β0rr , which constitutes an invariant condition, and therefore reaffirms 

once again that the Schwarzschild and Reissner-Nordström forms cannot be extended and therefore 

cannot produce black holes.  
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APPENDIX D – ISOTROPIC COORDINATE FORMS 

 

Let Qn and Mn be two metric spaces of dimension n with metrics gik and ĝik respectively. Let Qn and 

Mn be described by the same set of coordinates (variables) x
i
. The spaces with their metrics can be 

represented by the notation (Qn, gik) and (Mn, ĝik). If the two metrics are related by means of a 

smooth positive valued function ſ
2
 of the x

i
 such that ĝik = ſ

2
gik then the correspondence between Qn 

and Mn is called conformal and the metric spaces are called conformal spaces. Thus ſ
2
 maps Qn into 

Mn, denoted by 

 

 

ſ
2
 : ( ) ( )iknikn gMgQ ˆ,, →                                                    (D1) 

 

 

If gik is the Euclidean metric then Mn is said to be conformally flat. Conformal maps preserve angles, 

such as those between two arbitrary linearly independent vectors Uq and Vq of dimension n in Qn. 

However, conformal maps do not necessarily preserve curvatures; in other words, the Riemannian 

curvature, for instance, at some point Pq in Qn determined with two linearly independent vectors Uq 

and Vq, is generally not the same at the corresponding point Pm in Mn with corresponding vectors 

U’m and V’m. The magnitudes of the said corresponding vectors are proportional to Uq and Vq 

respectively, due to the conformal map or transformation, but the angle between them does not 

change. Furthermore, the components of the Riemann-Christoffel curvature tensor at some point Pq 

in Qn do not generally have the same values as the corresponding components of the Riemann-

Christoffel curvature tensor at the corresponding point Pm in Mn. Dimension n = 1 is trivial and 

dimension n = 2 metric spaces are conformal to any other.  

 

Every particular metric of the metric ground-form (7) for 3-dimensional spherically symmetric 

metric spaces can be conformally represented in Euclidean 3-space. This simply means that 

expression (7) can be replaced by the following equivalent general metric ground-form, 

 

 

( )[ ]2222222 sin)( ϕθθρρρ dddHds ++=                                      (D2) 

 

because 

 

 

( ) ( ) ( )[ ]222222222222 sin)(sin ϕθθρρρϕθθ dddHddkdkkA ++=++                (D3) 

 

means that 

 

( ) ( ) ( ) ( )
k

dk
kA

d
dkkAdHkH ===

ρ

ρ
ρρρρ                      (D4) 

 

 

If A(k) is known, then from the last of these three relations ρ can be determined as a function of k, 

and if k is in turn a function of say r then ρ is determined as a function of r. Then by the first 

relation, H is determined as a function of r. Thus both metrics can be rendered in terms of the very 

same x
i
. Note that the variables in the right side metric of (D3) are, 
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ϕθρ === 321 ˆˆˆ xxx                                         (D5) 

 

 

The variables in the left side metric of (D3) are, 

 

 

ϕθ === 321 xxkx                                          (D6) 

 

Thus,  
3322 ˆˆ xxxx ==                                                       (D7) 

 

Then by the last expression in (D4) 1
x̂  can be determined as a function of x

1
. Thus, both metrics can 

be expressed in terms of the very same variables x
i
. Note that (D1) is also a positive-definite 

quadratic form, as it must, and that (D3) satisfies the necessary and sufficient conformal condition,  

 

 

ĝik = ſ
2
gik                                                                   (D8) 

 

 

The part in the square brackets of (D2) and (D3) is just the metric for Euclidean 3-space in spherical 

coordinates and so (D2) is said to be a conformal representation with Euclidean 3-space of the 

metric on the left side of (D3), and so the left side of (D3) is said to be ‘conformally flat’.  

 

This essentially constitutes the so-called ‘isotropic coordinates’ for the Schwarzschild form.  

 

 

Theorem 4: A Riemann space is flat if and only if its Riemannian curvature is zero at all points. 

