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Abstract

We determine nonlinear transformations between coordinate systems which are mutually
in a constant symmetrical accelerated motion. The maximal acceleration limit follows from
the kinematical origin. Maximal acceleration is an analogue of the maximal velocity in
special relativity. We derive the dependence of mass, length, time, Doppler effect, Čerenkov
effect and transition radiation angle on acceleration as an analogue phenomena in special
theory of relativity. The derived addition theorem for acceleration can play crucial role in
modern particle physics and cosmology.

1 Introduction

The problem of acceleration of charged particles or systems of particles is the permanent and
the most prestige problem in the accelerator physics. Particles can be accelerated by different
ways. Usually by the classical electromagnetic fields, or, by light pressure of the laser fields
(Baranova et al., 1994; Pardy, 1998, 2001, 2002). The latter method is the permanent problem
of the laser physics for many years.

Here, we determine transformations between coordinate systems which moves mutually with
the same acceleration. We determine transformations between non relativistic and relativistic
uniformly accelerated systems.

Let us remind the special theory of relativity velocity and acceleration The Lorentz transfor-
mation between two inertial coordinate systems S(0, x, y, z) and S′(0, x′, y′, z′) (where system S′
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moves in such a way that x-axes converge, while y and z-axes run parallel and at time t = t′ = 0
for the origin of the systems O and O′ it is O ≡ O′) is as follows:

x′ = γ(v)(x− vt), y′ = y, z′ = z′, t′ = γ(v)

(
t− v

c2
x

)
, (1)

where

γ(v) =

(
1− v2

c2

)−1/2

. (2)

The infinitesimal form of this transformation is evidently given by differentiation of the every
equation. Or,

dx′ = γ(v)(dx− vdt), dy′ = dy, dz′ = dz, dt′ = γ(v)

(
dt− v

c2
dx

)
. (3)

It follows from eqs. (3) that if v1 is velocity of the inertial system 1 with regard to S and
v2 is the velocity of the inertial systems 2 with regard to 1, then the relativistic sum of the two
velocities is

u2 =
v1 + v2
1 + v1v2

c2
. (4)

The mathematic object called four-velocity follows from the Lorentz transformation after
some additional operations. From the ordinary three-dimensional velocity vector one can form
a four-vector. This four-dimensional velocity (four-velocity) of a particle is the vector

uµ =
dxµ

ds
, (5)

where, according to Landau et al. (1987)

ds = cdt

√
1− v2

c2
(6)

with v being the ordinary three-dimensional velocity of the particle and c being the velocity of
light. Thus

u1 =
dx1

ds
=

dx

cdt
√
1− v2

c2

=
vx

c
√
1− v2

c2

. (7)

Then,

uµ =

 1√
1− v2

c2

,
v

c
√
1− v2

c2

 . (8)

Note, that the four-velocity is a dimensionless quantity. The components of the four-velocity
are not independent. Noting that dxµdxµ = ds2, we have

uµuµ = 1. (9)

Geometrically, uµ is a unit four-vector tangent to the world line of the particle.
Similarly to the definition of the four-velocity, the second derivative

aµ =
d2xµ

ds2
=

duµ

ds
(10)
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may be called the four-acceleration. Differentiating formula (9), we find:

uµaµ = 0, (11)

i.e. the four-vectors of velocity and acceleration are ”mutually perpendicular”.
Now, let us determine the relativistic uniformly accelerated motion, i.e. the rectilinear

motion for which the acceleration aµ in the proper reference frame (at each instant of time)
remains constant. We proceed as follows.

In the reference frame in which the particle velocity is v = 0, the components of the four-
acceleration aµ = (0, a/c2, 0, 0) (where a is the ordinary three-dimensional acceleration, which is
directed along the x axis). The relativistically invariant condition for uniform acceleration must
be expressed by the constancy of the four-scalar which coincides with a2 in the proper reference
frame:

aµaµ = const = −a2

c4
. (12)

In the ”fixed” frame, with respect to which the motion is observed, writing out the expression
for aµaµ gives the equation:

d

dt

v√
1− v2

c2

= a, (13)

or,

v

c
√
1− v2

c2

= at+ const. (14)

Setting v = 0 for t = 0, we find that const = 0, so that

v =
at√

1 + a2t2

c2

, (15)

Integrating once more and setting x = 0 for t = 0, we find:

x =
c2

a

√1 +
a2t2

c2
− 1

 . (16)

For at ≪ c, these formulas go over the classical expressions v = at, x = a
2 t

2. For at → ∞,
the velocity tends toward the constant value c.

The proper time of a uniformly accelerated particle is given by the integral (Landau et al.,
1987)

