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Abstract

According to general relativity the geometry of space depends on the
distribution of matter or energy fields. The relation between the locally
defined geometry parameters and the volume elements depends on cur-
vature. Thus integration of local properties like energy density, defined
in the Euclidean tangent space, does not lead to correct integral data
like total energy. To obtain integral conservation, a correction term must
be added to account for the curvature of space. This correction term is
the equivalent of potential energy in Newtonian gravitation. With this
correction the formation of singularities by gravitational collapse does no
longer occur and the so called dark energy finds its natural explanation
as potential energy of matter itself.
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1 Introduction

The theory of General Relativity (GRT) is presently regarded as a valid de-
scription of gravitation. For weak fields it has been impressively confirmed by
observations like the aberration of light rays passing close to the sun, by gravi-
tational red shift or by the perihelion advance of Mercury. But for strong fields
it leads to very weird results, to an irresistible collapse of matter and the occur-
rence of singularities. Many attempts have been made to overcome this problem,
but as been shown long years ago [1][2], singularities are unavoidable, as long
as we assume that the energy density, or better to say, the trace of the energy
tensor is always positive. But it is just this assumption, which is questionable.

In conventional treatments of gravitational collapse it is assumed that the
components of the energy tensor can be described by densities of energy and
momentum, quantities that are defined as the amount of the respective quantity
per volume, as we are accustomed from Minkowskian space-time. But in GRT
the volume is no longer a fixed quantity. The relations between the limiting geo-
metrical parameters and the enclosed volume depend on the curvature of space.
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Thus there is no unique relation between the locally measured density of some
property, as we would determine it in Euclidean space, and the corresponding
integral data. For a property to be integrally conserved it is not sufficient that
the flux through the boundaries vanishes, but in addition the local density must
be defined in such a way that the curvature of space is taken into account. This
will invalidate the positivity condition of energy.

In the next section we will first give simple two-dimensional example to
demonstrate the problem. Then a way is proposed, how by adding a correction
term to the energy tensor the problem can be solved and integral energy conser-
vation is reestablished. In the following section the modification will be applied
to the gravitational collapse to show that the problem of singularities does no
longer occur. Finally we give some hints, how the modification may change our
general view of the development of the universe.

2 A two-dimensional example

To demonstrate the problem that occurs in curved geometry with the definition
of matter density and its integration to obtain the total mass, we consider a
spherical surface with constant matter distribution. In Euclidean geometry we
would describe such a surface by spherical coordinates centered at some point
at distance a from the surface.

Any point on the surface is defined then by its angular coordinates ϑ and ϕ.
The line element on the surface is defined by

ds2 = a2(dϑ2 + sin2 ϑdϕ2). (1)

But in the framework of differential geometry, which is the mathematical basis
of GRT, we cannot use coordinates defined at some point away from the sur-
face. Instead we have to use geometrical parameters, locally defined within the
surface. Introducing the radial parameter r = a sin ϑ the line element reads

ds2 = h(r)dr2 + r2dϕ2 (2)

with h(r) = 1/(1 − r2/a2). The quantity r in this case denotes the value, at
which the length of a circle around some reference point is 2πr. It is reduced
to the radial distance in the flat field limit. But the area enclosed in a circle at
r = r0 depends on the radius of curvature. It is given by

A = 2π

∫ r0

0

√
h(r) r dr. (3)

Thus, if the surface is homogeneously covered with matter particles and their
number is conserved, their surface density must be adjusted, when the curvature
of the surface changes. In this case the density %0, which we would measure in
the flat space limit, must be replaced by %0/

√
h(r).
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3 Conserved density in curved space

In GRT the situation is more intricate. The energy fields are represented by
a tensor, so that all components will be affected by curvature corrections and
on the other hand the energy fields themselves are regarded as the source of
curvature. If we want to express the energy tensor by the densities of energy
fields, in the Einstein field equation

Rij − 1/2 R gij = κTij , (4)

which relates the geometry, expressed by the metric tensor gij and its derivatives
contained in the Ricci tensor Rij to the energy tensor Tij , the right hand side
implicitly depends on the geometry.

The question is, how the correction term, which accounts for the curvature
of space, can be defined in a way compatible with the covariant tensorial de-
scription of GRT. All information which is locally available is contained in the
metric tensor and in the local density fields, as they would be measured in the
limiting case of vanishing curvature. The flat space tensor T̂ij has to be replaced
by a quantity of the form

Tij = T̂ij + λ gij , (5)

where λ is a scalar property, depending on local parameters and on the curva-
ture.