 

Recall from Appendix B that the Riemannian curvature is a generalisation to dimensions n > 2 of 

the Gaussian curvature of a surface (n = 2). If the Gaussian curvature of a surface is zero it is a flat 

surface (i.e. it is the plane surface). The Riemannian curvature for Euclidean 3-space is zero 

everywhere, and so, likewise, this space is flat, by Theorem 4.  

 

 

The isotropic Schwarzschild form 

 

The astrophysical scientists render Hilbert’s solution (2) in isotropic coordinates by setting [17, 38, 

83, 84, 95], 
2

22
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Using (D3) Hilbert’s metric (2) in isotropic coordinates is,  
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wherein 222
zyx ++=ρ , owing to which (D10) is sometimes written as [83, 97], 
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222
zyx ++=ρ                                                         (D11) 

 

Note that the spatial section of (D10) has precisely the metric form of (D2), where 
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I have shown elsewhere [79] that the infinite set of equivalent isotropic Schwarzschild forms is 

generated by (using c = 1), 
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                                                         (D12) 

 

 

wherein ρ0 and n are entirely arbitrary constants. Accordingly, the transformation from the 

Schwarzschild form (32) to isotropic coordinates is by means of, 

 

 
2

4
1 








+=

h
hRc

α
                                                         (D13) 

 

 

where h is given by (D12) and Rc by (32), or (A17) when a = 0 and q = 0. 

 

Since (D12) is equivalent to expressions (32) (and (A17) when a = q = 0), the curvature invariants 

for (D12) must correspond to curvature invariants for (32), but are not necessarily the same. To see 

that (D12) produces corresponding curvature invariants first consider the spatial section of (D12), 

given by,  
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This is a positive-definite quadratic form, as it must. The radius Rp for (D14) is given by [79], 
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Now according to (D14), 

 

( ) nh ∀∀= 00
4

ρ
α

ρ                                                     (D16) 

 

 

in which case the radius (D15) is precisely zero, as it must.  

 

 

Gaussian curvature of the surface in the spatial section of the isotropic Schwarzschild form 

 

The surface in the spatial section of (D12) and (D14) is described by, 

 

 

( )222

4

22 sin
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1 ϕθθ
α
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+=                                         (D17) 

 

 

Since metrics of dimension 2 are conformal to any other, and in accordance with Appendix A, the 

Gaussian curvature K̂ of (D17) is given by, 
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4
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+

=

h
h

K
α

                                                        (D18) 

 

 

This is a positive constant for any given admissible value for h and so (D17), by Definition 2 (see 

section VI), is a spherical surface.  

 

By (D16), at h(ρ0) (D18) takes the value, 
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2

1ˆ
α

=K                                                               (D19) 

 

which is the very same invariant given by (A34) for the Schwarzschild form (32). Indeed, by (D13), 
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which holds for all arbitrary ρ0 for all arbitrary r0 for all arbitrary n.  Thus,  

 

 

( ) ( ) 















=⇒⇔
















=⇒

2020

11ˆ
αα

ρ KrRKh c                                (D21) 

                                       (isotropic Schwarzschild form)        (Schwarzschild form) 

 

 

By (D19) or (D21) every metric in the infinite set of equivalent metrics generated by (D12) 

produces the same invariant Gaussian curvature (D19), as they must, and this invariant is precisely 

the same as for the Schwarzschild form (A34), which is in its turn an invariant produced by every 

metric in the infinite set generated by (A17) when a = 0 and q = 0 in the latter. 

 

 

Riemannian curvature of the spatial section of the isotropic Schwarzschild form   

 

Just as the Gaussian curvature of the surface in the spatial section of the isotropic Schwarzschild 

form produces a corresponding curvature invariant to that of the Schwarzschild form, so must the 

Riemannian curvature of the spatial section (see Appendix B). The spatial section of the isotropic 

Schwarzschild form is, 
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The metric tensor is diagonal,  
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The components of the metric tensor are, 
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Since (D23) is diagonal equations (12) can be applied for determination of the Christoffel symbols 

of the second kind. There are 15 Christoffel symbols of the second kind to be considered. 

