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Justifying a local hidden variable theory requires an explanation of Bell’s in-

equality violation. Ever since Bell derived the inequality to test the classical pre-

diction on the correlation of two spin-12 particles, many experiments have observed

the violation, and thus concluded against the local realism, while validating the

non-locality of quantum entanglement. Still, many scientists remain unconvinced

of quantum entanglement because the experiments have loopholes that could po-

tentially allow a local realistic explanation. Upholding the local realism, this paper

introduces how a precession of the spin would produce a cosine-like correlation

function, and furthermore how it would also contribute to a fair sampling loophole.

Simulating the precession in Monte Carlo method reveals that it can explain the

observed Bell’s violation using only classical mechanics.

1 Introduction

In my previous paper, I introduced the physical mechanism that explains quantum en-

tanglement via special relativity [1]. However, that was under a premise that quantum

entanglement is a real physical phenomenon. In this paper, I take on an opposing premise

that the entanglement is not real, but local hidden variable is real instead, and introduce

a physical mechanism behind local hidden variable, namely a spin precession.

Monte Carlo simulation will show that the precession itself alone can produce a cosine-

like function of the correlation, instead of the usual linear function predicted without the

precession. And when the simulation takes into account of the fair sampling loophole

caused by low detector efficiency, the cosine-like function resembles the theoretical cosine

wave predicted by quantum mechanics. Also, the experiment by Rowe, et al. [2], which

supposedly closed fair sampling loophole will be discussed.

1.1 Bell’s Inequality

Bell’s inequality is used to test local hidden variable theory of classical mechanics against

quantum entanglement of quantum mechanics. Bell originally derived his inequality

based on the system of two spin-1
2

particles, and later adapted the more generalized form,

Clauser-Horne-Shimony-Holt (CHSH) inequality [3] (this paper refers to both Bell’s orig-

inal inequality and CHSH inequality as Bell’s inequality for convenience). The inequality

relies on the assumption that if a local hidden variable exists, then the correlation value
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of the two detectors can be expressed as shown below:

P (â, b̂) =

∫
A(â, λ) B(b̂, λ) ρ(λ) dλ (1)

where A(â, λ) and B(b̂, λ) are the averaged measured spin outcomes by the detector A

pointing at an angle a and the detector B at an angle b, respectively; and ρ(λ) is a

probability distribution of a hidden variable [3]. Equation (1) leads to the following

CHSH inequality:

−2 ≤ P (â, b̂)− P (â, b̂′) + P (â′, b̂) + P (â′, b̂′) ≤ 2 (2)

which defines the limit on the classical local realism [3].

On the other hand, the correlation value predicted by quantum mechanics is:

P (â, b̂) = −cosθ (3)

where θ is the angle between a and b [3]. And unlike the classical limit, the quantum

correlation can have the maximum violation of 2
√

2 [4].

1.2 Bell’s Inequality Loopholes

There are many loopholes in Bell’s inequality experiments, but I will mention only two of

them that are relevant to this paper: (1) fair sampling and (2) time dependent parameters.

1.2.1 Fair Sampling Loophole

Fair sampling loophole basically means that an experiment does not record all the event

data for various reasons and these missing data can lead to a local realism explanation

of Bell’s inequality violation [5]. Practically all experiments except for a few have this

loophole [5], with one of them being carried out by Rowe, et al. [2], which will be discussed

later. One of the reasons is low detector efficiency, which can cause only one or none of

two particles of a spin pair from being detected [5].

1.2.2 Time Dependent Parameters

Hess and Philipp describe how time dependent parameters in a local hidden variable

could invalidate Bell-type inequalities [6]. Although they do not claim to know of any

mathematical properties of these parameters nor do they claim that their existence in

nature [6], the study by Marshall, et al., on atomic cascade experiments matches this

description because they attribute wave amplitude of photon as being a reason to refute

the violation [7]. In this paper, I introduce precession as a physical explanation for the

time dependency of local hidden variable (however, it should be noted that the time

dependency itself would not cause Bell’s inequality violation, as will be explained later.)
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2 Precession

Let us suppose that a spin of each entangled particle undergoes a precession. The preces-

sion can be introduced without violating the law of conservation of energy. What impact

would the precession have on Bell’s inequality? Here are the results of my Monte Carlo

simulations of the system of two entangled spin particles undergoing precession.

