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Abstract

In the present work we make a small step towards finding explicit for-
mula for polynomial roots. Explicit formulae for simple real roots, based
on the Frobenius companion matrix, are derived. After some modifica-
tions the method can be used to compute multiple or complex roots.

1 Introduction

Solving algebraic equations has a long and fascinating history [1, 2]. In spite of
great progress in analytical theory and numerical methods there is no general
formula for roots of algebraic equations. In this context Ian Stewart made
inspiring remark: "there is no general formula for them, unless you invent new
symbols specifically for the task" [3].

In the present work we make a small step towards finding explicit formula for
polynomial roots. In the next Section the Frobenius companion matrix A of an
arbitrary polynomial p (x) is described and some of its properties are reviewed.
It is well known that due to the Cayley-Hamilton theorem the matrix A is a
generalized root of the polynomial p, i.e. p (A) = 0. This suggests that this
matrix should be in the focus of our search for a general formula for roots of
polynomial equation p (x) = 0. In Section 3, taking advantage of properties of
the companion matrix, explicit formulae for real simple roots of a polynomial
are derived and an example is provided. The method can be extended for
polynomials with multiple and complex roots. Our results are discussed in the
last Section.
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2 Polynomials, characteristic polynomial and the
companion matrix

Let us consider a polynomial p (x) of degree n with real or complex coefficients:

p (x) = c0 + c1x+ c2x
2 + . . . cn−1x

n−1 + xn. (1)

It is possible to construct a matrix A, such that the characteristic polynomial
of which is p (λ):

det (A− λI) = p (λ) , (2)

where I is the unit matrix. Indeed, the demanded matrix, known as the com-
panion matrix introduced by Frobenius, is explicitly given by:

A =






0 0 . . . 0 −c0
1 0 . . . 0 −c1
0 1 . . . 0 −c2
...

...
. . .

...
...

0 0 . . . 1 −cn−1





. (3)

Coefficients ck of a characteristic polynomial p (λ) = det (B − λI) of an arbitrary
matrix B are [4]:

cn−1 = −Tr (B) , (4a)

cn−2 =
1

2

(
(Tr (B))2 −Tr

(
B2
))
, (4b)

cn−3 =
1

6

(
− (Tr (B))3 + 3Tr (B)Tr

(
B2
)
− 2Tr

(
B3
))
, (4c)

the next coefficients, given by more and more complex formulae, are not provided
here but can be found in [4].

Due to the Cayley-Hamilton theorem a matrix fulfills its characteristic equa-
tion. It follows that:

p (A) = 0, (5)

and therefore the Frobenius companion matrix A is a generalized solution of
polynomial equation p (x) = 0. It is important that it is possible to find explicit
matrix solution for any polynomial equation. The good news is that the matrix
A contains information about roots of the polynomial p (x). Indeed, eigenvalues
of A:

Au = λu, (6)

are roots of the characteristic polynomial p (λ) = det (A− λI), and, due to
construction of the companion matrix, roots of the polynomial defined in (1).

It seems, however, that the matrix solution of the equation p (x) = 0 is not
very useful, since standard method to find eigenvalues and eigenvectors of a
matrix is to solve the characteristic equation det (A− λI) = 0. Are we thus
running in circles? Luckily, there are, however, two useful results described in
the next Section.
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3 Explicit formulae for real roots (the case of
distinct roots)

Let us consider the eigenproblem (6) where A is the companion matrix of the
polynomial (1). First of all, there are several very effective methods to compute
eigenvalues and eigenvectors of a matrix, without explicit use of the character-
istic equation [5].

Secondly, we can use the Frobenius companion matrix and equations (4) to
compute roots of a polynomial. Assume that all roots of the characteristic poly-
nomial are distinct. Then eigenvalues of the matrixAM are λM1 , . . . , λ

M
n . We can

now compute the sum of powers of eigenvalues of the companion matrix using
Viète’s formula and equation (4a) as Tr

(
AM

)
=
∑n
i=1 λ

M
i . This sum is always

real. Indeed, (a+ bi)
M + (a− bi)M = rMeiMϕ + rMe−iMϕ = 2rM cos (Mϕ) so

the contribution from a complex root is real, however oscillatory.
Let us now assume that the root with the largest modulus, λ̂1, is real (it

is also simple since all roots were assumed distinct). For M large enough con-

tribution from
(
λ̂1
)M

will dominate the sum. Therefore we can compute λ̂1
as:

λ̂1 = lim
N→∞

2N+1
√
T2N+1, TM

df
= Tr

(
AM

)
, (7)

where (4a) and Viète’s formula was used.

Suppose now that the root with the second-largest modulus, λ̂2, is real as
well. Due to (4b) and the corresponding Viète’s formula we get:

λ̂2 =
1

λ̂1
lim
N→∞

2N+1
√
U2N+1, UM

df
= 1

2

(
T 2M − T2M

)
, (8)

Under similar assumptions we get from (4c) and Viète’s formula expression for
the root with the third-largest modulus:

λ̂3 =
1

λ̂1λ̂2
lim
N→∞

2N+1
√
W2N+1, WM

df
= −1

6

(
−T 3M + 3TMT2M − 2T3M

)
. (9)

Below we provide example of convergence of the above formulae.

Example 1 Consider polynomial p (x) =
(
x2 + 1

)
(x− 2) (x− 3) (x+ 3.1) =

x5 − 1. 9x4 − 8. 5x3 + 16. 7x2 − 9. 5x + 18. 6. In this case roots with largest
moduli are not well separated and thus the convergence to λ̂1 will be slow. The
companion matrix is:

A =






0 0 0 0 −18.6
1 0 0 0 9.5
0 1 0 0 −16.7
0 0 1 0 8.5
0 0 0 1 1.9





, (10)
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and we get:

N 2N+1
√
T2N+1 N 2N+1

√
U2N+1 N 2N+1

√
W2N+1

25 −3. 087 380 731 10 −9. 300 044 188 24 2 −18. 600 018 868 2
50 −3. 098 860 499 81 15 −9. 300 000 665 59 5 −18. 600 000 001 4
100 −3. 099 978 809 84 20 −9. 300 000 010 11 10 −18. 6
200 −3. 099 999 984 94 25 −9. 300 000 000 15

4 Discussion

In the present work we derived explicit formulae (7), (8), (9) for polynomial
roots. More exactly, these formulae, based on the Frobenius companion matrix,
can be used to compute real simple roots with largest moduli. Viète’s formulae
and expressions for coefficients ck of the characteristic polynomial (4) have to
be used as well (note, however, that for decreasing k these expressions become
more and more complicated).

The formula (7) works well provided that the roots are well separated, other
formulae behaving better. It is also possible, after carrying out transformation
x→ 1/x, to compute real simple roots with smallest moduli.

Let us note finally that the method is related to Dandelin-Gräffe algorithm,
discovered by Dandelin, Gräffe and Lobachevsky [6, 7], in which the polynomial
roots are squared iteratively. It is thus possible to use methods elaborated for
the Dandelin-Gräffe algorithm [7] to compute multiple or complex roots within
our approach.
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