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Abstract   

As of today, the mechanism underlying the generation of mass scales in field theory remains elusive. Here we show 

how the concept of fractal space-time having minimal deviations from four-dimensionality (the so-called minimal 

fractal manifold defined through ɛ = 4 - D, with ɛ << 1) can naturally account for the onset of these scales. A 

counterintuitive outcome of this analysis is the deep link between the minimal fractal manifold and the holographic 

principle. 
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1. Introduction and motivation 

One of the many unsettled questions raised by field theory revolves around the vast hierarchy of 

scales in Nature [2-3, 32]. A large numerical disparity exists between the Planck scale ( PlM ), the 

electroweak scale (
EWM ), the hadronization scale of quantum chromodynamics (

QCD ) and the 

cosmological constant scale (
1

4
cc , with cc  expressed as energy density in 3+1 dimensions).  

The goal of this work is to suggest that the answer to this question may lie in the fractal 

geometry of space-time near or above EWM .  

It has been long known that perturbative quantum field theory (QFT) cannot provide a complete 

description of Nature since its formalism entails divergences at both ends of the energy spectrum 
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[1-3]. For instance, many textbooks emphasize that the singular behavior of momentum integrals 

in the ultraviolet (UV) sector arises from the poorly understood space-time structure at short 

distances [2-3]. Lattice field models handle infinities through discretization of the space-time 

continuum on a grid of spacing " " . This procedure naturally bounds the maximal momentum 

allowed to propagate through the lattice, namely, 

 p  ≤ 
maxp ~ 1(2 )    (1) 

The downside of lattice models is that they generally fail to be either gauge or Poincaré invariant 

[1-4]. Restoring formal consistency is further enabled via the Renormalization Group program 

(RG) [2-3, 15].  RG regulates the n-th order momentum integrals of the generic form 

 2( ) ( )n

nI p dp f p   (2) 

by either inserting an arbitrary momentum cutoff 0  <  ~
1  <   or by continuously 

“deforming” the four-dimensional space-time via the dimensional parameter 4 ,D    << 1. 

The resulting theory is free from divergences and operates with a finite number of redefined 

physical parameters. Restoring the continuum space-time limit is done at the end by taking the 

limit   or 0  .  

Regularization techniques employed in RG are not independent from each other. The connection 

between dimensional and UV cutoff regularizations ( UV  ) is given by [13, 15, 18]     
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Here, 
E  stands for the Euler constant and   for the observation (or “sliding”) scale. It is more 

convenient to present (3) is a slightly different form, that is, 

   ~ 
2

2

1

log ( )UV




 (4) 

If the numerical disparity between   and 
UV  is large enough, one can reasonably approximate 

  as in 

   ~  2( )
UV




 (5a) 

Following [18, 31, 37], the far infrared (IR) scale of field theory set by the cosmological constant 

(
1

4
cc ), the electroweak scale ( )EWM  and the far UV scale fixed by the Planck mass ( )PlM  

satisfy the constraint 
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Pl

M
O

M
                                                        (5b)                  

It is apparent from (4) or (5a) that the four-dimensional space-time continuum is recovered in 

either one of these limits: 

a) UV   and 0 <  << UV , 

b) UV   and 0    

However, both limits are disfavored by our current understanding of the far UV and the far IR 

boundaries of field theory (see e.g. [3]). Theory and experimental data alike tell us that the 
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notions of infinite or zero energy are, strictly speaking, meaningless. This is to say that either 

infinite energies (point-like objects) or zero energy (infinite distance scales) are unphysical 

idealizations. Indeed, there is always a finite cutoff at both ends of either energy or energy 

density scale (far UV = Planck scale, far IR = finite radius of the observable Universe or the non-

vanishing energy density of the vacuum set by cosmological constant). These observations are 

also consistent with the estimated infinitesimal (yet non-vanishing) photon mass, as highlighted 

in [23-24].  

Reinforcing this viewpoint, some authors argue that the idea of smooth space-time stands in 

manifest conflict with the basic premises of quantum theory [11]. To confine an event within a 

region of extension   requires a momentum transfer on the order of 
1  which, in turn, 

generates a local gravitational field. If the density of momentum transfer is comparable in 

magnitude with the right hand side of Einstein’s equation, the local curvature of space-time (~

2

0R 
) induced by this transfer is given by (in natural units, 1c  )    

 
2

0R 
~ 

4

NG   (6) 

However, collapse of the event within a short region of extent 
0( )O R   amounts to trapping 

outgoing light signals and preventing direct observation. 

All these considerations invariably point to the following challenge: on the one hand, a 

continuum model of space-time near or below EWM  serves as an effective paradigm that is likely 

to fail at large probing energies. Yet on the other, any discrete model of space-time typically 

violates Poincaré or gauge symmetries. It seems only natural, in this context, to take a fresh look 

at (4) and (5a) and appreciate the message it conveys: if either UV  stays finite or   << 1 is 
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arbitrarily small but non-vanishing, space-time dimensionality becomes a non-integer arbitrarily 

close to four. Stated differently, in the neighborhood of 
EWM , conventional space-time turns into 

a minimal fractal manifold (MFM) [13, 15-18]. 