(a) The correlation of the simulated spin precessing at any
arbitrary angle (perfectly synced precession phases & no fair
sampling loophole)

(b) The correlation of the simulated spin precessing at 20◦

(not synced & no fair sampling loophole)

(c) The correlation of the simulated spin precessing at 20◦

(not synced & exists a fair sampling loophole = no detection
under 10◦)

(d) The correlation of the simulated spin precessing at 10◦

(not synced & exists a fair sampling loophole = no detection
under 10◦)

Figure 1: Monte Carlo simulations of anti-parallel spin pair with precession - the solid line/curve is
the simulated prediction with precession; the dotted straight lines are the original classical prediction
without precession; the dotted cosine is the quantum mechanical prediction. (the angle between detectors
was incremented by 0.5◦ with 100,000 simulation per each step.)
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Figure 1a shows the simulated correlation function when both detectors measure their

anti-parallel spin particles at the exact same moment, in which case the two precession

phases are perfectly synchronized in the opposite direction, as assumed by Bell’s inequal-

ity. In such case, the linear correlation function originally predicted by the inequality is

still accurate, and thus the simulated prediction matches exactly what the original clas-

sical prediction looks like, as expected. This validates that the Monte Carlo simulation

is working correctly.

However, Figure 1b shows the cosine-like function of the correlation simulated with

the spin precession in 20◦ (arbitrarily chosen) where both detectors do not measure the

particles at the exact same moment, e.g. the detector A measures its particle first, and the

detector B measures its particle a split second later, as would be the case with virtually

all measurements made in a real world experiment. Then, those two detectors would

most likely make their measurements when one spin has a randomly different precession

phase than the other.

In such case, the simulation shows that the precession would cause the correlation

function to deviate from the usual classical prediction of the straight lines. The amount

of deviation would depend on the angle of precession from its rotational axis, with an

increasing angle shifting the minima and maxima points vertically toward the horizontal

axis and making the function look cosine-like with a decreasing amplitude (until the angle

reaches 90◦ at which point the function would look like the flat horizontal axis).

To summarize, there exists a range of the precession angles that would produce a

cosine-like function of the correlation.

2.1 Precession Impact on Bell’s Inequality

Figure 2: Detection of two anti-parallel spin particles with precession

Let us analyze in details what impact this phase difference of precession has on the

correlation, by understanding how precession can change the measured outcomes as shown

in Figure 2. The source emits a pair of anti-parallel spin particles. The detector A
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measures a spin particle first. In this particular case, the detector A would measure the

spin outcome of +1 no matter what the precession phase is – let us assume that it made

the detection when the precession angle was at Φ(t1). Next, if the detector B were to

measure its particle at the exact same moment, then it would measure the spin outcome of

−1 as expected because both spin vectors are perfectly synchronized at Φ(t1). However,

that is an unrealistic scenario because the detector A and B are not located at the exact

same distance away from the source, and thus the second particle has to travel an extra

distance to reach the detector B. During this travel, its precession phase would change.

So, for example, if the detector B were to measure the spin when its precession phase was

at Φ(t2), then it would measure a different spin outcome of +1, instead of −1.

This time dependent nature of precession makes the assumption behind Equation 1

of Bell’s inequality to be no longer accurate. If the local hidden variable, λ, is taken to

be a precession, then the equation would become as follows:

P (â, b̂) =

∫
A(â, λ(r̂A, θA,ΦA)) B(b̂, λ(r̂B, θB,ΦB)) ρ(λ) dλ (4)

where r̂ is a unit vector of the rotational axis of a spin precession; θ is the precession

angle from the rotational axis; and Φ is the precession phase.

Although r̂ and θ are synchronized between both detectors, ΦA and ΦB are likely be

different in a real world experiment. This means that experimentally measured outcomes

of A and B, technically, do not represent the theoretical outcomes of A and B coupled

together in the equation, because it expects the same local hidden variable to be shared

by both A and B.

