When $\pi(n)$ does not divide n

Germán Andrés Paz*

January 26, 2015

Abstract

Let $\pi(n)$ denote the prime-counting function and let

$$f(n) = \left| \left\lfloor \log n - \lfloor \log n \rfloor - 0.1 \right\rfloor \right| \frac{\lfloor n/\lfloor \log n - 1 \rfloor \rfloor \lfloor \log n - 1 \rfloor}{n}.$$

In this paper we prove that if n is an integer ≥ 60184 and $f(n) = 0$, then $\pi(n)$ does not divide n. We also show that if $n \geq 60184$ and $\pi(n)$ divides n, then $f(n) = 1$. In addition, we prove that if $n \geq 60184$ and $n/\pi(n)$ is an integer, then n is a multiple of $\lfloor \log n - 1 \rfloor$ located in the interval $[e^{\lfloor \log n - 1 \rfloor + 1}, e^{\lfloor \log n - 1 \rfloor + 1.1}]$. This allows us to show that if c is any fixed integer ≥ 12, then in the interval $[e^c, e^{c+0.1}]$ there is always an integer n such that $\pi(n)$ divides n.

Let S denote the sequence of integers generated by the function

$$d(n) = n/\pi(n)$$

where $n \in \mathbb{Z}$ and $n > 1$ and let S_k denote the kth term of sequence S. Here we ask the question whether there are infinitely many positive integers k such that $S_k = S_{k+1}$.

Keywords: bounds on the prime-counting function, explicit formulas for the prime-counting function, intervals, prime numbers, sequences

2010 Mathematics Subject Classification: 00-XX · 00A05 · 11-XX · 11A41 · 11Bxx

*(2000) Rosario, Santa Fe, Argentina; E-mail: germanpaz_ar@hotmail.com
0 Notation

Throughout this paper the number n is always a positive integer. Moreover, we use the following notation:

- $|\cdot|$ (absolute value)
- $\lceil \cdot \rceil$ (ceiling function)
- $|$ (divides)
- \nmid (does not divide)
- $\lfloor \cdot \rfloor$ (floor function)
- $\text{frac}(\cdot)$ (fractional part)
- \log (natural logarithm)

1 Introduction

Determining how prime numbers are distributed among natural numbers is one of the most difficult mathematical problems. This explains why the prime-counting function $\pi(n)$ (which counts the number of primes less than or equal to a given number n) has been one of the main objects of study in Mathematics for centuries.

In [2] Gaitanas obtains an explicit formula for $\pi(n)$ that holds infinitely often. His proof is based on the fact that the function $d(n) = n/\pi(n)$ takes on every integer value greater than 1 (as proved by Golomb [3]) and on the fact that $x/(\log x - 0.5) < \pi(x) < x/(\log x - 1.5)$ for $x \geq 67$ (as shown by Rosser and Schoenfeld [4]). In this paper we find alternative expressions that are valid for infinitely many positive integers n, and we also prove, among other results, that if $n \geq 60184$ and

$$\left|\left[\log n - \left[\log n\right] - 0.1\right]\right| \left[\frac{n/\left[\log n - 1\right]}{\left[\log n - 1\right]}\right]$$

equals 0, then $\pi(n)$ does not divide n.

We will place emphasis on the following three theorems, which were proved by Golomb, Dusart, and Gaitanas respectively:
Theorem 1.1 [3]. The function $d(n) = n/\pi(n)$ takes on every integer value greater than 1.

Theorem 1.2 [1]. If n is an integer ≥ 60184, then

$$\frac{n}{\log n - 1} < \pi(n) < \frac{n}{\log n - 1.1}.$$

Remark 1.3. Dusart’s paper states that for $x \geq 60184$ we have $x/(\log x - 1) \leq \pi(x) \leq x/(\log x - 1.1)$, but since $\log n$ is always irrational when n is an integer > 1, we can state his theorem the way we did.

Theorem 1.4 [2]. The formula

$$\pi(n) = \left\lfloor \frac{n}{\log n - 0.5} \right\rfloor$$

is valid for infinitely many positive integers n.

2 Main results

We are now ready to prove our main results:

Theorem 2.1. The formula

$$\pi(n) = \left\lfloor \frac{n}{\log n - 1} \right\rfloor$$

holds for infinitely many positive integers n.

