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Abstract

Kaluza’s 1921 theory of gravity and electromagnetism using a fifth

wrapped-up spatial dimension is inspiration for many modern attempts

to develop new physical theories. For a number of reasons the theory

is incomplete and often considered untenable. An alternative approach

is presented that includes torsion, unifying gravity and electromagnetism

in a Kaluza-Cartan theory. Emphasis is placed on admitting important

electromagnetic fields not present in Kaluza’s original theory, and on a

Lorentz force law. This is investigated via a non-Maxwellian kinetic def-

inition of charge related to Maxwellian charge and 5D momentum. Two

connections are used. General covariance and global properties are inves-

tigated via a reduced non-maximal atlas. Conserved super-energy is used

in place of the energy conditions for 5D causality. Explanatory relation-

ships between matter, charge and spin are present.

1 Introduction

Kaluza’s 1921 theory of gravity and electromagnetism [1][2][3][4] using a fifth
wrapped-up spatial dimension gives a taste of unification of electromagnetism
with gravity in a way that has problems and is often believed to be untenable.
However the underlying aim was particularly promising in terms of explana-
tory power. Modern works hold out hope for higher dimensional theories and
non-abelian gauges [25], and the consequent hope for unification with quantum
mechanics. Here an alternative approach is implemented that goes back to a
simpler (and in the author’s opinion more practical) root: fully unifying just
gravity and electromagnetism. Such an approach, without finding use for la-
grangians, or even Klein’s famous contribution, is contrary to more common
lines of thinking. The author makes no claims in this regard here except that
the work be judged on its own terms and novelty. Certain requirements are
evident: a Lorentz force law [6] must be explained, Maxwell’s laws [6] must
be present, the Lorentz transformation [6] must define inertial frames, general
relativity [6] must be a limit for gravitational physics. The Lorentz force law
is the most conceptually unsatisfying law within classical theory. It may not
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even be compatible with n-dimensional Noether theorems [26] - all the more
reason to construct it, or an approximation as is the case here, from first princi-
ples. Yes, it does come from the Einstein-Maxwell stress-energy tensor [6], but
where does that come from? The Lorentz force law is but the relativistic form of
Coulomb’s law. Surely it should be as fundamental geometrically as the inverse
square law of gravity? It may equally be approximate. It is in this straight
forward and relatively unambitious vein that search for a variant Kaluza theory
is undertaken.

The Lorentz force law here requires a constant scalar field, this places con-
straints on admissible solutions. The emphasis is then on eliminating the con-
straint in Kaluza theory that prevents the so-called non-null electromagnetic
solutions. Explicit existence proofs are not necessary. It is sufficient to show
that the constraint that causes the problems on solutions has been weakened in
the new theory. The constraint is the third field equation in [1], and equation
(2.0.7) here. When the scalar field is constant this equation becomes one of two
equations that characterize the null electromagnetic fields. This equation is as
follows, and fields that satisfy this will be called ‘nullish’:

Definition 1.0.1: ‘Nullish’ electromagnetic fields satisfy: FabF
ab = 0. Null

electromagnetic fields have the nullish property plus the following condition,
where the star is the Hodge star operator: Fab(∗F ab) = 0.

Kaluza’s original theory [1] prohibits non-nullish solutions (or even near
non-nullish solutions) for constant scalar field. Nullishness is too tight to admit
important electromagnetic fields, in particular the essential electrostatic fields.
That electrostatic or near-electrostatic fields are non-nullish and therefore a
problem in any theory that omits them can be seen by comparing definition
(1.0.1) with the following well-known fact from special relativity, that is by
considering a special relativistic limit: FabF

ab = 2(B ·B − E · E).
At first the objective of the research undertaken here, that is before torsion

was finally admitted, was actually to try to discount the need for torsion since
its lack of presence is geometrically an obvious assumption in many physical
theories. This is analogous to Euclid’s fifth postulate in that its assumption
is an addition and its removal actually enabled geometric theories like general
relativity to be possible. Whilst few would consider it necessary to investigate
such an assumption as torsion is essentially just a deformation of the connection
[26], that was nevertheless the program here. The research was therefore based
around showing that sufficient electromagnetic fields could be obtained (without
torsion) from existing Kaluza theory without difficulties or arbitrary assump-
tions [10], and also whilst deriving the Lorentz Force law from first principles.
That program evolved into explicitly allowing torsion in defining equations such
as the Ricci curvature, noting that vanishing Ricci curvature plays a role in
Kaluza-Klein theories - thus torsion contrary to some modern complaints can
have physical significance. It is claimed that the theory presented here is an
example of a Kaluza variant theory that better satisfies the requirements of
observable classical physics in having a wide range of electromagnetic fields
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permitted whilst providing a Lorentz force law by construction. This paper
therefore shows that such Kaluza variant theories exist and exemplifies a new
route in the search for such theories. The theory presented here can thus be
seen as at least an example of such a theory, and has value as such. In addition
it can also be considered as a candidate empirical theory in itself, though this
is not necessary for it to have the previously mentioned theoretical value.

A new kinetic charge will be defined as the 5th-dimensional component of
momentum as in [8]. A Lorentz force law will follow. As momentum the kinetic
charge has a divergence law via the (torsionless) Einstein tensor. Maxwellian
charge also has a vector potential, see (4.4.1), and thus local conservation, but
the kinetic charge and corresponding divergence law being covariant is in this
sense more fundamental.

2 Conventions

The following conventions are adopted unless otherwise specified. Though un-
familiar in places these are necessary for following the multiple systems used.

Five dimensional metrics, tensors and pseudo-tensors and operators are given
the hat symbol. Five dimensional indices, subscripts and superscripts are given
capital Roman letters. Lower case indices can either be 4D or generic for def-
initions depending on context. Index raising is referred to a metric ĝAB if
5-dimensional, and to gab if 4-dimensional. Terms that might repeat dummy
variables or are otherwise in need of clarification use additional brackets. The
domain of partial derivatives carries to the end of a term without need for brack-
ets, so for example we have ∂agdbAc + gdbgac = (∂a(gdbAc)) + (gdbgac). Terms
that might repeat dummy variables or are otherwise in need of clarification use
additional brackets. Square brackets can be used to make dummy variables lo-
cal in scope. Space-time is given signature (−, +, +, +), Kaluza space (−, +,
+, +, +) in keeping with [6]. Under the Wheeler et al [6] nomenclature the sign
conventions used here as a default are [+, +, +]. The first dimension (index
0) is time and the 5th dimension (index 4) is the topologically closed Kaluza
dimension. Time and distance are geometrized throughout such that c = 1. G
is the gravitational constant. The scalar field component is labelled φ2. The
matrix of gcd can be written as |gcd|. The Einstein summation convention may
be used without special mention. � represents the 4D D’Alembertian [6].