Nevertheless, despite this inaccuracy, I think the classical limit derived by Bell’s in-

equality remains valid in this case. That is because it calculates with the averaged mea-

sured outcomes, which fortunately can compensate for the randomness of many phase

differences. As long as A and B produce their averaged outcomes in a deterministic

manner to r̂ and θ, the validity of the inequality would hold.

But, the correlation value, P (â, b̂), would now get reduced and have a smaller ab-

solute value due to the introduction of precession. The reason is because an original

detection outcomes of (+1,−1) of an anti-parallel pair can now be divided into four sub-

outcomes: (+1,−1), (+1,+1), (−1,−1), (−1,+1), which clearly reduces the number of

anti-correlated outcomes and adds to the number of correlated outcomes. The result of

Monte Carlo simulation in Figure 1b validates this prediction, and can be seen giving a

curved shape to the originally straight lines.

2.2 Precession and Fair Sampling Loophole

Although it is a progress to be able to explain the cosine-shaped correlation observed

by the experiments, it is not yet enough because a precession-based correlation still falls

under the limit of Bell’s inequality. Many experiments have observed the violation of

Bell’s inequality with a larger wave amplitude, as seen by the cosine wave in Figure 1b.
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However, this amplitude issue can be solved by fair sampling loophole [5], more specif-

ically by lowering coincident detection count with low detector efficiency.

Let us analyze how a precession would contribute to this detection loophole by looking

at Figure 2. Each detector has two hemispheres where one hemisphere would measure a

spin as +1 outcome and the other as −1 outcome. These two hemispheres are divided by

a plane orthogonal to the measuring direction of the detector. Now, if the spin happens to

lie on this orthogonal plane or if it is very close to the plane, then the detector would not

be able to determine if the spin is +1 or −1 because the spin vector component onto the

direction of the detector would be too small to be distinguished from background noises.

If so, either both detectors would not be able to detect any of the spin pair, or even if one

of two detectors makes a detection, coincidence monitor would discard the measurement

out from the calculation. And since a precession makes it more likely for a spin at one

of the detectors to get closer to the orthogonal plane than if there were no precession, it

would increase the probability of no detection, thus lowering the coincidence count.

This kind of filtering in the sample data creates a bias in the calculated correlation;

it favors the detection of those spins that point more in parallel direction to the detector,

which in turn, alters the calculated correlation value toward +1 and −1, while disregard-

ing those spins close to the orthogonal plane that would have contributed toward the

value of 0. In other words, this bias from no detection would result in the correlation

function with the larger wave amplitude than what it should have been normally.

Figure 1c and Figure 1d show the results of Monte Carlo simulation that validate

this prediction. The increase in the wave amplitude depends on how far away from the

orthogonal plane a spin can be in order for a detection to occur - the further away, the

bigger the amplitude (with the limit at ±1).

For example, Figure 1c shows the correlation function when the precession angle is

20◦ and the no-detection threshold angle is 10◦ from the orthogonal plane. This closely

matches the experimentally observed correlation function of the proton-proton scattering

within the reported uncertainty [8].

Furthermore, if the precession angle is 10◦, then the simulated correlation function

matches almost exactly the cosine wave of quantum prediction as shown in Figure 1d.

2.3 Precession and CHSH Violation

Monte Carlo simulation was carried out to calculate the value of the CHSH inequality in

Equation (2). Using the precession angle of 20◦ and the no-detection threshold angle of

10◦, the violation of CHSH inequality in the amount of −2.206 ± 0.001 occurs for a set

of detection angles of 0◦, 45◦, 22.5◦, and 67.5◦, as shown in Table 1.

Even a higher violation can be achieved with a different set of detection angles, i.e.

−22.5◦, 67.5◦, 22.5◦, and 112.5◦, resulting in the CHSH violation of −2.530 ± 0.002.