∫ t

0

√
1 +

v2(t)

c2
dt =

c

a
arcsinh

at

c
. (17)

At the limit t→∞ it increases much more slowly than t, according to the law

c

a
ln

2at

c
. (18)

The infinitesimal form of Lorentz transformation (3) evidently gives the Lorentz length
contraction and time dilation. Namely, if we put dt = 0 in the first equation of system (3),
then the Lorentz length contraction follows in the infinitesimal form dx′ = γ(v)dx. Or, in other
words, if in the system S′ the infinitesimal length is dx′, then the relative length with regard to
the system S is γ−1dx′. Similarly, from the last equation of (3) it follows the time dilatation for
dx = 0. Historical view on this effect is in the Selleri article (Selleri, 1997).

3



2 Uniformly accelerated frames with space-time symmetry

Let us take two systems S(0, x, y, z) and S′(0, x′, y′, z′), where system S′ moves in such a way
that x-axes converge, while y and z-axes run parallel and at time t = t′ = 0 for the beginning of
the systems O and O′ it is O ≡ O′. Let us suppose that system S′ moves relative to some basic
system B with acceleration a/2 and system S′ moves relative to system B with acceleration
−a/2. It means that both systems moves one another with acceleration a and are equivalent
because in every system it is possibly to observe the force caused by the acceleration a/2. In
other words no system is inertial.

Now, let us consider the formal transformation equations between two systems. At this
moment we give to this transform only formal meaning because at this time, the physical meaning
of such transformation is not known. On the other hand, the consequences of the transformation
will be shown very interesting. The first published derivation of such transformation by the
standard way was given by author (Pardy, 2003; 2004; 2005), and the same transformations
were submitted some decades ago (Pardy, 1974). The old results can be obtained if we perform
transformation

t→ t2, t′ → t′2, v → 1

2
a, c→ 1

2
α (19)

in the original Lorentz transformation (1). We get:

x′ = Γ(a)(x− 1

2
at2), y′ = y, z′ = z, t′2 = Γ(a)

(
t2 − 2a

α2
x

)
(20)

with

Γ(a) =
1√

1− a2

α2

. (21)

We used practically new denotation of variables in order to get the transformation (20)
between accelerated systems.

The transformations (20) form the one-parametric group with the parameter a. The proof
of this mathematical statement can be easy performed if we perform the transformation T1 from
S to S′, transformation T2 from S′ to S′′ and transformation T3 from S to S′′. Or,

x′ = x′(x, t; a1), t′ = t′(x, t; a1), (22)

x′′ = x′′(x′, t′; a2), t′′ = t′′(x′, t′; a2), (23)

After insertion of transformations (22) into (23), we get

x′′ = x′′(x, t; a3), t′′ = t′′(x, t; a3), (24)

where parameter a3 is equal to

a3 =
a1 + a2
1 + a1a2

α2

. (25)

The inverse parameter is −a and parameter for identity is a = 0 It may be easy to verify
that the final relation for the definition of the continuous group transformation is valid for our
transformation. Namely (Eisenhart, 1943):

(T3T2)T1 = T3 (T2T1) . (26)

The physical interpretation of this nonlinear transformations is the same as in the case of the
Lorentz transformation only the physical interpretation of the invariant function x = (1/2)αt2 is
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different. Namely it can be expressed by the statement. If there is a physical signal in the system
S with the law x = (1/2)αt2, then in the system S′ the law of the process is x′ = (1/2)αt′2,
where α is the constant of maximal acceleration. It is new constant and cannot be defined by
the game with known physical constants.

Let us remark, that it follows from history of physics, that Lorentz transformation was taken
first as physically meaningless mathematical object by Larmor, Voigt and Lorentz and later only
Einstein decided to put the physical meaning to this transformation and to the invariant function
x = ct. We hope that the derived transformation will appear as physically meaningful.

Using relations t ← t2, t′ ← t′2, v ← 1
2a, c ← 1

2α, the nonlinear transformation
is expressed as the Lorentz transformation forming the one-parametric group. This proof is
equivalent to the proof by the above direct calculation. The integral part of the group properties
is the so called addition theorem for acceleration.

a3 =
a1 + a2
1 + a1a2

α2

. (27)

where a1 is the acceleration of the S′ with regard to the system S, a2 is the acceleration of the
system S′′ with regard to the system S′ and a3 is the acceleration of the system S′′ with regard
to the system S. The relation (27), expresses the law of acceleration addition theorem on the
understanding that the events are marked according to the relation (20).