Connection coefficients with torsion will take the form: Γc
ab or Γabc. The

metric with an antisymmetric torsion tensor defines a unique connection ∇a.
The unique Levi-Civita connection (ie without torsion) is written as: ̥c

ab, and
the covariant Levi-Civita derivative operator (ie without torsion): △a. Define:

Fab = ∂aAb − ∂bAa = ∇aAb −∇bAa + Γc
abAc − Γc

baAc = △aAb −△bAa

F = dA (2.0.1)

In order to distinguish tensors constructed using torsion Gab and Rab (i.e.
where the Ricci tensor is defined in terms of Γc

ab) from those that do not use
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torsion (ie that are defined in terms of ̥c
ab), the torsionless case uses cursive:

Gab and Rab. On any given manifold with torsion both these parallel systems
of connection coefficients and dependent tensors can be used. That is, the Ricci
tensor (with torsion), Rab, and the Ricci tensor, Rab, are both defined and are in
general different. Further each of these can have hats on or hats off, giving: R̂AB

and R̂AB . It is an extremely confusing part of this work that all four systems
can be used at the same time in the same equations! This particularly occurs
when the 4D components of a 5D tensor are being used, e.g. looking at R̂ab

and R̂ab. Torsion introduces non-obvious conventions in otherwise established
definitions. The order of the indices in the connection coefficients matters, and
this includes in the Ricci tensor definition and the definition of the connection
coefficient symbols themselves:

∇awb = ∂awb − Γc
abwc (2.0.2)

Some familiar defining equations consistent with [1] define the Ricci tensor
and Einstein tensors in terms of the connection coefficients along usual lines,
noting that with torsion the order of indices can not be carelessly interchanged
as they can with the symmetric Levi-Civita coefficients:

Rba = ∂cΓ
c
ba − ∂bΓ

c
ca + Γc

baΓ
d
dc − Γc

daΓ
d
bc (2.0.3)

Gab = Rab −
1

2
Rgab = 8πGTab (2.0.4)

We will define α = 1
8πG . Analogous definitions can also be used with the

Levi-Civita connection to define Rab and Gab in the obvious way.
We also make reference to Kaluza’s original field equations [1] in the text:

Gab =
k2φ2

2

{

1

4
gabFcdF

cd − F c
aFbc

}

− 1

φ
{∇a(∂bφ)− gab�φ} (2.0.5)

∇aFab = −3
∂aφ

φ
Fab (2.0.6)

�φ =
k2φ3

4
FabF

ab (2.0.7)

Note that there are convention differences above withWald’s [7] andWheeler’s
Einstein-Maxwell equation [6], and thus also with this work.

In this paper much of the working has been omitted. More extensive detailing
of the workings are given in [24], along with extra materials not core to this work.
It should however be noted that the postulates are slightly different here. The
Ricci curvature there is based on the conventions of [12], whereas here it’s based
on the conventions of Wald [7], but extended for torsion as defined in footnote 1
p31 of [7], and using the index position used in eqn(3.2.3) of [7] that defines the
Riemannian curvature. Much basic working is detailed in [29]. The resulting
difference to [24]’s notation is a reversal of the indices of the Ricci curvature.
With torsion even the conventions of [7] and [6] cease to be identical. Indeed,
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the definition of Riemannian curvature in [6] would lead to a different sign in the
definition of the torsion tensor and an inversion of the Ricci curvature indices
with respect to [7].

In this paper orders of magnitude notation is used. In contrast to [24] a
clearer notation will be used to indicate when terms are of a certain order of
magnitude: O(X). Versus when rounding has occured by ignoring terms of
O(X), ie ”O(X) terms discounted”, which may be denoted \O(X).

3 Torsion

For both 5D and 4D manifolds torsion will be introduced into the connection
coefficients as follows, using the notation of Hehl [11].

1

2
(Γk

ij − Γk
ji) = S k

ij (3.0.1)

This relates to the notation of Kobayashi and Nomizu [12] and Wald [7] as
follows:

T i
jk = 2Sjk

i ≡ Γi
jk − Γi

kj (3.0.2)

We have the contorsion tensor K k
ij [11] as follows, and a number of relations

[11]:

Γk
ij =

1

2
gkd(∂igdj + ∂jgdi − ∂dgij)−K k

ij = ̥
k
ij−K k

ij (3.0.3)

K k
ij = −S k

ij + S k
j i

− Sk
ij = −K k

i j (3.0.4)

Notice how the contorsion is antisymmetric in the last two indices. With
torsion included, the auto-parallel equation becomes [11]:

d2xk

ds2
+ Γk

(ij)

dxi

ds

dxj

ds
= 0 (3.0.5)

Γk
(ij) = ̥

k
ij+Sk

(ij) − S k
(j i)

= ̥
k
ij+2Sk

(ij) (3.0.6)

Only when torsion is completely antisymmetric is this the same as the ex-
tremals [11] which give the path of spinless particles and photons in Einstein-
Cartan theory: this becomes none other than geodesics with respect to the
Levi-Civita connection.

d2xk

ds2
+̥

k
ij

dxi

ds

dxj

ds
= 0 (3.0.7)

We can now apply this to some definitions in 5D that will be needed, invok-
ing complete antisymmetry of torsion as required. Inspired by the Belinfante-
Rosenfeld procedure [12][15], by defining the torsionless Einstein tensor in terms
of torsion bearing components we can decompose it as follows:
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ĜAB = ĜAB + V̂AB + X̂AB (3.0.8)

V̂AB = −1

2
∇̂C(σ̂ABC + σ̂BAC + σ̂CBA) (3.0.9)

Where σ is defined as the spin tensor in Einstein-Cartan theory simply ex-
tended to 5D.