Changing the precession angle or the no-detection threshold angle can result in a higher

violation, too.
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Detector settings

detection angle (degrees)
â â′ b̂ b̂′

0◦ 45◦ 22.5◦ 67.5◦

CHSH calculation

correlation

Run # P (â, b̂) P (â, b̂′) P (â′, b̂) P (â′, b̂′) CHSH value
1 -0.846 -0.332 -0.846 -0.846 -2.206
2 -0.846 -0.333 -0.846 -0.847 -2.206
3 -0.846 -0.332 -0.845 -0.846 -2.205
4 -0.846 -0.333 -0.846 -0.847 -2.206
5 -0.847 -0.334 -0.846 -0.846 -2.205
6 -0.847 -0.334 -0.847 -0.846 -2.206
7 -0.847 -0.332 -0.848 -0.846 -2.209
8 -0.847 -0.331 -0.845 -0.848 -2.209
9 -0.845 -0.331 -0.846 -0.846 -2.206
10 -0.847 -0.333 -0.847 -0.845 -2.206

CHSH = P (â, b̂)− P (â, b̂′) + P (â′, b̂) + P (â′, b̂′) = −2.206± 0.001

- precession angle: 20◦

- no-detection threshold angle: 10◦

- simulation count per correlation: 1,000,000

Table 1: Monte Carlo simulation result of CHSH inequality violation by anti-parallel spin pair with
precession and detection loophole

To summarize, the experimentally observed violations of Bell’s inequality can be ex-

plained by taking into account of a spin precession and the fair sampling loophole (de-

tection loophole).

3 Methods

Monte Carlo simulation was used to calculate the correlations shown in Figure 1 and to

calculate the CHSH violation in Table 1. The computer program was written to simulate

a pair of anti-parallel spin particles with precession, measured by two detectors at their

detection angles.

For each simulated pair, a set of four random rotation transformations were generated

to simulate a precessing spin vector pointing at a random direction for the first detector

A. Then, those same rotation transformations were re-used for the second detector B to

generate an anti-parallel spin vector, except for the rotational transformation of precession

phase, which was re-randomized to simulate a random phase difference. The two rotation

transformations were used to control a polar angle (precession angle) and an azimuthal

angle (precession phase) of a precession. The two additional rotation transformations

were used to control a polar angle and an azimuthal angle of a random spin orientation.
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The care was taken to generate truly random polar angles in order to represent an evenly

distributed points on a spherical surface [9].

Each detector measures an outcome of either +1 or −1 depending on the final spin

orientation onto the direction of the detection as shown in Figure 2. These two outcomes

were compared against each other to determine a single correlation of +1 or −1 for this

one pair. Many more new spin pairs were generated and measured, in order to calculate

the final correlation measured by the simulation, from which the average value of all

single correlations was calculated as shown in Equation (5).

Pmeasured(â, b̂) =
N++ +N−− −N+− −N−+

N++ +N−− +N+− +N−+

(5)

where N++, N−−, N+−, N−+ are the total number of outcomes for (+1,+1), (−1,−1),

(+1,−1), (−1,+1), respectively [8].

For the simulation run with the detection loophole, an outcome of 0 is measured if

a spin vector falls below the specified threshold angle from the orthogonal plane to the

detection direction; then, both outcomes from this no-coincident pair are disregarded

from the calculation.

It was possible to produce a violation of Bell’s inequality by varying the precession

angle and the no-detection threshold angle, in the simulation utilizing only classical me-

chanics. Although the violation can occur with a different variation, it was not possible

to produce a violation when a precession angle was taken to be random for each spin pair.

For the case of no precession, although the detection loophole from no-detection thresh-

old alone could violate the inequality with even a bigger value, its correlation function

reverted back to being linear (the straight lines overlaying over the cosine wave), with

short plateaus at the minima and maxima points.

Larsson suggested me to try applying a soft transition of Gisin-Gisin detection prob-

ability of cosine at one of randomly selected detector [10] instead of a sharp cutoff of

no-detection threshold at both detectors. This approach could produce a correlation

function that looks similar to Figure 1c (the sloped section of the function matched co-

sine better, but the amplitude was smaller than 1.) However, when I applied another

type of soft transition of a range of threshold angles with linearly diminishing detection

probability at both detectors, it could produce a function that looks similar to Figure 1d.

