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Abstract: 
It is shown mathematically with Newtonian physics that a particle or photon can exit from 

underneath the event horizon of a singularity or black hole, where it can be observed, even though it 

may never fully escape the gravitational field. The radius of the event horizon is an observed effect, 

dependent on the distance of the observer from the singularity, where Rs (Schwarzchild radius) is the 

event horizon observed from a distance approaching infinity. We will show that it is possible for 

matter to exit from the event horizon, and be observed outside the event horizon, as has been 

observed in many instances. While we may not be able to observe objects under the event horizon, 

we may observe how objects nearer the event horizon are affected from within. 

Introduction: 
Upon initial discussions regarding black holes, these were presented as stellar objects unable to 

reveal information about themselves, that any events occurring underneath the event horizon, or 

Schwarzchild radius (Rs) can never be revealed to the outside world. [6][7][8]. This model became 

problematic when numerous observations were made of activity immediately surrounding black 

holes [9][10][11][12][13], indicating that there was more there than mere radiation of objects 

outside of Rs. More models followed, including various models suggesting interaction of matter with 

the event horizon and accretion disk [14] and Hawking’s popular radiation model. [4][5] 

It is the purpose of this document to show that a singularity is not surrounded by a “bubble of 

invisibility” under the event horizon, but that more of it can be observed, as an observer gets closer 

to what was initially the event horizon; that the event horizon is not a physical construct to be 

encountered in space, but merely an observational effect. 

In 1916, Schwarzchild [1] provided a solution to Einstein’s General Relativity equations [2] around 

black holes, resulting in the spacetime metric as below [3]  

 ds2 = gabdxadxb = − (1 −
G

c2

2M

r
) dt2 + (1 −

G

c2

2M

r
)

−1
dr2 + r2dθ2 + r2sin2θdφ2 (1) 

, which becomes singular at a radius of: 

 𝑟 =
2∗𝐺∗𝑀

𝑐2  (2) 

This radius became known as the Schwarzchild radius Rs 

The same solution can be achieved using Newtonian physics. To start, we will derive, with 

explanations, the following known equations below from Newtonian physics. The purpose of this 

exercise is to show that the same result is achieved as with General Relativity and Schwarzchild’s 

solution, thus rendering simple Newtonian physics quite valid for our further consideration in this 

document: 

a. Escape velocity  

 𝑉𝑒 = √
2∗𝐺∗𝑀

𝑟
 (3) 
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b. Event horizon, Schwarzchild radius  

 𝑅𝑠 =
2∗𝐺∗𝑀

𝑐2  (4) 

Where 

𝑀 = 𝑚𝑎𝑠𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑏𝑙𝑎𝑐𝑘 ℎ𝑜𝑙𝑒 𝑜𝑟 𝑠𝑖𝑛𝑔𝑢𝑙𝑎𝑟𝑖𝑡𝑦 

 𝐺 =  6.67 ∗ 10−11 𝑚3 

𝑘𝑔∗𝑠2 (𝑁𝑒𝑤𝑡𝑜𝑛′𝑠𝑔𝑟𝑎𝑣𝑖𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡) (5) 

 𝑐 ≅ 3 ∗ 108𝑚/𝑠 (𝑠𝑝𝑒𝑒𝑑 𝑜𝑓 𝑙𝑖𝑔ℎ𝑡 𝑖𝑛 𝑣𝑎𝑐𝑢𝑢𝑚) (6) 

These equations are valid for a black hole under ideal conditions, but have become misleading when 

used in conversation, or even in science papers. The prime example of this, pertaining to this 

document, is that an “escape velocity” is needed in order to reach an infinite distance from the black 

hole. This has become more loosely (but still scientifically correct), termed as “nothing can escape 

from a black hole”. Unfortunately it has further deteriorated to “nothing can escape through the 

event horizon” as if the event horizon is an impenetrable barrier.  

This erroneous mental image was further strengthened by application of general relativity around a 

singularity in empty space [15] showing all paths of light from the singularity lead back to the 

singularity[16]. Although mathematically correct, the assumption of this model remains that the 

black hole is in empty space. An object breaching (from our observation point) the event horizon, 

will necessarily disturb this model when it adds its own space-time to the scene. 