Calculation determines that there are only 7 non-zero such terms, viz,  
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(D25) 

 

Since n = 3 there are 6 terms of the Riemann-Christoffel curvature tensor to be considered (see 

Appendix B). Calculation determines that there are only 3 non-zero such terms, viz,  
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Since the metric tensor is diagonal the only non-zero Gijkl terms in the denominator for the 

Riemannian curvature are,  
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The Riemannian curvature SK̂  is then given by, 
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In (D28) the ijklŴ are determined by the linearly independent direction vectors i
Û  and i

V̂  which 

correspond to i
U  and i

V  in the Schwarzschild form, due to the conformal mapping of the spatial 

section of the Schwarzschild form. 

 
When ρ = ρ0, h = α/4, for all ρ0 for all n, and the Riemannian curvature becomes, 
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Note that D(29) differs from (B14) due only to the terms in 2323Ŵ [i.e. if not for the 2323Ŵ terms the 

Riemannian curvature would be -1/(2α
2
) as for the spatial section of the Schwarzschild form]. 

Moreover, (D28) depends upon θ and so at θ = 0 and θ = π (D28) reduces to, 
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which is independent of the direction vectors i
Û  and i

V̂ . Hence, (D29b) produces isotropic points. 

Moreover, when ρ = ρ0 in (D29b) the exact value for the spatial section of the Schwarzschild form 

[expression (B14)] results.  

 

When θ = π/2, the Riemannian curvature is, 
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In this case, when ρ = ρ0, the Riemannian curvature becomes, 
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Thus,  
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(D30) 

This attests yet again that the isotropic Schwarzschild form cannot be extended. 

 

 

Riemannian curvature of the isotropic Schwarzschild form 

 

From (D12) the metric tensor for the isotropic Schwarzschild form is diagonal, 
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The components of the metric tensor are, 
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Consequently equations (12) for determination of the Christoffel symbols of the second kind can be 

applied. There are 28 Christoffel symbols of the second kind to consider. Calculation determines 

that there are only 9 non-zero such terms, viz,  
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There are 20 Riemann-Christoffel curvature tensor terms to consider. Calculation determines that 

there are only 6 non-zero such terms, viz,  
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Since the metric tensor is diagonal the only non-zero Gijkl  terms in the denominator for the 

Riemannian curvature are,  
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The Riemannian curvature is therefore, 
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In (D36) the ijklŴ are determined by the linearly independent vectors i
Û  and i

V̂  which correspond 

to i
U  and i

V  in the Schwarzschild form due to the conformal mapping of the spatial section of the 

Schwarzschild form. 

 

When ρ = ρ0, h = α/4, for all ρ0 and for all n, and the Riemannian curvature becomes, 
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Note that D(37) differs from (B27)  due only to the terms in 2323Ŵ (i.e. if not for the 2323Ŵ terms the 

Riemannian curvature would be 1/(2α
2
) as for the Schwarzschild form). Moreover, (D37) depends 

upon θ and so at θ = 0 and θ = π (D37) reduces to the exact value for the Schwarzschild form 

[expression (B27)]. Note also that (D37) is the negative of (D27) just as (B27) is the negative of 

(B15).  

 

When θ = π/2 the Riemannian curvature is, 
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Thus, the correspondence between the isotropic Schwarzschild form and the Schwarzschild form is, 
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The acceleration invariant for the isotropic Schwarzschild form 

 

Applying Doughty’s [81] expression (C1) for the acceleration β of a point along a radial geodesic in 

(D12) gives, 
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It follows from (D36) and (D39) that, 
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Thus, (D40) is an invariant for the isotropic Schwarzschild form just as for the Schwarzschild form 

[see (C5)].   