Proof. According to Theorem 1.2, for $n \geq 60184$ we have

$$\frac{n}{\log n - 1} < \pi(n) < \frac{n}{\log n - 1.1} \Rightarrow \frac{\log n - 1.1}{n} < \frac{1}{\pi(n)} < \frac{\log n - 1}{n}.$$

If we multiply by n, we get

$$\log n - 1.1 < \frac{n}{\pi(n)} < \log n - 1. \tag{1}$$

Since $\log n - 1.1$ and $\log n - 1$ are both irrational (for $n > 1$), inequality (1) implies that when $n/\pi(n)$ is an integer we must have

$$\frac{n}{\pi(n)} = \lfloor \log n - 1 \rfloor = \lfloor \log n - 1.1 \rfloor + 1 = \lfloor \log n - 1.1 \rfloor = \lfloor \log n - 1 \rfloor - 1. \tag{2}$$
Taking Theorem 1.2 and equality (2) into account, we can say that for every
\(n \geq 60184 \) when \(\frac{n}{\pi(n)} \) is an integer we must have

\[
\frac{n}{\pi(n)} = [\log n - 1] \Rightarrow \pi(n) = \frac{n}{[\log n - 1]}
\]

Since Theorem 1.1 implies that \(\frac{n}{\pi(n)} \) is an integer infinitely often, it follows that there are infinitely many positive integers \(n \) such that \(\pi(n) = n/[\log n - 1] \). ■

In fact, the following theorem follows from Theorems 1.1, from Gaitana’s proof of Theorem 1.4, and from the proof of Theorem 2.1:

Theorem 2.2. For every \(n \geq 60184 \) when \(\frac{n}{\pi(n)} \) is an integer we must have

\[
\frac{n}{\pi(n)} = [\log n - 1.5] = [\log n - 0.5] = [\log n - 1] = [\log n - 1.1] + 1 = [\log n - 1] - 1.
\]

In other words, for \(n \geq 60184 \) when \(\frac{n}{\pi(n)} \) is an integer we have

\[
\frac{n}{\pi(n)} = [\log n - 1.5] = [\log n - 0.5] = [\log n - 1] = [\log n - 1.1] + 1 = [\log n - 1] - 1.
\]

Theorem 2.3. Let \(n \) be an integer \(\geq 60184 \). If \(\text{frac}(\log n) = \log n - [\log n] > 0.1 \), then \(\pi(n) \nmid n \) (that is to say, \(n/\pi(n) \) is not an integer). ■

Proof. According to Theorem 2.2, if \(n \geq 60184 \) and \(\frac{n}{\pi(n)} \) is an integer, then

\[
\frac{n}{\pi(n)} = [\log n - 1] = [\log n - 1.1].
\]

In other words, for \(n \geq 60184 \) when \(\frac{n}{\pi(n)} \) is an integer we have

\[
[\log n - 1] = [\log n - 1.1] \\
[\log n - 1] = [\log n - 1 - 0.1] \\
\text{frac}(\log n - 1) \leq 0.1 \\
\log n - 1 - [\log n - 1] \leq 0.1
\]
Suppose that P is the statement ‘$n/\pi(n)$ is an integer’ and Q is the statement ‘$\log n - \lfloor \log n \rfloor \leq 0.1$’. According to propositional logic, the fact that $P \rightarrow Q$ implies that $\neg Q \rightarrow \neg P$. \blacksquare

Similar theorems can be proved by using Theorem 2.2 and equality (3).

Remark 2.4. We can also say that if $n \geq 60184$ and $\pi(n)$ divides n, then $\pi(n) \nmid n$.

Remark 2.5. Because $\log n$ is irrational for $n > 1$, another way of stating Theorem 2.3 is by saying that if $n \geq 60184$ and the first digit to the right of the decimal point of $\log n$ is 1, 2, 3, 4, 5, 6, 7, 8, or 9, then $\pi(n) \nmid n$.

Example:

$\log_{10} 31 = 7.138...$

The first digit after the decimal point of $\log_{10} 31$ (in red) is 3. This implies that $\pi(10^{31})$ does not divide 1031. We can also say that if $n \geq 60184$ and $\pi(n)$ divides n, then the first digit after the decimal point of $\log n$ can only be 0.

Now, if y is a positive noninteger, then the first digit after the decimal point of y is equal to $\lfloor 10 \frac{y}{10} - 10 \lfloor y \rfloor \rfloor$. So, we can say that if $n \geq 60184$ and $\lfloor 10 \log n - 10 \lfloor \log n \rfloor \rfloor \neq 0$, then $\pi(n) \nmid n$. On the other hand, if $n \geq 60184$ and $\pi(n)$ divides n, then $\lfloor 10 \log n - 10 \lfloor \log n \rfloor \rfloor = 0$. \blacksquare

The following theorem follows from Theorem 2.3:

Theorem 2.6. Let e be the base of the natural logarithm. If a is any integer ≥ 11 and n is any integer contained in the interval $[e^{a+0.1}, e^{a+1}]$, then $\pi(n) \nmid n$. (The number e^r is irrational when r is a rational number $\neq 0$.) \blacksquare