  

Figure 1: In the top figure the event horizon (Rs) of the black hole is undisturbed. In the bottom figure the space-time of the 
Event Horizon is distorted by the in-falling object. 



It can for instance be shown that the required escape velocity for our own solar system (from SGR-

A*) is greater than our actual orbiting velocity around it, yet it doesn’t mean we’re doomed to soon 

become accretion material. Said differently: We’ve not actually managed to escape the gravitational 

field of SGR-A*. We are, however, “outside” the event horizon. The point to note here: If it hasn’t 

escaped, does not mean it cannot be observed. 

We will follow on, using the same methods of calculation, to show that it is possible to “escape” past 

the Schwarzchild radius, even from well within the radius. 

Discussion: 

1. ESCAPE VELOCITY 
Definition: To escape from the gravitational pull of a massive object, with only an initial 

velocity, and no further forces acting to accelerate or decelerate it, the escaping object tries 

to reach an infinite distance away from the gravitational pull at a remaining velocity of 0 or 

greater. Since gravitational force is proportional to 𝐹 ∝  
1

𝑟2  , where r is the distance between 

the objects; at an infinite distance the force tends to 0. 

 

Assume the escaping object starts with velocity 𝑉𝑒 and ends with velocity 𝑉 = 0 

It also starts with a local potential energy of 

 𝑃𝐸 =  
−𝐺∗𝑀∗𝑚

𝑟
 (7) 

, and ends with a potential energy of 𝑃𝐸 =  0, since the potential energy increases as the 

object moves away. 

For any particle, total energy remains constant (rem: no other external forces) 

 𝐾𝐸1 +  𝑃𝐸1 =  𝐾𝐸2 +  𝑃𝐸2 (8) 

 
1

2
∗ 𝑚 ∗ 𝑉𝑒

2 − 
𝐺∗𝑀∗𝑚

𝑟
= 0 + 0 (9) 

 𝑉𝑒 = √
2∗𝐺∗𝑀

𝑟
 (10) 

 This is the initial velocity required to escape the gravitational field, or escape velocity. 

Or another way of determining this same velocity: 

Gravitational force between two masses M and m, distance r apart: 

 𝐹 =
𝐺∗𝑀∗𝑚

𝑟2  (11) 

Work done to move the mass m over a distance dr 

 𝑑𝑊 =
𝐺∗𝑀∗𝑚

𝑟2  𝑑𝑟 (12) 

Total work done from starting distance ri to infinity 

 𝑊 = ∫
𝐺∗𝑀∗𝑚

𝑟2  𝑑𝑟
∞

𝑟𝑖
 (13) 

 𝑊 =
−𝐺∗𝑀∗𝑚

𝑟𝑖
 (14) 



Kinetic energy required to do this work: 

 
1

2
∗ 𝑚 ∗ 𝑉𝑒

2 =  
𝐺∗𝑀∗𝑚

𝑟𝑖
 (15) 

 𝑉𝑒 = √
2∗𝐺∗𝑀

𝑟𝑖
 (16) 

 

2. SCHWARZSCHILD RADIUS 
From the above equation we see that the required escape velocity increases as the mass M 

increases, and it also requires a greater escape velocity for smaller values of r. 

 

No object can exceed the speed of light [Einstein 1905], so we can place an upper limit on Ve 

𝑉𝑒 ≤ 𝑐 

Replacing Ve (max) with c in the above equation: 

 𝑐2 =
2∗𝐺∗𝑀

𝑟𝑖
 (17) 

 𝑟𝑖 =
2∗𝐺∗𝑀

𝑐2  (18) 

 This is known as the Schwarzschild radius from within nothing, not even light can escape. 

 𝑅𝑠 =
2∗𝐺∗𝑀

𝑐2  (19) 

 

3. EVENT HORIZON 
Classic definition: The term event horizon defines the visible limit of the Schwarzschild radius 

around a black hole. If nothing can escape from this radius, not even light, then it is not 

possible to observe anything “under” this radius. Above the radius events can be seen, 

below the radius events cannot be seen, and no information can be obtained about what 

goes on below the event horizon.  