If a1 = a2 = a3 = .... + an = a, for n accelerated carts which rolls in such a way that the
first cart rolls on the basic cart, the second rolls on the first cart and so on, then we get for the
sum of n accelerated carts the following formula

asum =
1−

(
1−a/α
1+a/α

)n
1 +

(
1−a/α
1+a/α

)n , (28)

which is an analogue of the formula for the inertial systems (Lightman et al., 1975).
In this formula as well as in the transformation equation (20) appears constant α which

cannot be calculated from the theoretical considerations, or, constructed from the known physical
constants (in analogy with the velocity of light). What is its magnitude can be established only
by experiments. The notion maximal acceleration was introduced some decades ago by author
(Pardy, 1974). Caianiello (1981) introduced it as some consequence of quantum mechanics and
Landau theory of fluctuations. Revisiting view on the maximal acceleration was given by Papini
(2003). At present time it was argued by Lambiase et al. (1999) that maximal acceleration
determines the upper limit of the Higgs boson and that it gives also the relation which links
the mass of W -boson with the mass of the Higgs boson. The LHC and HERA experiments
presented different answer to this problem.

3 Transformation with constant acceleration in the fixed frame

In the ”fixed” frame, with respect to which the motion is observed, we use the equation (13) to
derive the adequate transformation: Or,

ξ(a, t) =
c2

a

√1 +
a2t2

c2
− 1

 . (29)

For at ≪ c, these formulas go over the classical expressions v = at, x = 1
2at

2. For at → ∞,
the velocity tends toward the constant value c.

The transformation equations between S and S’ can be easily derived. Let us give some
instructions.

It may be easy to see, that
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x′ = Γ(a)(x− ξ(a, t)), y′ = y, z′ = z, (30)

with

Γ(a) =
1√

1− a2

α2

. (31)

Then,

x = Γ(a)(x+ ξ(a, t′)) (32)

and

ξ(a, t′) = Γ−1x− x′ = x/Γ− Γx+ Γξ(a, t) (33)

It follows from the last equation the variable t′ and the identity ξ(α, t′) = ξ(α, t).
Let us remark, that if we use the infinitesimal transformation (3) with the velocity depending

on time (15), then we obtain after integration the new original transformation for ccelerated
systems (Pardy, 2003, 2004, 2005) with the new physical meaning.

4 Dependence of mass, length, time, the Doppler effect, the
Čerenkov effect and the transition radiation angle on acceler-
ation

If the maximal acceleration is the physical reality, then it should have the similar consequences
in a dynamics as the maximal velocity of motion has consequences in the dependence of mass
on velocity. We can suppose in analogy with the special relativity that mass depends on the
acceleration for small velocities, in the similar way as it depends on velocity in case of uniform
motion. Of course such assumption must be experimentally verified and in no case it follows
from special theory of relativity, or, general theory of relativity (Fok, 1961). So, we postulate
ad hoc, in analogy with special theory of relativity:

m(a) =
m0√
1− a2

α2

; v ≪ c, a =
dv

dt
. (34)

Let us derive as an example the law of motion when the constant force F acts on the body
with the rest mass m0. Then, the Newton law reads (Landau et al., 1997):

F =
dp

dt
= m0

d

dt

v√
1− a2

α2

. (35)

The first integral of this equation can be written in the form:

Ft

m0
=

v√
1− a2

α2

; a =
dv

dt
, F = const.. (36)

Let us introduce quantities

v = y, a = y′, A(t) =
F 2t2

m2
0α

2
. (37)

Then, the quadratic form of the equation (36) can be written as the following differential
equation:
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A(t)y′2 + y2 −A(t)α2 = 0, (38)

which is nonlinear differential equation of the first order. The solution of it is of the form y = Dt,
where D is some constant, which can be easily determined. Then, we have the solution in the
form:

y = v = Dt =
t√

m2
0

F 2 + 1
α2

. (39)

For F → ∞, we get v = αt. This relation can play substantial role at the beginning of
the big-bang, where the accelerating forces can be considered as infinite, however the law of
acceleration has finite nonsingular form.

At this moment it is not clear if the dependence of the mass on acceleration can be related
to the energy dependence on acceleration similarly to the Einstein relation uniting energy, mass
and velocity (Okun, 2001, 2002; Sachs, 1973 ).

The infinitesimal form of author transformation (20) evidently gives the length contraction
and time dilation. Namely, if we put dt = 0 in the first equation of system (20), then the length
contraction follows in the infinitesimal form dx′ = Γ(a)dx. Or, in other words, if in the system
S′ the infinitesimal length is dx′, then the relative length with regard to the system S is Γ−1dx′.
Similarly, from the last equation of (20) it follows the time dilatation for dx = 0.

