Five conjectures on a diophantine equation involving two primes and a square of prime

Marius Coman
Bucuresti, Romania
email: mariuscoman13@gmail.com

Abstract. In this paper I make five conjectures about the primes q, r and the square of prime p^2, which appears as solutions in the diophantine equation $120*n*q*r + 1 = p^2$, where n is non-null positive integer.

Conjecture 1:

For any n non-null positive integer there exist q, r primes such that $120*n*q*r + 1 = p^2$, where p is prime or a power of prime.

Conjecture 2:

For any q odd prime there exist n non-null positive integer and r prime such that $120*n*q*r + 1 = p^2$, where p is prime or a power of prime.

Conjecture 3:

For any q, r odd primes there exist n non-null positive integer such that $120*n*q*r + 1 = p^2$, where p is prime or a power of prime.

Conjecture 4:

For any n non-null positive integer and any q prime there exist r prime such that $120*n*q*r + 1 = p^2$, where p is prime or a power of prime.

Examples:

: For $[n, q] = [1, 5]$ there exist $r = 17$ such that $p = 101$ prime; also $r = 37$ such that $p = 149$ prime;
: For $[n, q] = [1, 7]$ there exist $r = 23$ such that $p = 139$ prime; also $r = 53$ such that $p = 211$ prime;
: For $[n, q] = [1, 11]$ there exist $r = 13$ such that $p = 131$ prime; also $r = 83$ such that $p = 331$ prime;
: For $[n, q] = [2, 5]$ there exist $r = 19$ such that $p = 151$ prime;
For \([n, q] = [2, 7] \) there exist \(r = 3 \) such that \(p = 71 \) prime; also \(r = 17 \) such that \(p = 169 \) square of prime;

For \([n, q] = [2, 11] \) there exist \(r = 3 \) such that \(p = 89 \) prime;

For \([n, q] = [3, 7] \) there exist \(r = 13 \) such that \(p = 181 \) prime;

For \([n, q] = [3, 11] \) there exist \(r = 3 \) such that \(p = 109 \) prime;

For \([n, q] = [4, 5] \) there exist \(r = 67 \) such that \(p = 401 \) prime;

For \([n, q] = [4, 7] \) there exist \(r = 17 \) such that \(p = 239 \) prime;

For \([n, q] = [4, 11] \) there exist \(r = 11 \) such that \(p = 241 \) prime.

Conjecture 5:

For any \(n \) non-null positive integer there exist \(q \) prime such that \(120nq^2 + 1 = p^2 \), where \(p \) is prime or a power of prime.

Note, for instance, the case from the examples below: \(480\times11^2 + 1 = 241^2 \).