The Origin of the Hubble Sequence for Distant and Local Massive Galaxies

Sylwester Kornowski

Abstract: Due to the mergers of the binary systems of protogalaxies, there were created the elliptical protogalaxies whereas evolution of the binary systems of protogalaxies leads to the spiral protogalaxies. Due to evolution of the disc-sphere structures described within the Scale-Symmetric Theory, some elliptical protogalaxies transformed into lenticular galaxies whereas some spiral protogalaxies transformed into peculiar galaxies. Some of the peculiar galaxies again transformed into spiral galaxies. For distant massive galaxies we obtain following abundances: for elliptical is 3.8%, for lenticular 15.1%, for spiral 30.4% and for peculiar 50.7%. On the other hand, for the local massive galaxies we obtain: for elliptical 3.8%, for lenticular 15.1%, for spiral 71.0% and for peculiar 10.1%. The theoretical results obtained within the Scale-Symmetric Theory are consistent with observational facts.

1. Introduction
The General Relativity leads to the non-gravitating Higgs field composed of tachyons [1A]. On the other hand, the Scale-Symmetric Theory (SST) shows that the succeeding phase transitions of such Higgs field lead to the different scales of sizes [1A]. Due to the saturation of interactions via the Higgs field and due to the law of conservation of the half-integral spin that is obligatory for all scales, there consequently appear the superluminal binary systems of closed strings (entanglons) responsible for the quantum entanglement, stable neutrinos and luminal neutrino-antineutrino pairs which are the components of the luminal Einstein spacetime (it is the Planck scale), cores of baryons, and the cosmic structures (protoworlds) that evolution leads to the dark matter, dark energy and expanding universes (the “soft” big bangs) [1A], [1B]. The non-gravitating tachyons have infinitesimal spin so all listed structures have internal helicity (helicities) which distinguishes particles from their antiparticles [1A]. SST shows that a fundamental theory should start from infinite nothingness and pieces of space [1A]. Sizes of pieces of space depend on their velocities [1A]. The inflation field started as the liquid-like field composed of non-gravitating pieces of space [1A]. Cosmoses composed of universes are created because of collisions of big pieces of space [1A], [1B].
During the inflation, the liquid-like inflation field (the non-gravitating superluminal Higgs field) transformed partially into the luminal Einstein spacetime (the big bang) [1A], [1B]. In our Cosmos, the two-component spacetime is surrounded by timeless wall – it causes that the fundamental constants are invariant [1A], [1B].

Due to the symmetrical decays of bosons on the equator of the core of baryons, there appears the atom-like structure of baryons described by the Titius-Bode orbits for the nuclear strong interactions [1A].

Due to the collapse of the outer shell of the expanding Einstein spacetime, [1B], there were created the entanglons responsible for the quantum entanglement of the Einstein-spacetime components – from the Einstein-spacetime components are built, besides the neutrinos, all observed particles [1A].

Associations of the liberated entanglons created left-handed and right-handed vortices in the Einstein spacetime – it solves the matter-antimatter asymmetry in our Universe (our Universe was created due to evolution of a left-handed vortex [1B]). Due to the quantum entanglement and the fourth phase transition of the modified Higgs field, there appeared the cosmic object-antiobject pairs (the protoworld-antiprotoworld pairs). Due to the evolution of the left-handed Protoworld, there appeared the dark energy and dark matter and the expanding Universe (the “soft” big bang) [1B].

Our Universe appeared inside the Protoworld as the Double Cosmic Loop composed of the binary systems of protogalaxies, i.e. the binary systems of protogalaxies were created already before the “soft” big bang [1B]. The protogalaxies consisted of the modified neutron black holes (the MNBHs do not contain a central singularity but there is a circle with spin speed equal to the speed of light in “vacuum” c).

The age of the Universe is 21.614 ± 0.096 Gyr, [1B], but due to the duality of relativity, [1B], the time distance to the observed most distant galaxies is 13.866 ± 0.096 Gyr i.e. they are already 7.75 Gyr old [2]. Just we cannot see the period 7.75 Gyr from the beginning of expansion of the Universe.