σ̂ABC = 2ŜABC + 2ĝAC Ŝ
D

BD − 2ĝBC Ŝ
D

AD (3.0.10)

This simplifies definition (3.0.9):

V̂AB = −1

2
∇̂C(σ̂CBA) = −∇̂C(ŜCBA + ĝCAŜ

D
BD − ĝBAŜ

D
CD ) (3.0.11)

By considering symmetries and antisymmetries we get a divergence law for
5D spin sources:

∇̂BV̂AB = 0 (3.0.12)

Note that the mass-energy-charge divergence law for the torsionless Einstein
tensor is in terms of the torsionless connection, but the spin source divergence
law here is in terms of the torsion-bearing connection. However, for completely
antisymmetric torsion we have:

∇̂AV̂AB = 0 (3.0.13)

∇̂C ĜAB = △̂C ĜAB + K̂ D
CA ĜDB + K̂ D

CB ĜAD

∇̂AĜAB = −K̂ AD
B ĜAD = −K̂ AD

B ĜDA = +K̂ AD
B ĜAD = 0 (3.0.14)

∇̂AĜAB = 0 (3.0.15)

∇̂A(ĜAB + X̂AB) = 0 (3.0.16)

And so there is a stress-energy divergence law with respect to the torsion
connection also, at least in the completely antisymmetric case. Further, still
assuming complete antisymmetry of torsion, by definition of the Ricci tensor:

R̂AB = R̂AB + K̂ C
DA K̂ D

BC − ∂CK̂
C

BA − K̂ C
BA

ˆ̥D
DC + K̂ C

DA
ˆ̥D
DC − K̂ C

DB
ˆ̥D
AC

= R̂AB − K̂ C
AD K̂ D

BC − ∇̂C ŜABC (3.0.17)

Ĝ[AB] = R̂[AB] = −∇̂C ŜABC = −V̂AB (3.0.18)

−V̂AB is the antisymmetric part of ĜAB at this limit. And X̂AB becomes a
symmetric spin-torsion coupling adjustment. Complete antisymmetry of torsion
simplifies the issue of divergence laws that otherwise appears more complex in
[24].
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4 Overview Of Kaluza-Cartan Theory

4.1 Postulates

The following K1-K4 are the core Postulates of the present Kaluza-Cartan the-
ory.

POSTULATE (K1): Geometry. A Kaluza-Cartan manifold is a 5D smooth
Lorentzian manifold with completely antisymmetric (and necessarily metric)
torsion connection.

POSTULATE (K2): Well-behaved. Kaluza-Cartan space is assumed glob-
ally hyperbolic in the sense that there exists a 4D spatial cauchy surface plus
time, such that the 4D hypersurface is a simply connected 3D space extended
around a 1D loop. And Kaluza-Cartan space is oriented and time-oriented.

POSTULATE (K3) version1: We start with effectively the old and original
version: Cylinder condition (original). One spatial dimension is topologi-
cally closed and ‘small’, the Kaluza dimension. This is taken to mean that there
are global unit vectors that define this direction, the Kaluza direction. The par-
tial derivatives of all tensors in this Kaluza direction are taken to be zero in some
coordinate system. The other spatial dimensions and time dimension are ‘large’.
‘Large’ here simply means that the considerations given to ‘small’ do not apply.
We further add an additional constraint, Cylinder condition (additional).
The covariant derivative ∇̂κ (with torsion) of all tensors in the Kaluza direction
differ from the partial derivative terms (i.e zero) by order O(l) ≈ O(h2) terms.

POSTULATE (K4): Geodesic Assumption. That any model of a charged
particle approximately follows 5D auto-parallels.

Definitions 4.1.1: The Kaluza-Cartan vacuum is a Ricci flat region of a
Kaluza-Cartan manifold with respect to the torsion connection definition of the
Ricci tensor. Similarly the Kaluza vacuum is a Ricci flat region with respect
to the Levi-Civita connection. They are different: R̂AB = 0 and R̂AB = 0 re-
spectively. Here they are both defined in terms of the geometry implied by the
cylinder condition. Kaluza vacuum will be associated with nullish electromag-
netic solutions when there is no torsion, Kaluza-Cartan vacuum will encompass
all electromagnetic fields. Kaluza-Cartan matter and Kaluza mass-energy follow
as complements to their vanishing respective Ricci tensors.

Observe that Kaluza-Cartan matter, unlike Kaluza mass-energy, but like
common matter, does not have its own divergence law. This is not a problem,
it just means that the Kaluza mass-energy more closely resembling the original
Einsteinian mass-energy is the correct definition with respect to conservation,
and the Kaluza-Cartan matter potentially more similar to tangible matter. Less
exploratory than [24], here the electromagnetic field will be a priori identified
with the Kaluza-Cartan vacuum:

Definition 4.1.2: The classical fields limit is defined to be an area of Kaluza-
Cartan space which is Kaluza-Cartan vacuum, or at least approximately so to

7



at least \O(h2), and is to be identified with extended fields such as gravitational
and electromagnetic, and characterized by the absence of what is normally called
matter.

LIMIT POSTULATE (B1): There is a Kaluza atlas, see definition (4.2.1),
possibly only over a region, such that φ2 = 1 at every point. The scalar field re-
sults from the the decomposition of the Kaluza metric into 4D metric, potential
vector and scalar field. It is contained within the metric explicitly in (4.4.1).
Thus B1 is a constraint on the 5D metric.

Additional postulates that can be interpreted as forming conditions neces-
sary for a classical limit now follow. L1-L2 constitute a weak field limit that
will be applied by way of approximation for the classical limit of behaviour.
The deviation from the 5D-Minkowski metric is given by a tensor ĥAB . This
tensor belongs to a set of small tensors that we might label O(h). Whilst this
uses a notation similar to orders of magnitude, and is indeed analogous, the
meaning here is a little different. This is the weak field approximation of gen-
eral relativity using a more flexible notation. Partial derivatives, to whatever
order, of metric terms in a particular set O(x) will be in that same set at the
weak field limit. In principle we are doing nothing more than following the weak
field limit procedure [6] of general relativity. In the weak field approximation of
general relativity, terms that consist of two O(h) terms multiplied together get
discounted and are treated as vanishing at the limit. We might use the notation
O(h2) to signify such terms. There is the weak field approximation given by
discounting O(h2) terms. But we might also have a less aggressive limit given
by, say, discounting O(h3) terms, and so on. We can talk about weak field lim-
its (plural) that discount O(hn) terms for n > 1 based on the same underlying
construction. The use of orders of magnitude in these axioms can be interpeted,
in addition to imposing geometric constraints, as essentially a choice of scale.
That choice of scale, even if mathematically arbitrary, is physically meaningful:
the classical scale.

LIMIT POSTULATE (L1): The metric can be written as follows in terms

of the 5D Minkowski tensor and ĥ ∈ O(h): ĝAB = µ̂AB + ĥAB .
Torsion will also be considered a weak field under normal observational con-

ditions, similarly to L1. Torsion is defined in terms of the Christoffel symbols.
Christoffel symbols are in part constructed from the partial derivatives of the
metric and that part is constrained by L1 to be O(h). The contorsion term
being the difference. See [11]. The contorsion (and therefore the torsion) will
be treated as O(h) accordingly.