Example 2.7. Take $a = 18$. If n is any integer in the interval $[e^{18.1}, e^{19}]$, then $\pi(n) \nmid n$. \blacksquare

Corollary 2.8. If a is any positive integer > 1, then $\pi([e^a]) \nmid [e^a]$. \blacksquare

Proof. For $a \geq 12$ the proof follows from Theorem 2.6. On the other hand, $[e^a]/\pi([e^a])$ is not an integer whenever $2 \leq a \leq 11$, as shown in the following table:
In other words, if \(a \in \mathbb{Z}^+ \), then \(\pi([e^a]) \mid [e^a] \) only when \(a = 1 \). \(\blacksquare \)

Theorem 2.9. Let \(n \) be an integer \(\geq 60184 \) and let

\[
f(n) = ||\log n - [\log n] - 0.1|| \left\lfloor \frac{n/|\log n - 1|}{|\log n - 1|} \right\rfloor.
\]

If \(f(n) = 0 \), then \(\pi(n) \nmid n \). On the other hand, if \(\pi(n) \mid n \), then \(f(n) = 1 \). \(\blacksquare \)

Proof.

- **Part 1**

Suppose that

\[f(n) = g(n)h(n), \]

where

\[g(n) = ||\log n - [\log n] - 0.1|| \]

and

\[h(n) = \left\lfloor \frac{n/|\log n - 1|}{|\log n - 1|} \right\rfloor. \]

To begin with, if \(n \geq 60184 \), then \(\log n - [\log n] \) can never be equal to 0.1. Now, when \(\log n - [\log n] < 0.1 \) we have \(-1 < \log n - [\log n] - 0.1 < 0 \) and hence \(||\log n - [\log n] - 0.1|| = 1 \). On the other hand, when \(\log n - [\log n] > 0.1 \) we have \(0 < \log n - [\log n] - 0.1 < 1 \) and hence \(||\log n - [\log n] - 0.1|| = 0 \). This means that if \(n \) is any integer \(\geq 60184 \), then...
then \(g(n) \) equals either 0 or 1. We can also say that if \(n \geq 60184 \) and \(g(n) = 0 \), then \(\log n - \lfloor \log n \rfloor > 0.1 \), which implies that \(\pi(n) \not| n \) (according to Theorem 2.3). (This means that if \(n \geq 60184 \) and \(\pi(n) \not| n \), then \(g(n) = 1 \).)

Part 2

If \(n \geq 60184 \), then

\[
\left\lfloor \frac{n}{\log n - 1} \right\rfloor \leq \frac{n}{\log n - 1},
\]

which means that

\[
\left\lfloor \frac{n}{\log n - 1} \right\rfloor / \frac{n}{\log n - 1} = \left\lfloor \frac{n}{\lfloor \log n - 1 \rfloor} \right\rfloor / \left\lfloor \log n - 1 \right\rfloor = h(n)
\]

equals either 0 or 1. If \(h(n) = 0 \), then \(n \) is not divisible by \(\lfloor \log n - 1 \rfloor \), which implies that \(\pi(n) \not| n \) (according to Theorem 2.2). In other words, if \(n \geq 60184 \) and \(h(n) = 0 \), then \(\pi(n) \not| n \). (This means that if \(n \geq 60184 \) and \(\pi(n) \not| n \), then \(h(n) = 1 \).)

Part 3

There are two possible outputs for \(g(n) \) (0 or 1) as well as two possible outputs for \(h(n) \) (0 or 1). This means that for \(n \geq 60184 \) we have either

\[
g(n)h(n) = 0 \cdot 0 = 0,
\]

or

\[
g(n)h(n) = 0 \cdot 1 = 0,
\]

or

\[
g(n)h(n) = 1 \cdot 0 = 0,
\]

or

\[
g(n)h(n) = 1 \cdot 1 = 1.
\]

If \(f(n) = g(n)h(n) = 0 \), then at least one of the factors \(g(n) \) and \(h(n) \) equals 0, which implies that \(\pi(n) \not| n \) (see Part 1 and Part 2). This means that if \(n \geq 60184 \) and \(f(n) = 0 \), then \(\pi(n) \not| n \). Consequently, if \(n \geq 60184 \) and \(\pi(n) \not| n \), then \(f(n) = 1 \).

