When $\pi(n)$ divides n and when it does not

Germán Andrés Paz∗

September 10, 2014

Abstract

Let $\pi(n)$ denote the prime-counting function. In this paper we work with explicit formulas for $\pi(n)$ that are valid for infinitely many positive integers n, and we prove that if $n \geq 60184$ and $\frac{\ln n}{\pi(n)} = \ln n - \lfloor \ln n \rfloor > 0.5$, then $\pi(n)$ does not divide n. Based on this result, we show that if e is the base of the natural logarithm, a is a fixed integer ≥ 11 and n is any integer in the interval $[e^{a+0.5}, e^{a+1}]$, then $\pi(n) \mid n$. In addition, we prove that if $n \geq 60184$ and $n/\pi(n)$ is an integer, then n is a multiple of $[\ln n - 1]$ located in the interval $[e^{[\ln n-1]+1}, e^{[\ln n-1]+1.5}]$.

Keywords: bounds on the prime-counting function, explicit formulas for the prime-counting function, intervals, prime numbers

2010 Mathematics Subject Classification: 00-XX · 00A05 · 11-XX · 11A41

0 Notation

Throughout this paper the number n is always a positive integer. Moreover, we use the following symbols:

• $\lfloor \cdot \rfloor$ (floor function)
• $\lceil \cdot \rceil$ (ceiling function)
• \nmid (does not divide)
• frac() (fractional part)

∗(2000) Rosario, Santa Fe, Argentina; germanpaz_ar@hotmail.com
1 Introduction

Determining how prime numbers are distributed among natural numbers is one of the most difficult mathematical problems. This explains why the prime-counting function \(\pi(n) \), which counts the number of primes less than or equal to a given number \(n \), has been one of the main objects of study in Mathematics for centuries.

In [2] Gaitanas obtains an explicit formula for \(\pi(n) \) that holds infinitely often. His proof is based on the fact that the function \(f(n) = n/\pi(n) \) takes on every integer value greater than 1 (as proved by Golomb [3]) and on the fact that \(x/(\ln x - 0.5) < \pi(x) < x/(\ln x - 1.5) \) for \(x \geq 67 \) (as shown by Rosser and Schoenfeld [4]). In this paper we find alternative expressions that are valid for infinitely many positive integers \(n \), and we also prove that for \(n \geq 60184 \) if \(\ln n - \lfloor \ln n \rfloor > 0.5 \), then \(n/\pi(n) \) is not an integer.

We will place emphasis on the following three theorems, which were proved by Golomb, Dusart, and Gaitanas respectively:

Theorem 1.1 [3]. The function \(f(n) = n/\pi(n) \) takes on every integer value greater than 1.

Theorem 1.2 [1]. If \(n \) is an integer \(\geq 60184 \), then

\[
\frac{n}{\ln n - 1} < \pi(n) < \frac{n}{\ln n - 1.1}.
\]

Remark 1.3. Dusart’s paper states that for \(x \geq 60184 \) we have \(x/(\ln x - 1) \leq \pi(x) \leq x/(\ln x - 1.1) \), but since \(\ln n \) is always irrational when \(n \) is an integer \(> 1 \), we can state his theorem the way we did.

Theorem 1.4 [2]. The formula

\[\pi(n) = \frac{n}{\lfloor \ln n - 0.5 \rfloor} \]

is valid for infinitely many positive integers \(n \).

2 Main theorems

We are now ready to prove our main theorems:

Theorem 2.1. The formula

\[\pi(n) = \frac{n}{\lfloor \ln n - 1 \rfloor} \]

holds for infinitely many positive integers \(n \).
Proof. According to Theorem 1.2, for \(n \geq 60184 \) we have

\[
\frac{n}{\ln n - 1} < \pi(n) < \frac{n}{\ln n - 1.1} \Rightarrow \frac{\ln n - 1.1}{n} < \frac{1}{\pi(n)} < \frac{\ln n - 1}{n}.
\]

If we multiply by \(n \), we get

\[
\ln n - 1.1 < \frac{n}{\pi(n)} < \ln n - 1. \tag{1}
\]

Since \(\ln n - 1.1 \) and \(\ln n - 1 \) are both irrational (for \(n > 1 \)), inequality (1) implies that when \(n/\pi(n) \) is an integer we must have

\[
\frac{n}{\pi(n)} = [\ln n - 1] = [\ln n - 1.1] + 1 = [\ln n - 1.1] = [\ln n] - 1. \tag{2}
\]

Taking Theorem 1.2 and equality (2) into account, we can say that for every \(n \geq 60184 \) when \(n/\pi(n) \) is an integer we must have

\[
\pi(n) = \frac{n}{\lceil \ln n - 1 \rceil} = n - 1.
\]

Since Theorem 1.1 implies that \(n/\pi(n) \) is an integer infinitely often, it follows that there are infinitely many positive integers \(n \) such that \(\pi(n) = n/\lceil \ln n - 1 \rceil \).