LIMIT POSTULATE (L2): The contorsion (and therefore the torsion) will
be an O(h) term at the weak field limits.

SUPER-ENERGY POSTULATE (SE1): That The conserved superenergy

with torsion hypothesis holds. That is, that the divergence (Levi-Civita) of the
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generalized torsion Bel superenergy tensor [17][18] is vanishing everywhere using
the superenergy tensor of the torsion-bearing Riemannian curvature tensor as
defined in [29], where [29] gives the necessary and straight forward extension of
Wald’s definitions [7] to include torsion.

This both ensures local causality of the torsion-bearing Riemannian curva-
ture tensor as proven in [16] and provides a well-defined conservation law, by
definition, for 5D Kaluza-Cartan space, that can potentially be used in place
of the energy conditions. This also overcomes the need for a lagrangian-based
approach. This is analogous to the famous Bel-Robinson superenergy tensor
[28][17][18] which is completely symmetric, curiously, in exactly the 4D and 5D
cases. The use of torsion was included here in contrast to [24] as the SE1 of
[24] imposes constraints on the electromagnetic field that are here avoided. The
superenergy thus defined remains a doubly symmetric 4-tensor, but need not be
symmetric in the sense of (31) in [17]. The local causality (concept detailed in
[16]) imposed by SE1 here also ensures the local causality of the tensor R̂AB .
This is therefore a more natural superenergy tensor for Kaluza-Cartan theory
than the version without torsion [24]. There is no claim here that this is the
unique or correct way to impose causality, it simply shows that alternatives to
more common approaches such as lagrangian methods exist. As mentioned in
[24] it has not been proven that the Levi-Civita divergence operator can be re-
placed by the torsion-bearing covariant derivative and for the results of [16] to
still hold.

Completely antisymmetric torsion ensures that normal coordinates are de-
fined. Though, unlike [24], the Kaluza direction is not here identical with such.
We here use index 4 for the 5D normal coordinates approximating the Kaluza
direction, and index κ to indicate the Kaluza direction proper. We will however
assume that the normal neighbourhoods are small enough to minimize any such
differences. For the sake of rigour and future analysis this can be included, for
the purposes of this work, in the postulate list:

APPROXIMATION LIMIT (L3): The approximation that index κ ≈ index
4 in normal coordinates will be made.

All the so-called limit postulates are potentially disposable if the theory is to
be interpreted in the widest possible context. In this preliminary paper however
they are necessary for the classical limit.

4.2 The Cylinder Condition And Charts

The cylinder condition by construction allows for an atlas of charts wherein the
Kaluza dimension is approximately presented by the fourth index. The atlases
that are compliant are restricted. This means that the cylinder condition can
be represented by a subatlas of the maximal atlas. The set of local coordi-
nate transformations that are compliant with this atlas (called a Kaluza atlas)
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is non-maximal by construction. A further reduction in how the atlas might
be interpreted is also implied by setting c=1, and constant G. The existence
of a single unit for space and time can be assumed, and this must be scaled
in unison for all dimensions. Consistently with cgs units we can choose either
centimetres or seconds. This would leave velocities (and other geometrically
unitless quantities) unchanged in absolute magnitude. This doesn’t prevent re-
flection of an axis however, and indeed reflection of the Kaluza dimension is here
equivalent to a (kinetic) charge inversion. However, given orientability and an
orientation we can remove even this ambiguity. We can further reduce a Kaluza
atlas by removing boosts in the Kaluza dimension. Space-time is taken to be
a subframe within a 5D frame within a Kaluza subatlas of a region wherein
uncharged matter can be given a rest frame via a 4D Lorentz transformation.
Boosting uncharged matter along the Kaluza axis will give it kinetic charge.
The Kaluza atlas represents the 4D view that kinetic charge is 4D covariant.
The justification for this assertion will be given later. Rotations into the Kaluza
axis can likewise be omitted. This results in additional constraints on the con-
nection coefficients associated with charts of this subatlas, and enables certain
geometrical objects to be more easily interpreted in space-time. The use of this
subatlas does not prevent the theory being generally covariant, but simplifies
the way in which we look at the Kaluza space through a 4D physical limit.

Definition 4.2.1: AKaluza atlas is:
(i) A subatlas (possibly just over a region) of the maximal atlas of Kaluza-

Cartan space where boosts and rotations into the Kaluza dimension (as defined
by the cylinder condition K3) are explicitly omitted.

(ii) All partial derivatives in the Kaluza direction are vanishing.
(iii) Inversion in the Kaluza direction and rescalings can also be omitted so

as to establish units and orientation.
(iv) For each point on the Kaluza atlas a chart exists with ‘torsion-normal’

coordinates where index 4 is the Kaluza dimension.

4.3 Kinetic Charge

Kinetic charge is defined as the 5D momentum component in terms of the 5D
Kaluza rest mass of a hypothesised particle: ie (i) its rest mass in the 5D Lorentz
manifold (mk0) and (ii) its proper Kaluza velocity (dx4/dτ

∗) with respect to
a frame in the maximal atlas that follows the particle. And equally it can be
defined in terms of (i) the relativistic rest mass (m0), relative to a projected
frame where the particle is stationary in space-time, but where non-charged
particles are stationary in the Kaluza dimension, and in terms of (ii) coordinate
Kaluza velocity (dx4/dt0):

Prov. Definition 4.3.1: kinetic charge: Q∗ = mk0dx4/dτ
∗ = m0dx4/dt0

This makes sense because mass can be written in fundamental units (i.e. in
distance and time). And the velocities in question defined relative to particular
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frames. It is not a generally covariant definition but it is nevertheless mathe-
matically meaningful. This kinetic charge can be treated in 4D space-time, and
the Kaluza atlas, as a scalar: the first equation above is covariant with respect
to the Kaluza atlas. It can be generalized to a 4-vector, and it is also conserved
as shown. In general relativity at the special relativistic Minkowski limit the
conservation of momenergy can be given in terms of the stress-energy tensor as
follows [9], j 6= 0. This is approximately true at a weak field limit and can be
applied equally to Kaluza theory, via the (torsionless) connection. We have a
description of conservation of (torsionless) momentum in the 5th dimension.

∂T̂ 00

∂t
+

∂T̂ i0

∂xi

= 0 ,
∂T̂ 0j

∂t
+

∂T̂ ij

∂xi

= 0 and
∂T̂ 04

∂t
+

∂T̂ i4

∂xi

= 0 (4.3.2)

We also have i=4 vanishing by the cylinder condition. Thus the conservation
of kinetic charge becomes (when generalized to different space-time frames)
the property of a 4-vector current, which we know to be locally conserved:
∂0T̂

04 + ∂1T̂
14 + ∂2T̂

24 + ∂3T̂
34 = 0.