Theorem 2.10. If \(n \geq 60184 \) and \(n/\pi(n) \) is an integer, then \(n \) is a multiple of \(\lfloor \log n - 1 \rfloor \) located in the interval \([e^{\lfloor \log n - 1 \rfloor + 1}, e^{\lfloor \log n - 1 \rfloor + 1.1}] \).
Proof. According to Theorems 2.2 and 2.3, if \(n \geq 60184 \) and \(n/\pi(n) \) is an integer, then

\[
\frac{n}{\pi(n)} = \lfloor \log n - 1 \rfloor \Rightarrow n = \pi(n)\lfloor \log n - 1 \rfloor
\]

and

\[
\text{frac}(\log n) = \log n - \lfloor \log n \rfloor \leq 0.1.
\]

The fact that \(\text{frac}(\log n) \leq 0.1 \) implies that \(n \) is located in the interval

\[
[e^k, e^{k+0.1}]
\]

for some positive integer \(k \). In other words, we have

\[
e^k < n < e^{k+0.1} \Rightarrow k < \log n < k + 0.1 \Rightarrow k - 1 < \log n - 1 < k - 0.9,
\]

which means that

\[
k - 1 = \lfloor \log n - 1 \rfloor
\]

\[
k = \lfloor \log n - 1 \rfloor + 1.
\]

Remark 2.11. Suppose that \(b \) is any fixed integer \(\geq 12 \). Theorem 2.10 implies that if \(n \) is an integer in the interval \([e^b, e^{b+0.1}]\) and at the same time \(n \) is not a multiple of \(b-1 \), then \(\pi(n) \nmid n \). This means that if \(n \geq 60184 \) and \(\pi(n) \) divides \(n \), then \(n \) is located in the interval \([e^b, e^{b+0.1}]\) for some positive integer \(b \) and \(n \) is a multiple of \(b-1 \). ▶

The following theorem follows from Theorems 1.1 and 2.10 and from the fact that \(n/\pi(n) < 11 \) for \(n \leq 60183 \) (this fact can be checked using software):

Theorem 2.12. Let \(c \) be any fixed integer \(\geq 12 \). In the interval \([e^c, e^{c+0.1}]\) there is always an integer \(n \) such that \(\pi(n) \) divides \(n \). In other words, in the interval \([e^c, e^{c+0.1}]\) there is always an integer \(n \) such that \(\pi(n) = n/(c-1) \). □

3 Conclusion and Further Discussion

The following are the main theorems of this paper:

Theorem 2.9. Let \(n \) be an integer \(\geq 60184 \) and let

\[
f(n) = \lfloor \lfloor \log n - \lfloor \log n \rfloor - 0.1 \rfloor \rfloor \left| \frac{n/\lfloor \log n - 1 \rfloor}{n} \right| \frac{\lfloor \log n - 1 \rfloor}{n}.
\]
If \(f(n) = 0 \), then \(\pi(n) \nmid n \). On the other hand, if \(\pi(n) \mid n \), then \(f(n) = 1 \).

Theorem 2.10. If \(n \geq 60184 \) and \(n/\pi(n) \) is an integer, then \(n \) is a multiple of \(\lfloor \log n - 1 \rfloor \) located in the interval \([e^{\lfloor \log n - 1 \rfloor + 1}, e^{\lfloor \log n - 1 \rfloor + 1.1}]\).

Theorem 2.12. Let \(c \) be any fixed integer \(\geq 12 \). In the interval \([e^c, e^{c+0.1}]\) there is always an integer \(n \) such that \(\pi(n) \) divides \(n \). In other words, in the interval \([e^c, e^{c+0.1}]\) there is always an integer \(n \) such that \(\pi(n) = n/(c-1) \).

We recall that Golomb [3] proved that for every integer \(n > 1 \) there exists a positive integer \(m \) such that \(m/\pi(m) = n \). Suppose now that \(R \) is the sequence of numbers generated by the function \(d(n) = n/\pi(n) \) (\(n \in \mathbb{Z} \) and \(n > 1 \)). In other words,

\[
R = (2, \ 1.5, \ 2, \ 1.66..., \ 2, \ 1.75, \ 2, \ 2.25, \ 2.5, \ \ldots).
\]

Suppose also that \(S \) is the sequence of integers generated by the function \(d(n) = n/\pi(n) \). In other words,

\[
S = (2, \ 2, \ 2, \ 3, \ 3, \ 3, \ 4, \ 4, \ \ldots).
\]

Motivated by Golomb’s result and Theorem 2.12 we ask the following question:

Question 3.1. Are there infinitely many positive integers \(a \) such that in the interval \([e^a, e^{a+0.1}]\) there are at least two distinct positive integers \(n_1 \) and \(n_2 \) such that \(\pi(n_1) \mid n_1 \) and \(\pi(n_2) \mid n_2 \)? In other words, are there infinitely many positive integers \(n \) that can be expressed as \(m/\pi(m) \) in more than one way?

Now, let \(S_k \) denote the \(k \)th term of sequence \(S \). Clearly, Question 3.1 is equivalent to the following question:

Question 3.2. Are there infinitely many positive integers \(k \) such that \(S_k = S_{k+1} \)?

References