 

 

The isotropic Reissner-Nordström form 

 

The Reissner-Nordström solution is, 
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The astrophysical scientists render the Reissner-Nordström solution in isotropic coordinates by 

setting, 
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Using (D42) the Reissner-Nordström metric in isotropic coordinates is,  

 

( )[ ]22222

2

2

2

2

2

2

2

2

2

2

2

2
2

2

22

sin
22

1
22

1

22
1

22
1

42
1

ϕθθρρ
ρρρρ

ρρρρ

ρρ

ddd
q

c

Gmq

c

Gm

dt
q

c

Gmq

c

Gm

q

c

Gm

cds

++







−+








++−

−









−+








++












+








−

=

           

(D43) 



www.sjcrothers.plasmaresources.com/index.html  79 

wherein 222
zyx ++=ρ , owing to which (D43) is sometimes written as, 
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Note that the spatial section of (D43) has precisely the metric form of (D2), where 
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I now adduce the generator of the infinite set of equivalent isotropic Reissner-Nordström forms 

(using c = 1), 
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wherein ρ0 and n are entirely arbitrary constants. Accordingly, the transformation from the 

Reissner-Nordström form (B25) to isotropic coordinates is by means of, 
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where h is the function of ρ given by (D45) and Rc by (A17) when a = 0 in the latter. 

 

The radius Rp for (D41) is, 
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Note that (D47) is zero at ρ = ρ0, n∀∀ 0ρ , as it must. 

 

 

The acceleration invariant for the isotropic Reissner-Nordström form 

 

Applying Doughty’s [81] expression (C1) for the acceleration β of a point along a radial geodesic in 

(D45) gives, 
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It follows from (D45) and (D48) that, 
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Thus, (D49) is an invariant for the isotropic Reissner-Nordström form, in similar fashion as for the 

Schwarzschild form (C5), the Reissner-Nordström form, and the isotropic Schwarzschild form 

(D39). Note that if q = 0 then expression (D49) reduces to that for the acceleration of a point along 

a radial geodesic in the isotropic Schwarzschild form [see (D39)].  

 

Gaussian curvature of the surface in the spatial section of the isotropic Reissner-Nordström 

form 

 

The surface in the spatial section of (D45) is described by, 
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Since metrics of dimension 2 are conformal to any other, and in accordance with Appendix A, the 

Gaussian curvature K̂  of (D50) is given by, 
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This is a positive constant for any given admissible value for h and so (D50), by Definition 2 (see 

section VI), is a spherical surface.  

 

By (D45), at h(ρ0) (D51) takes the value, 
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(D52) corresponds to (A33) for the Reissner-Nordström form. Indeed, by (D45) and (D46), 
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which is just (B17), and holds for all arbitrary ρ0 for all arbitrary r0 for all arbitrary n. Thus, 
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                  (isotropic Reissner-Nordstrom förm)                                   (Reissner-Nordström form) 

 

 

By (D52) or (D54) every metric in the infinite set of equivalent metrics generated by (D45) 

produces the same invariant Gaussian curvature (D52), as they must, and this invariant corresponds 

to that for the Reissner-Nordstrom form (A33), which is in its turn an invariant produced by every 

metric in the infinite set generated by (A17) when a = 0 in the latter. 

 

 

Riemannian curvature of the spatial section of the isotropic Reissner-Nordström form 

 

Since (D45) is equivalent to expressions (A17) when a = 0, the curvature invariants for (D45) must 

correspond to curvature invariants for (A17) when a = 0, but are not necessarily the same. To see 
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that (D45) produces corresponding curvature invariants first consider the spatial section of (D45), 

given by,   
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This is a positive-definite quadratic form, as it must for spherical symmetry. The metric tensor is 

diagonal, 
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(D56) 

 

The components of the metric tensor are, 

 

 
22

2

22

22

11
24

1
24

1ˆ
24

1
24

1ˆ 







−+








++=








−+








++=

h

q

hh

q

h
hg

h

q

hh

q

h
g

αααα
 

 

θ
αα 2

22

2

33 sin
24

1
24

1ˆ 







−+








++=

h

q

hh

q

h
hg  

(D57) 

 

Make the following assignments, 

ϕθ === 321 xxhx                                           (D58) 