In fact, the following theorem follows from Theorems 1.1, from Gaitana’s proof of Theorem 1.4, and from the proof of Theorem 2.1:

Theorem 2.2. For every \(n \geq 60184 \) when \(n/\pi(n) \) is an integer we must have

\[
\frac{n}{\pi(n)} = [\ln n - 0.5] = [\ln n - 1] = [\ln n - 1.1] + 1 = [\ln n - 1.1] = [\ln n] - 1.
\]

In other words, for \(n \geq 60184 \) when \(n/\pi(n) \) is an integer we must have

\[
\pi(n) = \frac{n}{[\ln n - 0.5]} = \frac{n}{[\ln n - 1]} = \frac{n}{[\ln n - 1.1] + 1} = \frac{n}{[\ln n - 1.1]} = \frac{n}{[\ln n - 1]} - 1.
\]

Theorem 2.3. Let \(n \) be an integer \(\geq 60184 \). If \(\ln n - [\ln n] \geq 0.5 \), then \(\pi(n) \nmid n \) (that is to say, \(n/\pi(n) \) is not an integer).
Proof. According to Theorem 2.2, for $n \geq 60184$ if $n/\pi(n)$ is an integer, then

$$\frac{n}{\pi(n)} = \lfloor \ln n - 0.5 \rfloor = \lfloor \ln n - 1 \rfloor.$$

In other words, for $n \geq 60184$ when $n/\pi(n)$ is an integer we have

$$\lfloor \ln n - 0.5 \rfloor = \lfloor \ln n - 0.5 - 0.5 \rfloor$$

$$\frac{\ln n - 0.5}{0.5} \geq 0.5$$

$$\ln n - 0.5 - \lfloor \ln n - 0.5 \rfloor \geq 0.5$$

$$\ln n - \lfloor \ln n - 0.5 \rfloor \geq 1$$

$$\frac{\ln n}{0.5} < 0.5$$

$$\ln n - \lfloor \ln n \rfloor < 0.5.$$

Suppose that P is the statement ‘$n/\pi(n)$ is an integer’ and Q is the statement ‘$\ln n - \lfloor \ln n \rfloor < 0.5$’. According to propositional logic, the fact that $P \rightarrow Q$ implies that $\neg Q \rightarrow \neg P$.

Similar theorems can be proved by using Theorem 2.2 and equality (3).

Remark 2.4. When we mentioned Theorem 2.3 in the abstract, we replaced the expression $\ln n - \lfloor \ln n \rfloor \geq 0.5$ with $\ln n - \lfloor \ln n \rfloor > 0.5$ due to the fact that $\ln n$ is irrational when $n > 1$.

Remark 2.5. Because $\ln n$ is irrational for $n > 1$, another way of stating Theorem 2.3 is by saying that if $n \geq 60184$ and the first digit to the right of the decimal point of $\ln n$ is 5, 6, 7, 8, or 9, then $\pi(n) \nmid n$.

Or we could also say that for $n \geq 60184$ if

$$n > e^{0.5+\lfloor \ln n \rfloor},$$

then $\pi(n) \nmid n$.

The following theorem follows from Theorem 2.3.

Theorem 2.6. Let e be the base of the natural logarithm. If a is any integer ≥ 11 and n is any integer contained in the interval $[e^{a+0.5}, e^{a+1}]$, then $\pi(n) \nmid n$. (The number e^r is irrational when r is a rational number $\neq 0$.)

Example 2.7. Take $a = 18$. If n is any integer in the interval $[e^{18.5}, e^{19}]$, then $\pi(n) \nmid n$.

4
Theorem 2.8. If \(n \geq 60184 \) and \(n/\pi(n) \) is an integer, then \(n \) is a multiple of \(\lfloor \ln n - 1 \rfloor \) located in the interval \([e^{\lfloor \ln n - 1 \rfloor + 1}, e^{\lfloor \ln n - 1 \rfloor + 1.5}]\).

