Three formulas that generate easily certain types of triplets of primes

Marius Coman
Bucuresti, Romania
email: mariuscoman13@gmail.com

Abstract. In this paper I present three formulas, each of them with the following property: starting from a given prime \(p \), are obtained in many cases two other primes, \(q \) and \(r \). I met the triplets of primes \(\{p, q, r\} \) obtained with these formulas in the study of Carmichael numbers; the three primes mentioned are often the three prime factors of a 3-Carmichael number.

Note:

To refer to the three formulas easily I will name them the formula alpha, beta or gama and the triplets obtained the triplet alpha, beta or gama.

Formula alpha:

The formula alpha is \(30a*n - (ap + a - 1) \). The first prime of a triplet alpha is \(p \) and the other two ones are obtained giving to \(n \) values of integers, under the condition that \(ap + a - 1 \) is prime.

Examples:

: For \(p = 11 \) and \(a = 2 \) the condition that \(ap + a - 1 \) is prime is met because \(2*11 + 2 - 1 = 23 \) which is prime; the formula alpha becomes \(60n - 23 \); it can be seen that for \(n = 1 \) is obtained 47 (prime) and for \(n = 2 \) is obtained 97 (prime) so we have the triplet alpha \([11, 47, 97]\); also for \(n = 3 \) is obtained 157 (prime) so other two triplets alpha are \([11, 47, 157]\) and \([11, 97, 157]\);

: For \(p = 7 \) and \(a = 3 \) the condition that \(ap + a - 1 \) is prime is met because \(3*7 + 3 - 1 = 23 \) which is prime; the formula alpha becomes \(90n - 23 \); it can be seen that for \(n = 1 \) is obtained 67 (prime) and for \(n = 2 \) is obtained 157 (prime) so we have the triplet alpha \([7, 67, 157]\); also for \(n = 4 \) is obtained 337 (prime) so other two triplets alpha are \([7, 67, 337]\) and \([7, 157, 337]\).

Note: see the sequence A182416 in OEIS for the connection between Carmichael numbers and formula alpha.
Formula beta:

The formula beta is $30an + (ap + a - 1)$. The first prime of a triplet beta is p and the other two ones are obtained giving to n values of integers, under the condition that $ap + a - 1$ is prime.

Examples:

For $p = 11$ and $a = 2$ the condition that $ap + a - 1$ is prime is met because $2*11 + 2 - 1 = 23$ which is prime; the formula beta becomes $60n + 23$; it can be seen that for $n = 1$ is obtained 83 (prime) and for $n = 4$ is obtained 263 (prime) so we have the triplet beta $[11, 83, 263]$; also for $n = 6$ is obtained 383 (prime) so other two triplets beta are $[11, 83, 383]$ and $[11, 263, 383]$.

For $p = 19$ and $a = 3$ the condition that $ap + a - 1$ is prime is met because $3*19 + 3 - 1 = 59$ which is prime; the formula beta becomes $90n + 59$; it can be seen that for $n = 1$ is obtained 149 (prime) and for $n = 2$ is obtained 239 (prime) so we have the triplet beta $[59, 149, 239]$; also for $n = 4$ is obtained 419 (prime) so other two triplets beta are $[59, 149, 419]$ and $[59, 239, 419]$.

Note: see the sequence A182416 in OEIS for the connection between Carmichael numbers and formula beta.

Formula gama:

The formula gama is $2pn - 2n + p$. The first prime of a triplet gama is p and the other two ones are obtained giving to n values of integers, under the condition that $2p - 1$ is prime.

Example:

For $p = 7$ the condition that $2p - 1$ is prime is met; the formula gama becomes $12n + 7$; for $n = 1$ is obtained 19 (prime) and for $n = 2$ is obtained 31 so we have the triplet gama $[7, 19, 31]$; also for $n = 3$ is obtained 43 so other two triplets gama are $[7, 19, 43]$ and $[7, 31, 43]$.

Note: see the sequence A182207 in OEIS for the connection between Carmichael numbers and formula gama.