 

 

Since (D56) is diagonal, the Christoffel symbols of the second kind can be calculated using the 

relations (B6). There are 15 Christoffel symbols of the second kind to consider. Calculation 

determines that there are only 7 non-zero such terms, viz, 
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There are 6 components of the Riemann-Christoffel curvature tensor to consider. Calculation 

determines that there are only 3 non-zero such terms, viz,  
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Since the metric is diagonal the only non-zero Gijkl are, 
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The Riemannian curvature K̂ is given by, 

 

( )
( ) 23232323

2

131312121212

23232323

2

131312121212

ˆˆsinˆˆˆ

ˆˆsinˆˆˆ
ˆ

WGWWG

WRWWR
K S

++

++
=

θ

θ
 

 

 

lk

lk

ji

ji

ijkl
VV

UU

VV

UU
W

ˆˆ

ˆˆ

ˆˆ

ˆˆ
ˆ =  



www.sjcrothers.plasmaresources.com/index.html  84 

[ ] nnn
h

1

0 ξρρ +−=  

 

22

22

4
4

4
α

α
ξ <

−
= q

q
 

 

∈ρ R  ∈n R
+
                                                         (D62) 

 

 

wherein the ikjlR̂  and the ijklĜ  are given by expressions (D60) and (D61) respectively. In (D62) the 

ijklŴ are determined by the linearly independent vectors 
i

Û  and 
i

V̂  which correspond to 
i

U  and 
i

V  

in the spatial section of the Reissner-Nordström form, due to the conformal mapping thereof. If q = 

0, (D62), by means of (D60) and (D61), reduces to (D28) for the spatial section of the isotropic 

Schwarzschild form.  

When ρ = ρ0, 44
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qh −== αξ  for (D62), for all ρ0 and for all n, and the Riemannian curvature 

becomes, 
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If q = 0 then (D63) reduces to expression (D29) for the spatial section of the isotropic 

Schwarzschild form.  

 

 (D62) depends upon θ and so at θ = 0 and θ = π (D62) reduces to, 
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(D64) is independent of the direction vectors 
i

Û and 
i

V̂ and so θ = 0 and θ = π produce isotropic 

points. When ρ = ρ0 (D64) reduces to,  
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which is precisely expression (B14) for the spatial section of the Schwarzschild form, and for the 

spatial section of the isotropic Schwarzschild form when θ = 0 and θ = π. Thus the spatial sections 

of the isotropic Schwarzschild form and the Reissner-Nordström form have the very same isotropic 

Riemannian curvature when ρ = ρ0 and θ = 0 or θ = π, irrespective of the values of ρo and n, and this 

value is that for the spatial section of the Schwarzschild form when ρ = ρ0, which is independent of 

θ in the latter form.  

 

Thus, the correspondence between the spatial section of the Reissner-Nordström form and the 

spatial section of the isotropic Reissner-Nordström form is,  
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(D66) 

 

Riemannian curvature of the isotropic Reissner-Nordström form 

 

The isotropic Reissner-Nordström form is given by (D45). To facilitate the calculations rewrite 

(D45) in the following simplified form: 
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The metric tensor is diagonal, 
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(D68) 

The components of the metric tensor are, 
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(D69) 

 

Make the following assignments, 

 

 

ϕθ ==== 3210 xxhxtx                                  (D70) 

 

 

There are 28 Riemann-Christoffel symbols of the second kind to consider. Calculation determines 

that there are only 9 non-zero such terms, 
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(D71) 

 

 

There are 20 components of the Riemann-Christoffel curvature tensor to consider. Calculation 

determines that there are only 6 non-zero such terms, 
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Since the metric is diagonal the only non-zero Gijkl are, 
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The Riemannian curvature K̂ is given by, 
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wherein the ikjlR̂  and the ijklĜ  are given by expressions (D72) and (D73) respectively. In (D74) the 

ijklŴ are determined by the linearly independent vectors 
i

Û  and 
i

V̂  which correspond to 
i

U  and 
i

V  

in the Reissner-Nordström form, due to the conformal mapping of the spatial section thereof. If q = 

0, (D74), by means of (D72) and (D73), reduces to (D36) for the isotropic Schwarzschild form.  

