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Abstract- We use a Dirac-like equation with a linear potential in order to evaluate the energy 

levels of the excited states of the Y-shaped color-electric flux tubes, describing the quarks 

interactions inside the nucleon. We have neglected the bare-masses of the quarks, and the 

obtained results reproduce the energy of the centroid of the excited states of the nucleon as 

well as the possible creation of nucleon-antinucleon pairs. 

 

1 – Introduction 

 

   The non-abelian character of the Quantum Chromodynamics (QCD) demands 

that  at low energies, the lines of force of the color-electric fields to attract each 

other (in a Faraday-like description of the phenomenon), so that we have a 

color-electric flux tube connecting a quark-antiquark pair [1,2,3,4,5]. As was 

pointed out by Sakumichi and Suganuma [4], quark confinement is interpreted 

with a linear interquark potential acting at long distances. Also as was quoted in 

[4], the linear confining potential is considered to be caused by “one-

dimensional squeezing” of the interquark color-electric flux, which is also 

shown by lattice QCD studies (please see also [3]). 

   Indeed, Nambu [5] was the first theorist to propose that quarks, inside the 

hadrons, are tied together by strings. He draws this conclusion based in the 

evidence that the masses of strongly interacting particles increased without 

limits as their internal angular momentum increased (please see also [2]). As 

quoted in [2], lattice QCD have demonstrated [6] that Nambu’s conjecture was 

essentially correct:- in chromodynamics, a string-like chromoelectric flux tube 

forms between distant quarks, leading to their confinement with an energy 

proportional to the distance between them. 

   As quarks are spin-½ particles, it seems that the more appropriate treatment of 

their interactions is through the Dirac equation.  There are examples in the 

literature where the Dirac equation has been solved in 1+1 dimensions, with the 

interactions represented by a linear potential [7,8,9,10]. 

   In this work we intend to look at the energy levels of the excited states of the 

nucleon, by considering the three quarks tied by linear potentials, in an Y-type 

flux tube formation [11,12]. We are going to do this by solving a Dirac-like 
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equation, where the interaction between quarks is described by a static linear 

potential. 

 

2 – Dirac equation and the linear potential 

 

   Let us consider an arm of the Y-shaped flux tube with a potential, V= ar, 

being a the string tension. Neglecting the bare masses of the quarks, we can 

write the “Dirac hamiltonian”  

 

                                               H =  p +  a r.                                                   (1) 

 

We also have the Dirac-like equation 

 

                                                  H = E.                                                         (2) 

 

As is usually in treating Dirac equation (please see [13]), we are going to take 

the square of the operator H acting on the wave function . We have 

 

                  H
2
   (H*H) = [(p + ar)*(p + ar)] = E

2
.                    (3) 

 

Besides to take in account that the operators p and r satisfies the usual 

commutation relation of quantum mechanics, we need to define the products in 

the (,) space. Next we establish the rules to these products. 

 

                                             * = * = 1.                                                   (4A) 

 

                                  * =   sin(𝜋  2) (-i) = -i.                                      (4B) 

 

In the case of the “cross-product” we can consider two possibilities: 

 

                                              * = *,                                                        (4C) 

 

in the commuting case, and 
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                                         * =  - *,                                                          (4D) 

 

in the anti-commuting one.  

 

3 – Dirac equation and the linear potential: the commuting case  

 

   In the commuting case, the Dirac equation reads 

 

                              (p
2
 + a

2
 r

2
 – ipar – iarp) = E

2
.                                       (5) 

 

Let us seek for a trying wave function which satisfies equation (5). 

By taking 

 

                             p = id  dr       and          = exp(-Kr
2
),                                  (6) 

 

and performing the indicated calculations, we have from (5) 

 

                       [(a
2
 – 4K

2
 – 4Ka) r

2
]  = [ E

2
 – (2K + a)] .                             (7) 

 

Equation (7) implies that 

 

                                              a
2
 – 4K

2
 – 4Ka = 0,                                            (8A) 

 

                                                     E
2
 = 2K + a.                                                (8B) 

 

From the roots of equation (8A), we take the positive one, namely 

 

                                                   2K+ = a(2 – 1).                                               (9) 

 

Inserting (9) into (8B), we obtain 
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                                            E
2
 = 2K+ + a = 2 a.                                             (10) 

 

It would be interesting to estimate the value of the string constant a, appearing 

in (10). This can be done as follows. We write the Hamiltonian 

 

                                                  H = p + ar.                                                      (11) 

 

Besides this we consider the uncertainty relation 

 

                                                    r p = ½.  (ℏ=1)                                              (12) 

 

Putting (12) into (11) we get 

 

                                                   H  = p + a  (2p).                                             (13) 

 

Differentiating H  with respect to p, by taking  dH  dpp0 = 0, we have 

 

                                       a = 2 p0
2
 = 2 m

2
 = 2 M

2
  9.                                        (14) 

 

In (14) we took m, the constituent mass of the quark, as being equal to one third 

of the nucleon mass (M). 