To make sense of this in 5D we need to change the provisional definition
above and make it density-based as follows (imagine a ring rather than a par-
ticle). The alternative definition can be made in terms of the mass density ρ0,
coupled with the Kaluza dimension’s size or Kaluza length λ. In this way we
do not presuppose that the rest mass we observe in space-time is necessarily
the m0 above: what happens for example to the apparent rest mass in 4D if
the Kaluza distance changes and the density compressed or rarefacted? m0

makes most sense as a definition of rest mass in 4D when this does not happen.
Generalization demands the following definition, replacing m0 with a density:

Definition 4.3.3: 5D kinetic charge: Q∗ = λρk0dx4/dτ
∗ = λρ0dx4/dt0

This leads to a density-slice definition of 4D density-based kinetic charge as
follows (noting that it is not 4D-divergence free in the event that λ changes):

Definition 4.3.4: 4D kinetic charge density: Q∗∗ = ρk0dx4/dτ
∗ = ρ0dx4/dt0

Kinetic charge current density is the 4-vector, induced from 5D Kaluza-
Cartan space as follows (using the Kaluza atlas to ensure it is well-defined as a
4-vector):

J∗∗a = −αĜa4 (4.3.5)

And a measure of the total current can be give as:

J∗a = −αλĜa4 (4.3.6)

Using Wheeler et al [6] p.131, and the appropriate space-time (or Kaluza
atlas) frame, we have:

Q∗ = J∗

a (1, 0, 0, 0)
a (4.3.7)
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So we have a scalar, then a vector representation of relativisitic invariant
charge current, and finally a 2-tensor unification with conserved (torsionless)
mass-energy via the (torsionless) Einstein tensor. It follows that the vanishing
of the divergence of kinetic charge in 4D is only approximate, in 5D not.

Definition 4.3.8: Kinetic charge current is defined to be the 4-vector J∗a =
−αλĜa4, with respect to the Kaluza atlas that represents this total charge cur-
rent in 4D. Note the divergence of the (torsionless) Einstein tensor:

△̂AĜAB = 0 and △̂AĜA4 = 0 ≈ △̂aĜa4

Due to complete antisymmetry, and unlike in [24], the above also holds with
respect to the torsion connection covariant derivative.

4.4 Two Types Of Geometrized Charge

Components used in [1] will be used here as the Kaluza-Cartan metric. The
vector potential and electromagnetic fields formed via the metric are sourced in
Maxwell charge QM . Maxwell’s law are automatically satisfied, using (2.0.1) to
define F with respect to the potential: dF=0 follows from dd = 0. d*F= 4π*J
can be set by construction. d*J=0. Aa is to be identified with the electromag-
netic potential, φ2 is to be a scalar field, and gab the metric of 4D space-time:

Definition 4.4.1: The 5D Kaluza-Cartan metric.

ĝAB =

[

gab + k2φ2AaAb kφ2Aa

kφ2Ab φ2

]

and ĝAB =

[

gab −kAa

−kAb 1
φ2 + k2AiA

i

]

(4.4.1)
This gives (without torsion [1]) nullish solutions under the original Kaluza

cylinder condition and constant scalar field, such that Gab = −k2

2 FacF
c
b . Com-

pare this with [7] where we have Gab = 2FacF
c
b in geometrized units for osten-

sibly the same fields. The units need to be agreed between the two schemes.
We would need to set either k = 2 or k = −2 for compatibility of results and
formulas. And this is particularly important as we wish to derive the Lorentz
force law with the same units as [7]. N.B. the sign change introduced by [1] -
where it appears that the Einstein tensor was defined relative to (+, −, −, −),
despite the 5D metric tensor being given in a form that can only be (−, +, +,
+, +), which is confusing. This makes no fundamental difference, but must be
noted. It is a confusion seemingly introduced by accident in [1]. The use of
conventions in this type of work are excruciatingly tricky.

The geometrized units, Wald [7] p470-471, define units of mass in terms of
fundamental units. This leads to an expression for kinetic charge in terms of
Kaluza momentum when k = 2 and G = 1. G and k are not independent
however. If we fix one, the other is fixed too: A consequence of requiring the
Lorentz force law written in familiar form and compatibility with the units
used in [7]. The relation between G and k is given in equation (6.3.8) via the

12



derivation of the Lorentz force law. Simple compatibility with Wald [7] results
where k = 2 and G = 1. The sign of k is also fixed by (6.1.4). The result of
dimensional analysis gives kinetic charge, Q∗, in terms of a total 5D momentum
component P4 and its corresponding density P ∗

4 :

Q∗ =
c√
G

λP ∗

4 =
c√
G

P4 (4.4.2)

5 The Field Equations

5.1 The New Cylinder Condition And Scalar Field, k = 1

Here we look at how the new Kaluza-Cartan cylinder condition affects the con-
nection coefficients of any coordinate system within the Kaluza atlas. The
following requires the selection of coordinates (the Kaluza atlas) that set the
partial derivatives in the Kaluza dimension to zero and from the relationship be-
tween these two and the Christoffel symbols given in Wald [7] p33 eqn (3.1.14) as
applied to a number of test vectors. Note that there is no symmetry of the (with
torsion) connection coefficients suggested here. That is, these terms are forced
zero by the fact that both the partial derivatives and the covariant derivatives
in the Kaluza direction are zero. Cf equation (2.0.2), where the consequences
of setting both the partial derivatives and the covariant derivative to zero can
be seen on the connection coefficients.

2Γ̂A
4c =

∑

d

ĝAd(∂4gcd+∂4φ
2AcAd+∂cφ

2Ad−∂dφ
2Ac)+ĝA4∂cφ

2−2K̂ A
4c is O(h2)

(5.1.1)

2Γ̂A
44 = 2

∑

d

ĝAd∂4φ
2Ad −

∑

d

ĝAd∂dφ
2 + ĝA4∂4φ

2 − 2K̂ A
44 is O(h2) (5.1.2)

2K̂ A
4c = ĝAd(∂cφ

2Ad − ∂dφ
2Ac) + ĝA4∂cφ

2 +O(h2) (5.1.3)

2K̂ A
44 = −ĝAd∂dφ

2 +O(h2) = 0 (5.1.4)

This puts limits on the scalar field notwithstanding postulate B1. These
equations, now applying B1, give the contorsion a clear interpretation in terms
of the electromagnetic field:

2K̂ A
4c = ĝAd(∂cAd − ∂dAc) +O(h2) (5.1.5)

K̂ a
4c =

1

2
F a
c +O(h2) (5.1.6)

K̂ 4
4c = −1

2
AdFcd +O(h2) = 0 (5.1.7)

Here the postulate that O(l) ≈ O(h2) is seen not to be arbitrary. We also have
from (3.0.3) the following:

Γ̂4
4c = Γ̂4

c4 = ˆ̥ 4
4c = −1

2
AdFcd (5.1.8)
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Certain analogous equations to those in [24] cease to apply. And thus the
postulate in [24] labelled L3 is nolonger necessary here.