 



www.sjcrothers.plasmaresources.com/index.html  89 

When ρ = ρ0, 44
22

qh −== αξ  for (D74), for all ρ0 and for all n, and the Riemannian curvature 

becomes, 
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(D74) depends upon θ and so at θ = 0 and θ = π (D74) reduces to, 
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wherein the ikjlR̂  and the ijklĜ  are still given by expressions (D72) and (D73) respectively. If q = 0 

then (D77) reduces to that for the isotropic Schwarzschild form (D37), and hence to (B27). 

 

At θ = π/2 the Riemannian curvature is, 
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wherein the remainder of the ikjlR̂  and the ijklĜ  are still given by expressions (D72) and (D73) 

respectively. Once again, if q = 0 then (D74) reduces to that for the isotropic Schwarzschild form 

(D). 

 

Thus, the correspondence between the Reissner-Nordström form and the isotropic Reissner-

Nordström form is,  
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(isotropic Reissner-Nordstöm form) 
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wherein, 
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Black holes are also inconsistent with the isotropic forms 

 

Curiously, the proponents of black holes do not use Hilbert’s solution in isotropic form to describe 

their associated black holes. The reason is simple; in (D4), they, amongst others, incorrectly call the 

quantity ρ the “radial coordinate” [17, 21, 96], the “radius variable” [84], “the radius” [97], and 

the “distance r1 from the origin” [83], and thereby, for (D4) to be observe Hilbert’s 0 ≤ r, it requires 

according to (D3) that, 
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However, by (D8) through to (D12), ρ is neither the radius nor a distance in (D4), just as r is neither 

the radius nor a distance in Hilbert’s solution.  Treating ρ as the radius or a distance in (D4) leads to 

inconsistencies with the notions of black holes obtained from Hilbert’s solution. To amplify this 

rewrite (D4) thus, 
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When ρ = Gm/2c
2
 the coefficient of dt

2
 vanishes, but the metric is not singular. When ρ = 0 the 

coefficient of dt
2
 is 1 and the coefficient of the spatial section is singular, but there is no 

corresponding value for r in (D3) and hence no corresponding value in Hilbert’s solution. When ρ = 

-Gm/2c
2
 the coefficient of dt

2
 is singular, the coefficient of the spatial section vanishes, and the 
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value of r in (D3) is 0. This again reveals the veracity of (D6) which alone is consistent. In other 

words, (D6) cannot be extended, which is natural since the Schwarzschild forms (32) cannot be 

extended.  

 

Similarly black holes are not consistent with the isotropic Reissner-Nordström form, of course. 

 

 

  

 

APPENDIX E – THE KRETSCHMANN SCALAR 

 

The Kretschmann scalar is also known as the Riemann tensor scalar curvature invariant. The 

Kretschmann scalar for the Kerr-Newman form is [98], 
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wherein [71-79],  
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By means of (E2), at r = r0 (E1) has the value, 
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wherein ξ is given by (E2). Thus, the Kretschmann scalar is again finite when r = r0, irrespective of 

the values of r0 and n. Note that (E1) and hence (E3) depend upon θ. When θ = 0 and when θ = π, 
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(E4) 

 

wherein the corresponding value of ξ is given by (E2). When θ = π/2 (E3) reduces to, 
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(E5) 

 

wherein the corresponding value of ξ is again given by (E2). Note that (E5) does not contain the 

‘angular momentum’ term a and that (E5) is precisely that for the Reissner-Nordström form (see 

Section VII). 

 

Expression (E3) reduces to the Kerr form when q = 0, thus, 
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wherein the corresponding value of ξ is again given by (E2). This too depends upon the value of θ. 