Thus, I think simulating with a sharp threshold is a good enough approximation.

4 Conclusions

The local hidden variable of a spin precession, in conjunction with fair sampling loophole

(detection loophole), can produce a violation of Bell’s inequality. The Monte Carlo sim-

ulations reveal that it can generate a cosine-like function of the correlation that closely

matches the cosine function predicted by quantum mechanics. The precession allows the

classical linear shape of the correlation function to achieve cosine-like curved shape, while
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the detection loophole increases the amplitude of this cosine-like shape to closely match

the cosine.

In addition, a CHSH inequality violation of −2.530 ± 0.002 could be achieved from

Bell’s angles of −22.5◦, 67.5◦, 22.5◦, and 112.5◦ when simulated with the precession

angle of 20◦ and the no-detection threshold angle of 10◦. The different sets of Bell’s

angles, precession angle, and no-detection threshold angle could produce a different CHSH

violation, too.

5 Discussion

Rowe, et al., carried out an experiment with two entangled 9Be+ ions in a trap; this

experiment was supposed to have closed fair sampling loophole [2]. Although its highly

efficient detection closed the detection aspect of fair sampling loophole [5], I believe it

may have opened a new kind of fair sampling loophole.

The experimental setup used by Rowe, et al., is based on the experiment carried out

by Sackett, et al [2]. Sackett, et al., describes how Raman transition is used to entangle

two 9Be+ ions in | ↑↑〉 and | ↓↓〉 states with the transitional states of | ↑↓〉 and | ↓↑〉 [11].

My main concern is that | ↑↓〉 and | ↓↑〉 are transitional states that are kept small

in the population in order to achieve the entangled states, | ↑↑〉 and | ↓↓〉 [11]. So,

the system has a predisposition for | ↑↑〉 and | ↓↓〉 states over | ↑↓〉 and | ↓↑〉 states.

Thus, the detector would detect more | ↑↑〉 and | ↓↓〉 states than it would in a normal,

e.g. proton-proton scattering experiment, which consequently, would raise the correlation

value higher than the actual.

For example, let us ask a question: would Pmeasured(0, 180◦) populate the system with

all anti-correlated states, | ↑↓〉 and | ↓↑〉? If the system were to follow the predicted

behavior of Bell’s inequality, then it should. But, the transitional states would not exist

alone without the entangled states; otherwise, it indicates that the system being tested

was not entangled to begin with.

Similarly, Table 1 in the paper of Sackett, et al., shows that the starting condition of

the experiment has non-zero number of ions in the transitional states | ↑↓〉 and | ↓↑〉 [11].

This, again, does not follow the predicted behavior of Bell’s inequality.

In addition, Sackett, et al., mentions that it is difficult to quantify the amount of

entanglement present in the system [11]. They estimate that the value of “entanglement

of formation” is roughly 0.5 [11], which implies that the half of ions in the system are

not entangled. However, I reckon those non-entangled ions would also get detected along

with the entangled ions and thus affect the overall data.

These factors may be the reason why the correlation values reported in Table 2 in the

paper of Rowe, et al., do not look like those usual values expected from Bell’s inequality.

Normally, P (â, â) = ±1. But, Rowe, et al., reports P (−π
8
,−π

8
) and P (3π

8
, 3π

8
) ≈ ±0.5 [2];

Bell’s inequality permits this to happen if the detector fails to register some detections
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[3], but that cannot be true because the detection efficiency in this experiment was high.

Thus, it could be that the non-zero | ↑↓〉 and | ↓↑〉 states, in conjunction with non-

entangled ions, may have lowered this correlation value.

Also, normally, P (0,±π
2
) = 0. But, Rowe, et al., reports P (−π

8
, 3π

8
) and P (3π

8
,−π

8
) ≈

0.5 [2]. It could be that the predisposition for | ↑↑〉 and | ↓↓〉 may have raised this

correlation value.

Therefore, although the transitional system used in the experiment produces the en-

tangled states, and can be used to close the detection efficiency loophole, the such system

with a predisposition for particular states may not be a good candidate for testing Bell’s

inequality.
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