2. Abundances of massive galaxies

We know that following equation defines a torus:
\[(x^2 + y^2 + z^2 - a^2 - b^2)^2 = 4 b^2 (a^2 - z^2). \] (1)

For the torus inside the Protoworld is \(b = 2a\) (such tori are most stable) [1A].

Due to the inflows of the dark matter and dark energy into the Double Cosmic Loop, the very early Universe transformed into expanding torus and next into expanding sphere (i.e. \(b = 0\) and \(a = r\)). Assume that due to the initial internal helicity of the expanding torus, the mergers of the binary systems of protogalaxies inside expanding torus (the proportions of such torus are the same as in the Protoworld) were impossible (the binary systems in the associations of the binary systems did not conglutinate). The mergers were possible in the remaining volume of the sphere which radius was equal to the external radius of the torus (Fig.).

The fraction \(X\) of merging binary systems of protogalaxies we can calculate from following formula (\(4\pi / 3\) is for sphere whereas \(4\pi^2 / 27\) is for torus)

\[X = (4\pi / 3 - 4\pi^2 / 27) / (4\pi / 3) = 1 - \pi / 9 = 0.65093.\] (2)

In this paper the Hubble sequence (the morphological classification) is defined the same as here [3]. We distinguish between following classes: \(E\) (elliptical galaxies), \(SO\) (lenticular galaxies), \(S\) (spiral disk galaxies), and \(P\) (peculiar galaxies – the main characteristic is the presence of asymmetrical features).

Due to the mergers of the binary systems of protogalaxies, there appeared the massive elliptical/\(E\) protogalaxies whereas evolution of the not merging binary systems of protogalaxies leads to the massive spiral/\(S\) protogalaxies. Within the Scale-Symmetric Theory we showed that typical massive elliptical galaxy should have mass 8 times greater than typical massive spiral galaxy [4]. This leads to conclusion that the initial number of massive \(E\) protogalaxies should be proportional to \(X/8\) whereas of massive \(S\) should be proportional to \(1 - X\). Since the most distant galaxies are already 7.75 Gyr old so we cannot see this period in evolution of the massive protogalaxies.

Calculate the initial abundance \(A\) of massive \(E\) protogalaxies

\[A = 100\% \frac{X}{8(X/8 + 1 - X)} = 18.9\%,\] (3)

and initial abundance \(B\) of massive \(S\) protogalaxies

\[B = 100\% \frac{(1 - X)}{(X/8 + 1 - X)} = 81.1\%.\] (4)

The region filled with the \(E\) protogalaxies was separated from the region filled with the \(S\) protogalaxies so we can assume that there appeared discs composed of the \(E\) protogalaxies and discs composed of the \(S\) protogalaxies. On the edges of the discs there at first appeared the tori composed of the protogalaxies that transformed into spheres i.e. most popular were discs surrounded by spheres. Assume that surface mass density of the discs was the same as of the spheres. It means that the spheres consisted of four times more protogalaxies.

Most of the disc-sphere structures composed of the \(E\) protogalaxies had been placed nearer to the centre of the expanding Universe and these protogalaxies were more massive than the disc-sphere structures composed of the \(S\) protogalaxies. It means that the disc-sphere structures composed of the \(E\) protogalaxies had evolved much faster. The very high pressure
caused that the E protogalaxies placed on the spheres were flattened so they transformed into the lenticular/S0 protogalaxies. Due to the spheres surrounding the discs, the E protogalaxies in the discs were protected from such flattening. Described above processes took place during a period we cannot see.

We should observe 4 times more the lenticular/S0 protogalaxies than the E galaxies.

Abundance of the distant and local E galaxies should be $A / (1 + 4) \approx 3.8\%$ **whereas of the distant and local $S0$ galaxies should be** $4A / (1 + 4) \approx 15.1\%$.