The parameters which can be used to define λ are the total energy density
as defined in Minkowskian tangent space, T̂ = T̂ij ĝ

ij , and a quantity which
expresses the relation between the volume elements of curved space and the
corresponding Euclidean tangent space. The relation of the three-space tensor
densities is given by

√
g(3)/ĝ(3), where g(3) and ĝ(3) denote the spatial subde-

terminants of the metric tensor in curved resp. Euclidean tangent space. Using
these quantities, the function λ is defined as

λ = T̂ (
√

ĝ(3)/g(3) − 1) (6)

The physical meaning of the correction term becomes immediately clear, if
we consider the curvature of space caused by a large central mass. The spatial
line element in this case is given by

ds2 = h(r)dr2 + r2(dϑ2 + cos2ϑdϕ2) (7)

with h(r) = 1/(1−2GM/c2/r) (G is the gravitational constant and M the mass
of the central object). If there is a matter field at distance r with flat space
density %, in the weak field limit the value of λ is

λ ≈ −GM%/c2/r, (8)

just the potential energy as we know it from Newtonian physics. That this
quantity appears as a negative pressure in the energy tensor is nothing special
of GRT. This tension occurs in Newtonian gravity, too. Work has to be done
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to expand a gas against the mutual attraction of the constituting particles.
Normally we do not recognize this negative pressure, as the positive kinetic
pressure is higher by many orders of magnitude.

Correcting the energy tensor by the influence of curvature on the conserved
density is nothing more than including potential energy. The new term is not
some additional field, but a genuine part of every conserved density field in
curved geometry.

4 Gravitational collapse

While in weak gravitational fields the influence of potential energy is negligibly
small, correcting the energy density leads to dramatic changes in the description
of gravitational collapse. Equilibria of collapsed stars or galaxies are strongly
altered, when potential energy is taken into account.

Such equilibria are described by a radially symmetric static solution of the
field equations, the Tolman-Oppenheimer-Volkov (TOV) equation [3], which
gives the relation between the density and pressure distribution, when the equa-
tion of state is known:

dP/dr = −(% + P )(m(r) + 4πr3P )/(r2 − 2r ·m(r)). (9)

(withG = c = 1) The function m(r) is the integral

m(r) = 4π

∫ r

0

% r2dr, (10)

which is related to the quantity h(r) appearing in the definition of the line
element by h(r) = 1/(1− 2m(r)/r).

Solutions of this equation give the strange result that the pressure gradient
must be infinite, when 2m(r)/r reaches the value 1. The function h(r) is singular
at this point, well known as the Schwarzschild radius [4]. No equilibrium can
be reached, when this state of gravitational collapse is reached and the system
should shrink to a singular state.

But when potential energy is taken into account the situation is altered. The
density % has to be replaced by %/

√
h, so that the function m(r) now has to

be determined from the differential equation dm/dr = 4πr2%
√

1− 2m/r with
m(0) = 0. This leads to the result that the Schwarzschild radius cannot be
reached for any reasonable equation of state.

This can be best demonstrated considering as an example a system of con-
stant density %0 and radial extension R. It is reasonable to assume that in every
real isolated matter distribution the condition d%/dr < 0 holds, so that with
constant % = %0 the maximum deviation of h(r) from unity will be obtained. In
this case introducing a normalized coordinate x = r/R with 8π%0R

2 = 1 and
the new variable y = x/h instead of the differential equation for m(r) we have
to solve the equation

dy/dx = 1− x3/2y1/2. (11)
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Without potential energy we have

dy/dx = 1− x2. (12)

The figure below shows the function h(x) for both cases. While without the cur-
vature correction h(x) exhibits a singularity at x =

√
3, it remains finite for all

x, when potential energy is included. With other words: The quantity 2m(r)/r
can never reach the value of one for any reasonable equation of state. All col-
lapsing systems may find an equilibrium state without shrinking to singularities.
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5 discussion

Inclusion of the curvature correction into the density definition of conserved
quantities does not only avoid the occurrence of singularities in gravitational
collapse. It generally reestablishes the existence of integral conservation laws.
The interpretation of the correction term in the energy tensor as the density of
potential energy shows the natural transition from GRT to the Newtonian limit
with its fixed Euclidean geometry.

While formally the correction term λ gij looks like the cosmological term
introduced by Einstein, its properties are essentially different. The quantity λ
is not a constant, but depends on the local energy or matter fields and on the
local curvature. But what is discussed as dark energy with its negative pressure
in modern cosmological models, may well be interpreted as the potential energy
of matter itself. No additional dark energy is needed.

It should be mentioned in this context that Einstein’s static world model
would be stable, if the cosmological constant is interpreted in this way. With
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varying radius a of the universe the potential energy varies as %/a, so that a
virtual increase of a would produce a negative da/dt. The entire universe would
be the only system at its Schwarzschild radius, the state at which the total
matter energy is balanced by its own potential energy.

It has to be proved, if with the modification proposed here all the problems
of GRT can be solved, but at least it shows a way, how by a simple redefinition
of densities the problem of singularities can be eliminated.
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