Title: Goldbach Conjecture; Proof(?)

Author: Barry Foster

Abstract: The Goldbach Conjecture may be stated as follows:

Every even number greater than 4 can be written as the sum of two prime numbers.

Thus 6 = 3+3
 8 = 3+5
 10 = 3+7 or 5+5

This attempt does not require knowledge of the distribution of primes.
Proof
Consider the ordered set S_P of all primes $\leq P$.
\[S_P = \{3, 5, 7 \ldots P\} \]
The ordered set S_E of distinct even numbers that can be made as the sum of 2 primes from S_P is:
\[S_E = \{6, 8, \ldots, 2P\} \]
Assume the Goldbach Conjecture is true; thus all the even numbers in the range $[6, 2P]$ are in S_E.

Example
$P=7$; $S_P = \{3, 5, 7\}$; $S_E = \{6, 8, 10, 12, 14\}$
The even number after $2P$ is $2P+2$: we will show it is also the sum of 2 primes.

Any pair of primes summing to $2P+2$ must be in the interval $[3, 2P-1]$ with the larger one $>P$.

Assume
\[A+B = 2P+2 \quad \{A, B \text{ prime; } A>B; \} \]
\[(B\neq A \text{ as this would mean } A \text{ and } B \text{ are even}) \]
thus
\[P<A<=2P-1 \quad \{A \text{ is not in } S_P\} \]
and
\[3<=B<=P \quad \{B \text{ is in } S_P\} \]

Bertrand’s Theorem confirms there is at least one prime number between P and $2P$.
\[\therefore \text{ a prime number } A \text{ exists.} \]

There are 2 cases to consider:

(i)
$2P-1$ is prime so $2P+2 = 3 + (2P-1)$
\[\therefore A=2P-1, B=3 \text{ are a "Goldbach Pair", or,} \]

(ii)
$2P-1$ is not prime so that $3<B<=P<A<2P-1$.
\[\therefore B+1 \text{ is in } S_E \text{ and } B \text{ is in } S_P. \]
Thus (A, B) are a Goldbach Pair for case (ii).
And so on, ... , extending S_P and S_E.

Thus Goldbach’s Conjecture is true.