5.2 The First Field Equation With Torsion, k = 1

Looking at the Ricci tensors gives:

R̂ba = ∂cΓ̂
c
ba − ∂bΓ̂

c
ca + Γ̂C

baΓ̂
D
DC − Γ̂C

DaΓ̂
D
bC (5.2.1)

R̂ab = ∂c ˆ̥
c
ba − ∂b ˆ̥

c
ca +

1

2
∂b(A

dFad) + ˆ̥ c
ba
ˆ̥D
Dc − ˆ̥C

Da
ˆ̥D
bC (5.2.2)

In the Kaluza theory without torsion, where the electromagnetic fields are
identified with a Ricci flat Kaluza vacuum (ie R̂ab = 0), the Ricci flatness
leads to a constraint helping to impose nullish solutions when there is no scalar
field. This is the analagous equation to (2.0.5). Without sources the remaining
significant term is a nullish solution:

Rab = Rab − R̂ab

= −1

2
Ab∂cF

c
a − 1

2
Aa∂cF

c
b +

1

2
FacF

c
b

−1

2
(AbF

c
a +AaF

c
b )̥d

dc +
1

2
̥

c
daAbF

d
c +

1

2
AaF

c
b ̥

d
bc

+
1

4
(AdF

c
a +AaF

c
d )(AbF

d
c +AcF

d
b ) +

1

4
AdFadA

cFbc (5.2.3)

Similarly [24] identifying electromagnetism with a sourceless Kaluza vacuum
in Kaluza-Cartan theory is exactly the same thing, as torsion is just a defor-
mation of the connection. However, and this is a crucial point in this theory,
by identifying electromagnetism with the Kaluza-Cartan vacuum instead of the
Kaluza vacuum (ie R̂ab = 0) simply eliminates this constraint:

Rab = Rab − R̂ba = ∂c̥
c
ba − ∂b̥

c
ca +̥

c
bḁ

d
dc −̥

c
dḁ

d
bc

−∂cΓ̂
c
ba + ∂bΓ̂

c
ca − Γ̂C

baΓ̂
D
DC + Γ̂C

DaΓ̂
D
bC (5.2.4)

≈ ∂cK̂
c

ba to \O(h2) (5.2.5)

At first this looks like an unlikely field equation linking local contorsion
sources to electromagentic fields: because of symmetry versus anti-symmetry
both sides must be of order smaller than O(h), so this equation simply says
that the left and right side here are smaller than O(h). We have to add in
less significant terms to order \O(h3). We also separate the symmetric and
antisymmetric parts:

Rab = Rab − R̂(ba) = −1

2
∂c(AbF

c
a)−

1

2
∂c(AaF

c
b ) +

1

4
∂b(AcF

c
a) +

1

4
∂a(AcF

c
b )
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=
1

2
FbcF

c
a+

1

4
(Ac∂bF

c
a+Ac∂aF

c
b −∂c(AbF

c
a)−∂c(AaF

c
b ))−

1

2
(Ab∂cF

c
a+Aa∂cF

c
b )

(5.2.6)

R̂[ba] = 0 = −∂cK̂
c

ba − 1

4
∂b(AcF

c
a)+

1

4
∂a(AcF

c
b )−̥

d
dcK̂

c
ba +̥

c
adK̂

d
bc −̥

c
bdK̂

d
ac

(5.2.7)
These are more reasonable field equation.

5.3 The Second Field Equation With Torsion

Rederivation of the second field equation under the present cylinder condition
and postulates gives:

R̂a4 =
1

2
∂cF

c
a +

1

2
F c
ḁ

d
dc +

1

4
F c
aA

dFcd −
1

2
(̥c

da +
1

2
(AdF

c
a +AaF

c
d ))F

d
c

Looking at this at an \O(h2) L1-L2 weak field limit (re-inserting general k):

R̂a4 → k

2
∂cF

c
a (5.3.1)

This couldn’t be a clearer conception of Maxwell charge. This coincides
with the Einstein (without torsion) tensor at the same limit, thus providing an
alternative conception of the conservation of Maxwell charge locally (cf 6.1.1
and 6.1.2):

Ĝa4 → R̂a4 → k

2
∂cF

c
a (5.3.2)

On the other hand, by definition (and the cylinder condition), we can deduce
to \O(h3) by using (5.1.6):

R̂4a → ∂cΓ
c
4a and is O(h2) small (5.3.3)

Whereas R̂b4 simplifies at the \O(h2) limit to:

R̂b4 → ∂cΓ
c
b4 → ∂cF

c
b (5.3.4)

This is also approximately conserved Maxwell charge (re-inserting general
k) given at the \O(h2) L1-L2 weak field limit. Using equation (5.1.6):

R̂b4 → k∂cF
c
b (5.3.5)

This means that the Kaluza-Cartan vacuum may not have stray charges in
it of any significance, which is a required quality of a sourceless electromagnetic
field. Any low significance charge source, further, necessarily implies antisym-
metric components of the Kaluza-Cartan Ricci tensor: 1

2 (R̂4a − R̂a4), which at
the classical field limit also implies no spin sources by (3.0.18). The Kaluza-
Cartan vacuum can not contain significant spin or charge sources. The first field
equations along with (5.3.3) suggests that the definition for the classical field
limit might be more general if relaxed to order \O(h3). This does not effect the
main results, and is not dealt with further here.
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5.4 The Third Field Equation With Torsion, k = 1

This section shows how torsion releases the constraint of the third torsionless
field equation (2.0.7), thus allowing non-nullish solutions. The constraint that
the Ricci tensor be zero leads to no non-nullish solutions in the original Kaluza
theory. This is caused by setting R̂44 = 0 in that theory and observing the
terms. The result is that (when the scalar field is constant) 0 = FcdF

cd in the
original Kaluza theory. The same issue arises here:

R̂44 = ∂C ˆ̥C
44 − ∂4 ˆ̥

C
C4 + ˆ̥C

44
ˆ̥D
DC − ˆ̥C

D4
ˆ̥D
4C = − ˆ̥ c

d4
ˆ̥ d
4c = −1

4
F c
dF

d
c (5.4.1)

Whilst we can have non-nullish solutions, we can only have them outside of
a Kaluza vacuum. By definition and further calculation we get:

R̂44 = −1

4
F c
d F d

c + K̂ c
4d K̂

d
4c which is O(h3) small (5.4.2)

There is no reason in general for equation (5.4.1) to be 0, and so non-nullish
solutions are generally available in the presence of torsion, providing we are not
constrained to the Kaluza vacuum as with Kaluza’s original theory.