 

4. REVISITING OUR ASSUMPTIONS 
Following the above paragraphs, it seems understandable that no information can escape a 

black hole. However we have to go back to these paragraphs and analyse a few of the 

assumptions we made: 

“To escape from the gravitational pull of a massive object, with only an initial velocity, and 

no further forces acting to accelerate or decelerate it, the escaping object tries to reach an 

infinite distance away from the gravitational pull at a velocity of 0 or greater.”    

NOTE: 

- Black holes don’t exist in empty space. There are stars, dust, and other galaxies that 

may influence a particle or photon that wishes to escape from a black hole. Any of 

these may exert a gravitational pull on a particle that may alter its conditions of 

escape. Considering this argument from a general relativity perspective, it can be 

argued that any object that enters Rs, is surrounded by its own space-time, and will 

hence affect the idealistic GR space-time model of the black hole.  



- While a photon or particle may not be able to escape to an infinite distance, it may 

well be able to escape a reasonable distance beyond the event horizon, where it 

may interact with another object, hence it can be observed! 

 

Figure 2: In the top figure both observer A and B can observe the object, either by its emitted light or particles 
ejected at very high velocity. In the bottom figure observer A does not see the object under the event horizon, or 
the particle does not have enough energy to reach observer A. Observer B can still see the object, or observe the 
particles emitted. 

 

5. OBSERVATION HORIZON 
We will now revisit the initial equations, where the photon (or particle) is not required to 

travel an infinite distance to escape a black hole, but only a finite distance. If the photon or 

particle doesn’t “escape” the black hole (to infinite distance), but only manages to travel as 

far as distance z, where it finds its kinetic energy depleted, and its velocity is zero. Up until 

this point an observer can still interact with - or observe - the particle. 

For a distance z > Rs 

Total work done from any starting distance rz to distance z 

 𝑊 = ∫
𝐺∗𝑀∗𝑚

𝑟2  𝑑𝑟
𝑧

𝑟𝑧
 (20) 

 𝑊 =
−𝐺∗𝑀∗𝑚

𝑧
+

𝐺∗𝑀∗𝑚

𝑟𝑧
 (21) 

To reach this distance z, we will need to equip the particle with an initial velocity Vz such 

that: (showing algebra steps) 

 
1

2
∗ 𝑚 ∗ 𝑉𝑧

2 =
−𝐺∗𝑀∗𝑚

𝑧
+

𝐺∗𝑀∗𝑚

𝑟𝑧
 (22) 

 𝑉𝑧
2 =

−2∗𝐺∗𝑀

𝑧
+

2∗𝐺∗𝑀

𝑟𝑧
 (23) 



 𝑧 ∗ 𝑟𝑧 ∗ 𝑉𝑧
2 =  −2 ∗ 𝑟𝑧 ∗ 𝐺 ∗ 𝑀 + 2 ∗ 𝑧 ∗ 𝐺 ∗ 𝑀 (24) 

 𝑟𝑧 ∗ (𝑧 ∗ 𝑉𝑧
2 + 2 ∗ 𝐺 ∗ 𝑀) =  2 ∗ 𝑧 ∗ 𝐺 ∗ 𝑀 (25) 

 𝑟𝑧 =  
2∗𝑧∗𝐺∗𝑀

𝑧∗𝑉𝑧
2+2∗𝐺∗𝑀

 (26) 

In the case of a particle approaching Vz -> c, or for a light particle: 

 𝑟𝑧 =  
2∗𝑧∗𝐺∗𝑀

𝑧∗𝑐2+2∗𝐺∗𝑀
 (27) 

 𝑟𝑧 =  
𝑧∗

2∗𝐺∗𝑀

𝑐2

𝑧+
2∗𝐺∗𝑀

𝑐2

 (28) 

But the Schwarzschild radius 

 𝑅𝑠 =
2∗𝐺∗𝑀

𝑐2  (29) 

 𝑟𝑧 =  
𝑧∗𝑅𝑠

𝑧+𝑅𝑠
 (30) 

This will be the event horizon to an observer at distance z. 