On closer examination, this finding is hinted by a number of alternative theoretical arguments: 

a) It is well known that the principle of general covariance lies at the core of classical relativistic 

field theory. An implicit assumption of general covariance is that any coordinate transformation 

and its inverse are smooth functions that can be differentiated arbitrarily many times. However, 

as it is also known, there is a plethora of non-differentiable curves and surfaces in Nature, as 

repeatedly discovered since the introduction of fractal geometry in 1983 [29, 31]. The 

unavoidable conclusion is that relativistic field theory assigns a preferential status to 

differentiable transformations and the smooth geometry of space-time, which is at odds with the 

very spirit of general covariance. 

b) On the mathematical front, significant effort was recently invested in the development of q-

deformed Lie algebras, non-commutative field theory, quantum groups, fractional field theory 

and its relationship to the MFM [1, 5-6, 12, 27-28].  It is instructive to note that all these 

contributions appear to be directly or indirectly related to fractal geometry [13, 31]. Moreover, 

the condition   << 1, defined within the framework of MFM, is the sole sensible setting where 

fractal geometry asymptotically approaches all consistency requirements mandated by QFT and 

the Standard Model [16, 30]. 

c) Demanding that phenomena associated with gravitational collapse follow the postulates of 

quantum theory implies that the world is no longer four-dimensional near PlM . This statement 
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has lately received considerable attention and forms the basis for dimensional reduction and for 

the holographic principle of Quantum Gravity theories [10, 25-28, 32-35]. If we accept that the 

four-dimensional continuum is an emergent property of the electroweak scale and below (  <

EWM ), the holographic principle implies that space-time dimensionality evolves with the energy 

scale between 
EWM , where   << 1, and 

PlM , where space is expected to become two-

dimensional ( (1)O  ) [27-28, 34-35].    

Our paper is organized as follows: next section introduces the concept of holographic bound and 

derives the relationship involving the IR and UV cutoffs of field theory. Building on these 

premises, section 3 presents a comparison between mass scales estimated using our approach and 

their currently known values.  

2. The holographic bound 

Consider an effective QFT confined to a space-time region with characteristic length scale L  and 

assume that the theory makes valid predictions up to an UV cutoff scale UV  >> 
1L
. It can be 

shown that the entropy associated with this effective QFT takes the form [10] 

 S ~ 
3 3

UV L  (7) 

To understand the significance of (7), consider an ensemble of fermions living on a periodic 

space lattice with characteristic size L  and period 
1

UV

 . One finds that (7) simply follows from 

counting the number of occupied states for this system, which turns out to be 
3( )

2 UVL
N


 [10]. 

The holographic principle stipulates that (7) must not exceed the corresponding black hole 

entropy BHS , that is, 
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   (8) 

in which 
BHA  is the area of the spherical event horizon of radius R .  Introducing a new reference 

length scale   defined as 

 
3

2

L
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  (9) 

leads to the condition 

  ≤ 
3 2

UV PlM   (10) 

On the other hand, since the maximum energy density in a QFT bounded by the UV cutoff is 

4

UV , the holography bound (8) leads to [7-8] 
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Since the IR cutoff is fixed by 
1

IR

   , (11) yields the scaling behavior  

 IR

UV




 ~ UV

PlM


 (12) 

Although conventional wisdom suggests that the Standard Model retains its validity all the way 

up in the far UV sector of particle physics, there are indications that it may break at a scale that is 

at least an order of magnitude lower than PlM , that is, 'UV  < PlM  [see e.g. 14].  Relation (12) 

may be conveniently reformulated at 'UV  > UV  as in 
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such that 
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or 

 
'IR

UV




 ~ 

'

UV
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in which 'IR  > 
IR  is a new IR scale given by 

 '
'

Pl IR
IR

UV

M 
 


  (16) 

A glance at (5b), (12) and (15) reveals deep similarities between the holographic principle and 

the minimal fractal manifold (MFM). They all represent scaling relations that mix and constrain 

largely separated mass scales. We next use (12) and (15) to derive numerical estimates and 

compare them with experimental data. 

3. Numerical estimates  

Tab. 1 displays currently known values for the representative scales of QFT and classical field 

theory. The electroweak scale ( )EWM is set by the vacuum expectation value of the Higgs boson, 

the far UV scale is set by either Planck mass ( PlM ) or the unification scale ( GUTM ). The near 



9 
 

UV cutoff is assumed to be close to the so-called Cohen-Kaplan threshold (
CK ~ 210 TeV), 

according to [7-8, 19-21].       

Scale Name Magnitude  

1
4

IR cc    
Cosmological 

constant scale 
≤ ~ 10

-3 
eV 

'IR QCD   QCD scale ~ 200 MeV 

UV EWM   EW scale ~ 246 GeV 

'UV CK   UV cutoff ~ 210 TeV 

GUTM  GUT scale ~ 10
16

 GeV 

PlM   Planck scale ~ 10
19

 GeV 

                                    

Tab. 1: The spectrum of mass scales in field theory 

Tab. 2 shows numerical results. We find that: 

a) the cosmological constant scale is consistent with its experimentally determined value and 

with the scale of neutrino masses [36].  

b) the near IR scale is consistent with the QCD scale ( )QCD . This conclusion may shed light 

into the long-standing problem of the QCD mass gap as well as on the non-perturbative 

properties of strongly coupled gauge theory [9, 22, 38]. 

Mass scale Estimated Units Comments 
1

4
IR cc    ~ 

61.6 10   eV from PlM   

1
4

IR cc    ~ 
31.9 10   eV from GUTM   

'IR QCD   ~ 193   MeV from CK   

 

Tab 2: Estimated values of the cosmological constant and QCD scales (assuming the 

electroweak scale at EWM  ≈ 246 GeV and the Cohen-Kaplan cutoff at CK  ≈ 10
2
 TeV) 
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The hierarchy of mass scales derived above can be conveniently summarized in the following 

diagram:   

1
4

cc (far IR Cutoff) << 
QCD (near IR cutoff) < 

EWM < 
CK (near UV cutoff) << 

PlM (far UV cutoff) 
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