A possible way to write any prime, using just another prime and the powers of the numbers 2, 3 and 5

Marius Coman
Bucuresti, Romania
email: mariuscoman13@gmail.com

Abstract. In this paper I make a conjecture which states that any odd prime can be written in a certain way, in other words that any such prime can be expressed using just another prime and the powers of the numbers 2, 3 and 5. I also make a related conjecture about twin primes.

Conjecture:

Any odd prime p can be written at least in one way as $p = (q*2^a*3^b*5^c ± 1)*2^n ± 1$, where q is an odd prime or is equal to 1, where a, b and c are non-negative integers and n is non-null positive integer.

Verifying the conjecture:
(For the first five odd primes)

: $3 = (1*2^1*3^0*5^0 - 1)*2^1 + 1$, but also $3 = (1*2^0*3^1*5^0 - 1)*2^1 - 1$;

: $5 = (1*2^1*3^0*5^0 + 1)*2^1 - 1$, but also $5 = (1*2^0*3^1*5^0 - 1)*2^1 + 1$, also $5 = (1*2^2*3^0*5^0 - 1)*2^1 - 1$;

: $7 = (1*2^0*3^1*5^0 + 1)*2^1 - 1$, but also $7 = (1*2^1*3^0*5^0 + 1)*2^1 + 1$, also $7 = (3*2^1*3^0*5^0 + 1)*2^1 - 1$, also $7 = (5*2^0*3^0*5^0 - 1)*2^1 - 1$, also $7 = (1*2^2*3^0*5^0 - 1)*2^1 + 1$;

: $11 = (1*2^1*3^1*5^0 - 1)*2^1 + 1$, but also $11 = (1*2^0*3^0*5^1 + 1)*2^1 - 1$, also $11 = (3*2^1*3^0*5^0 - 1)*2^1 + 1$, also $11 = (5*2^0*3^0*5^0 + 1)*2^1 - 1$, also $11 = (7*2^0*3^0*5^0 - 1)*2^1 - 1$, also $11 = (1*2^2*3^0*5^0 + 1)*2^1 + 1$;

: $13 = (1*2^1*3^1*5^0 + 1)*2^1 + 1$, but also $13 = (1*2^0*3^0*5^1 + 1)*2^1 + 1$, also $13 = (3*2^1*3^0*5^0 + 1)*2^1 + 1$, also $13 = (5*2^0*3^0*5^0 + 1)*2^1 + 1$, also $13 = (7*2^0*3^0*5^0 - 1)*2^1 + 1$.
Conjecture:

Any pair of twin primes \([p_1, p_2]\) can be written as \([p_1 = (q*2^a*3^b*5^c - 1)*2^n - 1, p_2 = (q*2^a*3^b*5^c - 1)*2^n + 1]\), where \(q\) is prime or is equal to 1, where \(a, b\) and \(c\) are non-negative integers and \(n\) is non-null positive integer.

Verifying the conjecture:
(For the first three pairs of twin primes)

- \(3 = (1*2^0*3^1*5^0 - 1)*2^1 - 1\) and \(5 = (1*2^0*3^1*5^0 - 1)*2^1 + 1\);
- \(5 = (1*2^1*3^0*5^0 + 1)*2^1 - 1\) and \(7 = (1*2^1*3^0*5^0 + 1)*2^1 + 1\), also \(5 = (1*2^2*3^0*5^0 - 1)*2^1 - 1\) and \(7 = (1*2^2*3^0*5^0 - 1)*2^1 + 1\);
- \(11 = (1*2^0*3^0*5^1 + 1)*2^1 - 1\) and \(13 = (1*2^1*3^1*5^0 + 1)*2^1 + 1\), also \(11 = (5*2^0*3^0*5^0 + 1)*2^1 - 1\) and \(13 = (5*2^0*3^0*5^0 + 1)*2^1 + 1\).