   

Figure 3: Observable Event Horizon, as a function of distance z from the black hole 

 𝑟𝑧 =  
𝑧∗𝑅𝑠

𝑧+𝑅𝑠
 (31) 

NOTE: 

- rz ≤ Rs for all z ≥ 0 This observed radius is equal or smaller than the Schwarzschild 

radius 

- rz ≤ z for all z ≥ 0 This radius gets smaller as the observer gets closer to the black 

hole, and is always closer to the black hole than the current position. 

- Validity check: rz = Rs for z-> ∞; (d/dx rule) 

- rz -> 0 for z -> 0; in fact rz = 0 for z = 0 

- rz ≤ z for all z ≥ 0 

 

 

 



6. BUT NOTHING CAN ESCAPE THE EVENT HORIZON, RIGHT!? 
We will show that a particle, from within the Schwarzschild radius, can have enough energy 

to reach the event horizon, and go beyond, where it may be observed. 

Let’s say the particle starts at z < Rs  (under the event horizon) and needs enough energy to 

travel to rii, somewhere  before or past Rs.  

(rii is the distance to which the particle or photon can travel, given enough energy, and 

where it can be observed.) 

Total work done from any starting distance z to some distance rii where rii > z.  

 𝑊 = ∫
𝐺∗𝑀∗𝑚

𝑟2  𝑑𝑟
𝑟𝑖𝑖

𝑧
 (32) 

 𝑊 =
−𝐺∗𝑀∗𝑚

𝑟𝑖𝑖
+

𝐺∗𝑀∗𝑚

𝑧
 𝑓𝑜𝑟 0 < 𝑧 < 𝑅𝑠;  𝑟𝑖𝑖 > 𝑧  (33) 

Note: z > 0! (This possibly implies we cannot escape from within the singularity, or we have 

 undefined physics in the region z=0!) 

To reach rii from z, we will need to equip the particle with an initial velocity Vii such that:  

(not showing algebra steps) 

 
1

2
∗ 𝑚 ∗ 𝑉𝑖𝑖

2 =
−𝐺∗𝑀∗𝑚

𝑟𝑖𝑖
+

𝐺∗𝑀∗𝑚

𝑧
 (34) 

 𝑟𝑖𝑖 =  
𝑧∗𝑅𝑠

𝑅𝑠−𝑧
 (35) 

    

Figure 4: Particle's view of escape radius, as a function of distance z from the black hole 

 𝑟𝑖𝑖 =  
𝑧∗𝑅𝑠

𝑅𝑠−𝑧
 (36) 

Note:  

- rii-> infinite as z->Rs (the photon sees it can travel up to infinity)  

- rii->0 as z->0 (the photon sees no escape from within the singularity) 

- and rii > z for all  (z > 0; rii < Rs)  (the particle or photon can get enough energy to 

travel outward from its current position) 

 

 

If the particle or photon had to escape as far as Rs 

 𝑊 =
−𝐺∗𝑀∗𝑚

𝑅𝑠
+

𝐺∗𝑀∗𝑚

𝑧
 𝑓𝑜𝑟 0 < 𝑥 < 𝑅𝑠  (37) 



But the Schwarzschild radius 

 𝑅𝑠 =
2∗𝐺∗𝑀

𝑐2  (38) 

 𝑊 =
−𝑚∗𝑐2

2
+

𝐺∗𝑀∗𝑚

𝑧
 𝑓𝑜𝑟 0 < 𝑧 < 𝑅𝑠  (39) 

Kinetic energy required to reach Rs 

 
1

2
∗ 𝑚 ∗ 𝑉𝑧

2 =
−𝑚∗𝑐2

2
+

𝐺∗𝑀∗𝑚

𝑧
  𝑓𝑜𝑟 0 < 𝑧 < 𝑅𝑠  (40) 

 𝑉𝑧 = √
2∗𝐺∗𝑀

𝑧
− 𝑐2  𝑓𝑜𝑟 0 < 𝑧 < 𝑅𝑠 (41) 

We can test some limits: 

Test 1: for Vz > 0 

 √
2∗𝐺∗𝑀

𝑧
− 𝑐2 > 0 𝑓𝑜𝑟 0 < 𝑧 < 𝑅𝑠 (42) 

 𝑧 <
2∗𝐺∗𝑀

𝑐2  (43) 

Which just means z < Rs which was one of our original assumptions. Thus for any 0<z<Rs,  

Vz is a real and thus a valid number. 