Proof. According to the proof of Theorem 2.3 if \(n \geq 60184 \) and \(n/\pi(n) \) is an integer, then
\[
\frac{n}{\pi(n)} = \lfloor \ln n - 1 \rfloor \Rightarrow n = \pi(n)\lfloor \ln n - 1 \rfloor
\]
and
\[
\text{frac}(\ln n) = \ln n - \lfloor \ln n \rfloor < 0.5.
\]
The fact that \(\text{frac}(\ln n) < 0.5 \) implies that \(n \) is located in the interval
\[
[e^k, e^{k+0.5}]
\]
for some positive integer \(k \). In other words, we have
\[
e^k < n < e^{k+0.5} \Rightarrow k < \ln n < k + 0.5 \Rightarrow k - 1 < \ln n - 1 < k - 0.5.
\]
This means that
\[
k - 1 = \lfloor \ln n - 1 \rfloor
\]
\[
k = \lfloor \ln n - 1 \rfloor + 1,
\]
which proves the theorem.

Remark 2.9. In other words, if \(n \geq 60184 \) and \(n/\pi(n) \) is an integer, then \(n \) is located in the interval \([e^k, e^{k+0.5}]\) for some positive integer \(k \) and \(n \) is divisible by \(k - 1 \).

Question 2.10. Let \(b_0 \) be a sufficiently large positive integer and let \(b \) be any integer \(\geq b_0 \). In the interval \([e^b, e^{b+0.5}]\), is there always an integer \(n \) that is divisible by \(\pi(n) \)?

A Better results

Theorem A.1. Let \(n \) be an integer \(\geq 60184 \). If \(\text{frac}(\ln n) = \ln n - \lfloor \ln n \rfloor > 0.1 \), then \(\pi(n) \nmid n \) (that is to say, \(n/\pi(n) \) is not an integer).

Proof. According to Theorem 2.2 for \(n \geq 60184 \) if \(n/\pi(n) \) is an integer, then
\[
\frac{n}{\pi(n)} = \lfloor \ln n - 1 \rfloor = \lfloor \ln n - 1.1 \rfloor.
\]
In other words, for \(n \geq 60184 \) when \(n/\pi(n) \) is an integer we have

\[
\lfloor \ln n - 1 \rfloor = \lceil \ln n - 1 - 0.1 \rceil
\]

\[
\frac{\ln n - 1}{\ln n} \leq 0.1
\]

\[
\ln n - \lfloor \ln n - 1 \rfloor \leq 1.1
\]

\[
\frac{\ln n}{\ln n} \leq 0.1
\]

\[
\ln n - \lfloor \ln n \rfloor \leq 0.1
\]

Suppose that \(P \) is the statement ‘\(n/\pi(n) \) is an integer’ and \(Q \) is the statement ‘\(\ln n - \lfloor \ln n \rfloor \leq 0.1 \)’. The fact that \(P \to Q \) implies that \(\neg Q \to \neg P \).

\[\blacksquare \]

Remark A.2. Because \(\ln n \) is irrational for \(n > 1 \), Theorem [A.1] implies that if \(n \geq 60184 \) and \(\pi(n) \) divides \(n \), then the first digit to the right of the decimal point of \(\ln n \) can only be 0. In other words, if \(n \geq 60184 \) and the first digit to the right of the decimal point of \(\ln n \) is 1, 2, 3, 4, 5, 6, 7, 8, or 9, then \(\pi(n) \) does not divide \(n \).

\[\blacksquare \]

The following theorem follows from Theorem [A.1]

Theorem A.3. Let \(e \) be the base of the natural logarithm. If \(a \) is any integer \(\geq 11 \) and \(n \) is any integer contained in the interval \([e^a, e^{a+0.1}] \), then \(\pi(n) \nmid n \).

\[\blacksquare \]

Example A.4. Take \(a = 18 \). If \(n \) is any integer in the interval \([e^{18.1}, e^{19}] \), then \(\pi(n) \nmid n \).

\[\blacksquare \]

Remark A.5. If \(n \geq 60184 \) and \(n/\pi(n) \) is an integer, then \(n \) is located in the interval \([e^k, e^{k+0.1}] \) for some positive integer \(k \).

\[\blacksquare \]

Question A.6. Let \(b_0 \) be a sufficiently large positive integer and let \(b \) be any integer \(\geq b_0 \). In the interval \([e^b, e^{b+0.1}] \), is there always an integer \(n \) that is divisible by \(\pi(n) \)?

\[\blacksquare \]

References