Inserting (14) into (10), we obtain 

 

                                                E
2
 = 22 M

2
  9.                                                (15) 

 

The positive root of  E
2
 (eq.(15)) gives 

 

                                                 E = 8
1  4

 M  3.                                                 (16) 

 

We observe that (16) corresponds to the energy of the excited state of one arm 

of the Y-shaped description of the nucleon (please see reference [12]). 

Therefore the energy of the excited state of the nucleon is 
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                                         Ee-nucleon = 3E = 8
1  4

 M.                                           (17) 

 

Putting numbers in (17), we get 

 

                                      Ee-nucleon  1.68 M  1.6 GeV.                                     (18) 

 

This value must be compared with that of 1.5 GeV of reference [12]. 

   Meanwhile Brown and Rho [14], evaluated the energy difference between the 

centroid of the excited states and the ground state of the nucleon as being 

approximately 600 MeV. In order to compare the present result with that 

obtained by Brown and Rho [14], we write 

 

                                E = Ee-nucleon – M  .68 M  .64 GeV.                            (19) 

 

We also may to compare (19) with the result we obtained in a previous work 

[15], namely 

 

                                    ℏ = 2 M  𝜋  .64 M  .60 GeV.                                     (20) 

 

4 – Dirac equation and the linear potential: the anti-commuting case 

 

    In the anti-commuting case (see(4D), the squared Dirac equation reads 

 

                                 (p2 + a2 r2 – ipar + iarp) = E2 .                                      (21) 

 

Inserting the trying wave function given by (6)into (21) leads to 

 

                              [(a2 – 4K2) r2]  = [(E2 – (2K + a)] .                                   (22) 

 

Equation (22) implies that 

 

                          a2 = 4K 2                   and                    E2 = 2K + a.                        (23) 
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The non-trivial solution of (23) gives 

 

                                                           E2 = 2a.                                                               (24) 

 

If we use the evaluation of a obtained in (14), we get 

 

                                                        E2 = 4 M2  9.                                                        (25) 

 

The positive root of (26) gives 

 

                                                       Etot = 3E = 2M.                                                     (26) 

 

We can interpret (26) as the creation of a nucleon-anti-nucleon pair. 

 

5 – The squared Hamiltonian 

 

   Let us consider the square of the Hamiltonian given by (11) acting on the 
wave function . We have 

 

                     H 
2
  = (p + ar)

2
  = (p

2
  + a

2
r

2
 + 2rpa)  = E

2
 .                      (27) 

 

By using the uncertainty relation (12) to fix the “cross-product” appearing in 

(27), we get 

 

                           (p
2
 + a

2
r

2
)  = (E

2
 – a)  = (2HHO) .                                 (28) 

 

In (28), we have identified the left hand term as being two times the 
harmonic-oscillator hamiltonian of frequency a. Pursuing further, we get 

 

                               E2 = 2(n + 1)a + a = (n +1)2a,     n=0,1,2,…                     (29) 
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We observe that the ground state of (29) coincides with the result we 
obtained in (24).  

   Inserting in (29)the value of the string tension we get in (14) and taking 
the positive root of E2, we have 

 

                                           Etot = 3E = (n + 1)1/2 2M.                                        (30) 

 

It is interesting to consider the states of (30) given by 

 

                                    N
2
 = n + 1,   with    N

2
 = 1,4,9,…                                 (31) 

 

These states correspond to the production of nucleons-anti-nucleons pairs. 

 

6 – Concluding remarks 

 

   In this work we have considered solutions of the Dirac equation, where the 

interactions between quarks were attributed to the chromo-electric flux tubes, 

leading to a static linear potential. In doing this we have neglected the “free-

quark” masses, as compared with the constituent-quark masses caused by the 

strong interactions (please see [16]). 

   A nice visualization of the manner in which QCD vacuum fluctuations are 

expelled from the interior region of a baryon (nucleon, for instance) is presented 

as an animation in reference [17]. There, a dynamic picture of the Y-shaped flux 

tube is shown.  

   Meanwhile we have considered in the present work an averaged description of 

this phenomenon, where the arms of the Y-shaped flux tube are described 

through a static linear potential. The size (R) of the arm of the Y-form flux tube 

can be estimated as it follows. We write 

 

                                                       a R = M.                                                     (32) 

 

Inserting (14) in (32) we get 

 

                                               R = 4.5  M  0.95 fm.                                      (33) 
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This value must be compared with an estimate of the nucleon radius, by using 

the MIT bag model (please see [18]), namely 

 

                                             RMIT = 4  M  0.84 fm.                                       (34) 

 

   As was reported in [17], a key point of interest is the distance at which the 

flux tube formation occurs. Yet according to [17], the animation indicates that 

the transition to flux-tube formation occurs when the averaged distance of the 

quarks from the centre of the triangle is greater than 0.5fm. Therefore the value 

of R estimated in the present work, namely R  0.95 fm, agrees with the above 

statement. 
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