Test2: for Vz<c 

 √
2∗𝐺∗𝑀

𝑧
− 𝑐2 < 𝑐 𝑓𝑜𝑟 0 < 𝑧 < 𝑅𝑠 (44) 

 𝑧 >
𝐺∗𝑀

𝑐2  (45) 

Which equates ½ Rs.  

Thus a particle from Rs/2 can escape to Rs, with an initial velocity Vz -> c (approaching c) 

In other words, a particle or photon in the band between Rs/2 and Rs can possibly travel far 

enough and be observed at z > Rs 

 

  



7. CONCLUSIONS 
- It was shown that the event horizon and/or Schwarzschild radius is a mathematical 

radius, only applicable to observers who are at an infinite distance from a black hole. 

- It was shown (eq 30) that for any observer at a finite distance ‘z’, the observed event 

horizon would be smaller than Rs: 

 𝑟𝑧 =  
𝑧∗𝑅𝑠

𝑧+𝑅𝑠
 (46) 

- It was shown (eq 35) that any particle at position (z > 0; rii < Rs) can gain energy to 

allow it to move away from the singularity, and the freedom of movement increases 

as it approaches Rs. 

 𝑟𝑖𝑖 =  
𝑧∗𝑅𝑠

𝑅𝑠−𝑧
 (47) 

 

- It was shown that it is possible for a particle or photon from within the classic 

Schwarzschild radius to be observed outside the Schwarzschild radius. We cannot 

observe under the observable event horizon, but we can observe what comes out of 

the observable event horizon. 

- A black hole reveals more information as an observer gets closer. 

- From the distance we are to SGR-A*, we may not be able to distinguish anything 

under Rs, but we are possibly able to observe what comes out of Rs and interacts 

with the surrounding material. 

- We need to revise our understanding of observations around black holes. 

- This solution could possibly be improved by a student of General Relativity. 

- We can look closer at further evidence that there is activity observed from 

underneath Rs. Outflow[9], bow-shock[10], outflows[11], flares[12], jets[13]. These 

are but a few of many observations that have been made that would provide 

evidence toward this hypothesis. 

 

  



8. EXAMPLE CALCULATION and AUTHOR NOTES 
Estimated and rough figures taken for example calculation 

- Mass of Milky Way SMBH SGR-A* 3.6 * 106 * sol  

- Mass of sol    2 * 1030 kg 

- 𝐺 =  6.67 ∗ 10−11 m3 

kg∗𝑠2 

Calculate:  

Rs(SGR-A*) ≈ 1.066 ∗ 1010m  
 

Calculate: Observed from z = 10*Rs from SGR-A*:  

Rz (SGR-A*) ≈ 0.969 ∗ 1010m 

 

 

 

Figure 5: Observer A can only see what's outside the classic event horizon, or Rs. Observer B can see under Rs, as 
far as r(z). If observer B is affected by what it observes, observer A can observe the effect on B. 

How is this significant? 

This is significant because what we see as the event horizon, is not what objects close-up 

see as the event horizon. Interactions we see in that vicinity is therefore NOT because of 

the object’s interaction with the event horizon. 

While we may not be able to see (from earth) what’s underneath Rs, we can see objects 

outside and close to Rs, and if we can possible detect what these objects observe, then 

we are getting information from within Rs!  

For example, let an orbiting body be one observer at z << ∞. We can look for an object 

at Rs < z << ∞ that shows signs of being radiated or pushed or affected outward from 

SGR-A*, or we can see an object with a bow-shock as it passes through the radiation 

exiting Rs 
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