When θ = 0 and when θ = π, (E6) becomes, 
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When θ = π/2 (E6) reduces to (using (E2) for the value of ξ), 
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which is precisely the scalar invariant for the Schwarzschild form. Similarly, when both q = 0 and a 

= 0 (E1) reduces to the scalar invariant for the Schwarzschild form. 

 

The Kretschmann scalar is finite in every case and so there are in fact no curvature singularities 

anywhere, contrary to the claims routinely made by proponents of black holes.  

 

 

The Kretschmann scalar for the isotropic Schwarzschild and Reissner-Nordstrom forms 

 

Since a conformal transformation does not preserve the values of the components of the Riemann 

curvature tensor the isotropic form need not necessarily produce the very same Kretschmann scalar 

as for the standard forms, but must produce a corresponding value that is invariant, independent of 

the values of ρ0 and n, as is also the case for the Riemannian curvature (see Appendices B and D). 

 

Consider a metric of the following general form, 
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In terms of the components of the metric tensor of (E9) and their derivatives, the only non-zero Rijkl 

are calculated to be, 
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The corresponding non-zero R
ijkl

 are calculated to be, 

 

( ) ( ) ( ) θ42

2200

03030303

2

2200

02020202

2

1100

01010101

singg

R
R

gg

R
R

gg

R
R ===  

 

( ) ( ) ( ) θθ 44

22

23232323

42

2211

13131313

2

2211

12121212

sinsin g

R
R

gg

R
R

gg

R
R ===  

(E12) 

 

 

Then, taking into account the symmetries of the suffixes of the Riemann-Christoffel curvature 

tensor, the Kretschmann scalar f = RijklR
ijkl

 is given by, 
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Putting (E11) and (E12) into (E13) yields, 
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The isotropic Schwarzschild form has the form of (E9), and in particular the form, 
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Then by (D32) and (E15), 
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and (E14) takes the following form [80] where the derivates are with respect to h, 
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The Kretschmann scalar is thereby calculated from (E18) at, 
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At ρ = ρ0, h = α/4 for all ρ0 and for all n. Thus the Kretschmann scalar is then, 
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which is the very same finite value as that for the Schwarzschild form.  

 

The isotropic Reissner-Nordstrom form also has the form of (E15). Its Kretschmann scalar is 

thereby calculated from (E18) at, 
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 At ρ = ρ0, 44 22
qh −== αξ  for all ρ0 and for all n. Thus the Kretschmann scalar is then, 
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which is finite. If q = 0 then (E22) reduces to (E20) for the isotropic Schwarzschild form. 

 

 

APPENDIX F – GEODESIC COMPLETENESS 

 

A geodesic is a line in some space. In Euclidean space the geodesics are simply straight lines. This 

is because the Riemannian curvature of Euclidean space is zero. If the Riemannian curvature is not 

zero throughout the entire space, the space is not Euclidean and the geodesics are curved lines 

rather than straight lines. If a geodesic terminates at some point in the space it is said to be 

incomplete, and the manifold or space in which it abodes is also said to be geodesically incomplete. 

If no geodesic in some manifold is incomplete then the manifold is said to be geodesically complete. 

More specifically, according to O’Neill [35], 

 

“A semi-Riemannian manifold M for which every maximal geodesic is defined on the entire real line 

is said to be geodesically complete – or merely complete. Note that if even a single point p is 

removed from a complete manifold M then M – p is no longer complete, since geodesics that 

formerly went through p are now obliged to stop.” 

 

Consider now Hilbert’s solution (2) (see section V). In 1931, Hagihara [99] proved that all 

geodesics therein that do not run into the boundary at r = 2Gm/c
2
 are complete. Owing to (A17) this 

is also the case at r = r0 for all the solutions generated thereby. Owing to (D12) and (D45) this is 

also the case at ρ = ρ0 for the isotropic forms. The geodesics terminate at the origin; the point from 

which the radius emanates; Rp = 0. In other words, Hagihara effectively proved that all geodesics 
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that do not run into the origin Rp = 0 are complete. This once again attests that none of these spaces 

can be ‘extended’ to produce a black hole (also see [44]).  
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