The disc-sphere structures composed of the S protogalaxies have evolved slower. In the discs and spheres most numerous were the “small” discs/associations composed of eight binary systems of the S protogalaxies. Assume that in each association, the distribution of the 8 binary systems was as follows. On two concentric circles with radii 0.6 and 1 are moving respectively 3 and 5 binary systems (Fig.). Then, the lengths of the all 8 circular arcs between the nearest binary systems on both circles are the same.

Due to the outer 5 binary systems, the inner 3 binary systems are partially protected from interactions with other associations. This leads to conclusion that the inner binary systems should be most symmetrical i.e. they are the distant S protogalaxies whereas the outer ones are the distant peculiar/P protogalaxies.

Abundance of the distant spiral/S galaxies should be $3B / (3 + 5) \approx 30.4\%$ **whereas of the distant peculiar/P galaxies should be** $5A / (3 + 5) \approx 50.7\%$.

The $4/5$ of all distant P galaxies are placed on the spheres i.e. $4A / (3 + 5) = 40.6\%$ of them. With time, they as well were flattened i.e. they transformed again into the S galaxies.

We can see that abundance of the local spiral/S galaxies should be $30.4\% + 40.6\% = 71.0\%$ **whereas of the local peculiar/P galaxies should be** $50.7\% – 40.6\% = 10.1\%$.

The theoretical results obtained within the Scale-Symmetric Theory are consistent with observational facts [3]. They are collected in Table 1.
Table 1 Abundances of the different morphological types
for distant and local massive galaxies [%]

<table>
<thead>
<tr>
<th>Type of galaxy</th>
<th>Distant (Theory)</th>
<th>Distant [3]</th>
<th>Local (Theory)</th>
<th>Local [3]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elliptical</td>
<td>3.8</td>
<td>4 ± 1</td>
<td>3.8</td>
<td>3 ± 1</td>
</tr>
<tr>
<td>Lenticular</td>
<td>15.1</td>
<td>13 ± 2</td>
<td>15.1</td>
<td>15 ± 4</td>
</tr>
<tr>
<td>Spiral</td>
<td>30.4</td>
<td>31 ± 7</td>
<td>71.0</td>
<td>72 ± 8</td>
</tr>
<tr>
<td>Peculiar</td>
<td>50.7</td>
<td>52 ± 9</td>
<td>10.1</td>
<td>10 ± 3</td>
</tr>
</tbody>
</table>

3. Summary
Due to the mergers of the binary systems of protogalaxies, there were created the elliptical protogalaxies whereas evolution of the binary systems of protogalaxies leads to the spiral protogalaxies.

Due to evolution of the disc-sphere structures described within the Scale-Symmetric Theory, some elliptical protogalaxies transformed into lenticular galaxies whereas some spiral protogalaxies transformed into peculiar galaxies. Some of the peculiar galaxies again transformed into spiral galaxies.

For distant massive galaxies we obtain following abundances: for elliptical is 3.8%, for lenticular 15.1%, for spiral 30.4% and for peculiar 50.7%. On the other hand, for the local massive galaxies we obtain: for elliptical 3.8%, for lenticular 15.1%, for spiral 71.0% and for peculiar 10.1%. The theoretical results obtained within the Scale-Symmetric Theory are consistent with observational facts [3].

References
 [1A]: http://vixra.org/abs/1511.0188 (Particle Physics)
 [1B]: http://vixra.org/abs/1511.0223 (Cosmology)
 [1C]: http://vixra.org/abs/1511.0284 (Chaos Theory)
 [1D]: http://vixra.org/abs/1512.0020 (Reformulated QCD)

 http://vixra.org/abs/1406.0014

 (22 January 2010). “How was the Hubble sequence 6 Gyr ago?”
 A&A, Volume 509 (January 2010), A78
 http://dx.doi.org/10.1051/0004-6361/200912704

 http://vixra.org/abs/1408.0100