6 The Lorentz Force Law

6.1 Kinetic And Maxwell Charge

Toth [8] derives a Lorentz-like force for static scalar field in the original Kaluza
theory for a charge that is the momentum term in the fifth dimension. Here
we make use of K4 to investigate this further. To investigate the relationship
between kinetic charge and Maxwell charge we need the \O(h2) weak field limit
defined by L1 (cf equation 5.3.2) and discounting O(h2) terms:

Ĝa4 = R̂a4 − 1

2
ĝa4R̂ = R̂a4 − 1

2
(−Aa)R̂ → R̂a4

R̂a4 = ∂C ˆ̥C4a − ∂4 ˆ̥C a
C + ˆ̥Cba ˆ̥D

DC − ˆ̥C a
D

ˆ̥Db
C

Ĝa4 → R̂a4 = ∂c ˆ̥
c4a (6.1.1)

Putting k back in, and then using (4.3.8), we get:

R̂a4 → 1

2
∂ckF

ac (6.1.2)

J∗

a → −αk

2
λ∂cF

c
a (6.1.3)

So kinetic and Maxwell charges are related by a simple formula. The right
hand side being Maxwell’s charge current (see p.81 of [6]), and has the correct
sign to identify a positive kinetic charge Q∗ with a positive Maxwell charge
source 4πQM , whenever αk > 0. In the appropriate space-time frame, and

16



Kaluza atlas frame, using (4.3.7), and approaching the \O(h2) limit given by
L1:

4πQM → +
2

αkλ
Q∗ (6.1.4)

This correlates the two definitions of charge at the required limit and differs
from [24] only due to the use of densities in the definition - allowing for the
possibility of varying Kaluza length. Nevertheless we use throughout the same
notation as [24], noting that mX ≡ pXλ.

6.2 A Lorentz-Like Force Law

Christoffel symbols will now be used to investigate the geodesic equation. We
will here initially use k = 1, a general k can be added in later.

Γ̂c
(4b) =

1
2φ

2F c
b − 1

2g
cdAbδdφ

2 (6.2.1)

Γ̂c
44 = 1

2 ĝ
cD(δ4ĝ4D + δ4ĝ4D − δD ĝ44) = - 1

2g
cdδdφ

2 (6.2.2)

Γ̂c
(ab) = Γc

(ab)+
1
2g

cd(δa(φ
2AdAb)+δb(φ

2AaAd)−δd(φ
2AaAb))−Ac(δaφ

2Ab+

δbφ
2Aa) (6.2.3)

So, for any coordinate system within the maximal atlas:

0 = d2xa

dτ2 + Γ̂a
(BC)

dxB

dτ
dxC

dτ

= d2xa

dτ2 +Γ̂a
(bc)

dxb

dτ
dxc

dτ
+(φ2F a

b −gadAbδdφ
2)dx

b

dτ
dx4

dτ
− 1

2g
adδdφ

2 dx4

dτ
dx4

dτ
(6.2.4)

Taking φ2 = 1 and the charge-to-mass ratio to be:

Q′/mk0 =
dx4

dτ
(6.2.5)

We derive a Lorentz-like force law. Then put k and variable φ back in:

d2xa

dτ2
+ Γ̂a

(bc)

dxb

dτ

dxc

dτ
= −(Q′/mk0)F

a
b

dxb

dτ
(6.2.6)

= −k(Q′/mk0)(φ
2F a

b − gadAbδdφ
2)
dxb

dτ
− 1

2
gadδdφ

2 dx
4

dτ

dx4

dτ
(6.2.7)

6.3 Constant Kinetic Charge And The Lorentz Force Law

Having derived a Lorentz-like force law we look also at the momentum of the
charge in the Kaluza dimension. We look at this acceleration as with the Lorentz
force law. We have, with torsion (and k = 1):

0 =
d2x4

dτ2
+ Γ̂4

(BC)

dxB

dτ

dxC

dτ

=
d2x4

dτ2
+ Γ̂4

(bc)

dxb

dτ

dxc

dτ
+ 2Γ̂4

(4c)

dx4

dτ

dxc

dτ
+

1

2
Adδdφ

2 dx
4

dτ

dx4

dτ
(6.3.1)
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The two equations (6.3.1),(6.2.7) under B1 become (for all k):

d2xa

dτ2
+ Γ̂a

(bc)

dxb

dτ

dxc

dτ
= −k(Q′/mk0)F

a
b

dxb

dτ
(6.3.2)

d2x4

dτ2
+ Γ̂4

(bc)

dxb

dτ

dxc

dτ
= −k2(Q′/mk0)AcF

c
b

dxb

dτ
(6.3.3)

Multiplying both sides of (6.3.2) by dτ
dτ ′

dτ
dτ ′

, where τ ′ is an alternative affine
coordinate frame, gives:

d2xa

dτ ′2
+ Γ̂a

(bc)

dxb

dτ ′
dxc

dτ ′
= −k

dτ

dτ ′
(Q′/mk0)F

a
b

dxb

dτ ′
(6.3.4)

Given Q∗ = Q′ dτ
dτ∗

and therefore mk0

m0

Q∗ = Q′ dτ
dt0

by definition, we can set
the frame such that τ ′ = t0 via the projected 4D space-time frame of the charge.
And the Lorentz force is derived:

d2xa

dτ ′2
+ Γ̂a

(bc)

dxb

dτ ′
dxc

dτ ′
= −k(Q∗/m0)F

a
b

dxb

dτ ′
(6.3.5)

In order to ensure the correct Lorentz force law using the conventions of Wald
[7] p69, this can be rewritten as follows, using the antisymmetry of F a

b = −F a
b:

= k(Q∗/m0)F
a
b

dxb

dτ ′
(6.3.6)

Using (6.1.4) - only here does the calculation vary from [24] - as its L1 weak
field limit is approached, this can be rewritten again in terms of the Maxwell
charge:

→ k(
αk

2
(4πQMλ)/m0)F

a
b

dxb

dτ ′
(6.3.7)

The result is that we must relate G and k to obtain the Lorentz force law
in acceptable terms:

d2xa

dτ ′2
+ Γ̂a

(bc)

dxb

dτ ′
dxc

dτ ′
→ (QM/ρ0)F

a
b

dxb

dτ ′
and k = 2

√
G (6.3.8)

This shows that the Lorentz force law proper can be derived given (6.1.4) and
the required limit. This of course suggests that in this variant of the theory the
universality of Lorentz force law is dependent on the constancy, or approximate
constancy, or local constancy, of the Kaluza length. This is in contrast to the
analysis in [24] which did not make this apparent.
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7 Discussion And Interpretation

The sourceless electromagnetic field was here identified with Kaluza-Cartan vac-
uum. This is the Kaluza-Cartan vacuum as opposed to the Kaluza vacuum. It
has tight restrictions on the presence of charge and spin sources: it approxi-
mately follows the sourceless Maxwells laws and is deterministic, though it has
not been proven to be stable beyond certain limits, limits defined by the small-
ness of the tensor XAB in the discussion on conservation laws. The theory as a
whole reproduces classical theory as a limit. However the derivations of classical
behaviour did not necessitate this identification as such as the derivations, such
as that of the Lorentz force law, are quite general. Thus variants are possible
depending on exactly which solutions are empirically required, and to what level
of limit accuracy required. Indeed this work is a second variant formulation, a
sequel to [24].

The fundamental divergence-free law for mass-energy belongs to the (torsion-
less) Einstein tensor. Kinetic charge is similarly fundamental in its zero diver-
gence under definition (4.3.8). The correlation with Maxwell charge follows as a
limit from (6.1.4), and the Lorentz force law provided the Kaluza length remains
more or less constant. With respect to spin, spin current obeys the divergence
law (3.0.12). This is then also a fundamental quantity in Kaluza-Cartan theory,
and complementary to (torsionless) mass-energy, though divergence-free only
relative to the 5D torsion connection. Matter and fields are able to transfer
Kaluza matter (the complement of the Kaluza vacuum) to and from each other.
Unlike (torsionless) mass-energy, the divergence law for Kaluza-Cartan matter
depends on the torsion tensor as seen by combining (3.0.12) and (3.0.16). It is
only vanishing because the torsion is completely antisymmetric.

Maxwell charge requires spin, at least at a local \O(h2) L1-L2 weak field
limit. This follows from (3.0.18) and (5.3.5). By definition of kinetic charge,
components of 5D (torsionless) mass-energy are also required. A matter model
defined by Kaluza-Cartan matter can have charge, but stray charges in a Kaluza-
Cartan vacuum region are limited in significance by the weak field assumptions.
Further a minimum component of Kaluza-Cartan matter and (torsionless) con-
served mass-energy is required to form a charge model in addition to the (with
torsion) divergence-free spin. The weak field assumptions therefore keep a cer-
tain amount of matter and spin assigned to any charge model. Spin then can
be interpreted as the fundamental quantity (3.0.12) that gives matter-charge
models their stable character.

Divergence laws arise due to anti-symmetry: (3.0.16) and (3.0.18). The
result is the appearance of Maxwell charge as a significant term in (3.0.18), via
(5.3.5) and (5.3.3). Certain components of the spin current also get identified
at this limit with the Maxwell current.

Similar conclusions were present for [24] at the antisymmetric limit, using
slightly different postulates.
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8 Conclusion

Kaluza’s 1921 theory of gravity and electromagnetism using a fifth wrapped-up
spatial dimension is inspiration for many modern attempts to develop new phys-
ical theories. However for a number of reasons it is often considered untenable.
Here a Kaluza-Cartan theory is presented.

The Kaluza dimension (in the direction of which partial derivatives are
treated as vanishing) is identified with a cylinder condition but use is made
in addition of a connection deformed by torsion, and this is used also in defining
the geometry. This resolves a number of foundational problems with Kaluza’s
original theory. When the scalar field is set constant (and well-behaved as-
sumptions are made about the paths of charged particles), and a weak field
limit defined, then an improved unification of gravity and electromagnetism re-
sults. Improved because the Lorentz force law is derived from first principles,
and because a more complete range of electromagnetic fields (i.e. the nullish
solutions) become possible without making arbitrary assumptions or making
too many constraints on a variable scalar field. The current theory was in effect
derived from the need for these missing solutions (including electrostatic fields)
and to derive the Lorentz force law simultaneously.

The concept of super-energy is applied here axiomatically to make sure that
the resulting theory is causal. Other ways to do this may be equally valid, or
experimentally correct. But the construction here was the simplest way to deal
with such issues - the use of super-energy is presented as a hypothesis. The
theory as presented here no doubt has foundational problems of its own: Is
a realistic charge model possible? What might limit transformation of energy
between matter sources and fields? It is not proposed that this theory is a
fait accompli, but a work in progress needing development and testing. Indeed
this work is a sequel to another variant in [24]. Here completely antisymmetric
torsion is used.

Why go to all this effort to unify electromagnetism and gravitation and to
make electromagnetism fully geometric? Because experimental differences could
be detectable given sufficient technology on the one hand, and, on the other,
simply because such an attempt at unification might be right or lead in the
right direction. It may widen the search. This theory differs from both general
relativity and Einstein-Cartan theory, it differs from other Kaluza theories. It
also differs significantly from scalar-tensor theories as here the scalar is postu-
lated to be without consequence, though this may equally be taken as presenting
just a non-scalar limit. It should, in principle, be empirically testable. The ex-
pected ω-consistency of Einstein-Cartan theory together with the derivation of
a Lorentz force law via the Kaluza part of the theory gives a theoretical motiva-
tion, as does the fact that the other approaches beyond general relativity have
not fulfilled their full promise in terms of approaching unification. Attempting
to extend and unify classical theory prior to a unification with quantum mechan-
ics may even be a necessary step in a future unification whether Kaluza-Cartan
theory turns out to be the right way or not. It may be that current attempts
at unification are more difficult than necessary as the problem may not yet
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have been framed correctly. It is often asserted that the true explanation for
gravitational theory and space-time curvatures will most likely, by reductionist
logic, emerge out of its constituent quantum phenomena. Such an approach
has merit, but is overly optimistic, and does not optimize the search [22][23].
Taking a global, more ‘synthetic’, ‘post-reductionist’ perspective, as attempted
here, can often be more difficult, but may also be more insightful.

With thanks to Viktor Toth, Philip Lishman, Maggie Norris, and to Ilaria.
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