The relativistic Doppler effect is the change in frequency (and wavelength) of light, caused
by the relative motion of the source and the observer (as in the classical Doppler effect), when
taking into account effects described by the special theory of relativity.

The relativistic Doppler effect is different from the non-relativistic Doppler effect as the
equations include the time dilation effect of special relativity and do not involve the medium of
propagation as a reference point (Rohlf, 1994).

The Doppler shift caused by acceleration can be also derived immediately from the original
relativistic equations for the Doppler shift. We only make the transformation v → a/2, c→ α/2
to get

λ′

λ
=

√
1− a/α

1 + a/α
(40)

when the photons of the wave length λ are measured toward photon source, and

λ′

λ
=

√
1 + a/α

1− a/α
(41)

when the photons of the wave length λ are measured in the frame that is moving away from the
photon source. Different approach used Friedman et al. (2010).

Concerning the Čerenkov radiation, it is based on the fact that the speed of light in the
medium with the index of refraction n is c/n. A charged particle moving in such medium can
have the speed greater than it is the speed of light in this medium. When a charged particle
moves faster than the speed of light in this medium, a portion of the electromagnetic radiation
emitted by excited atom along the path of the particle is coherent. The coherent radiation is
emitted at a fixed angle with respect to the particle trajectory. This radiation was observed by
Čerenkov in 1935. The characteistic angle was derived by Tamm and Frank in the form (Rohlf,
1994)

cos θ =
c

vn
. (42)

The Čerenkov angle caused by acceleration can be also derived immediately from the original
Frank-Tamm equations for this effect. We only make the transformation v → a/2, c → α/2 to
get
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cos θ =
α

an
. (43)

In case of the Ginzburg transition radiation the radiation in concentraced in the angle

1/γ =
1√

1− v2

c2

(44)

The transition radiation angle caused by acceleration can be also derived immediately from
the original Ginzburg formula for this effect. We only make the transformation v → a/2, c→ α/2
to get

1/Γ =
1√

1− a2

α2

. (45)

5 The rotating systems

It is defined by equations

x = r cos(φ+ ωt), y = r sin(φ+ ωt). (46)

The corresponding space-time element is as follows:

ds2 =

(
1− ω2r2

c2

)
(cdt)2 − 2ωr2

c
dφ(cdt)− dz2 − dr2 − r2dφ2. (47)

Although the rotating system cannot be considered as equivalent to the linear accelerated
system, nevertheless, the radial component of every part of this system is in the permanent
acceleration. The application in the galactic space is evident. In other words, if the radial
coordinate of Earth with regard to Sun is rE and its radial acceleration wE and the radial
coordinate of Moon with regard to Earth is rM and acceleration wM , then the relative
acceleration wr of Moon with regard to Sun is not wE + wM , but it is given by the formula

wr =
wE + wM

1 + wEwM
α2

. (48)

The last formula is an analogue of the formula which determines the relative velocities in
case of the inertial motion in the special theory of relativity. The last formula is true only if
the transverse effects do not influence the radial effects. It can be verified optically, because we
know that the optical frequency of the emission source is influenced by acceleration.

Similarly, it is possible to verify the dependence of mass on acceleration, also by the
ultracentrifuge, or immediately by physics in LHC, or ELI.

6 Discussion

The maximal acceleration constant which was derived here is kinematical one and it differs from
the Caianiello (1981) definition following from quantum mechanics. Our constant cannot be
determined by the system of other physical constants. It is an analogue of the numeric velocity of
light which cannot be composed from others physical constants, or, the Heisenberg fundamental
length in particle physics. The nonlinear transformations (20) changes the Minkowski metric

ds2 = c2dt2 − dx2 − dy2 − dz2 (49)

to the new metric with the Riemann form. Namely:
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ds2 = α2t2dt2 − dx2 − dy2 − dz2 (50)

and it can be investigated by the methods of differential geometry. So, equations (20) and (50)
can form the preamble to investigation of accelerated systems.

If some experiment will confirm the existence of kinematical maximal acceleration α, then it
will have certainly crucial consequences for Einstein theory of gravity because this theory does
not involve this factor. Also the cosmological theories constructed on the basis of the original
Einstein equations will require modifications. The so called Hubble constant will be changed
and the scenario of the accelerating universe modified.

Also the standard model of particle physics and supersymmetry theory will require general-
ization because they does not involve the maximal acceleration constant. It is not excluded that
also the theory of parity nonconservation will be modified by the maximal acceleration constant.
In such a way the particle laboritories have perspective programes involving the physics with
maximal acceleration.

The prestige problem in the modern theoretical physics - the theory of the Unruh effect,
or, the existence of thermal radiation detected by accelerated observer - is in the development
(Fedotov et al., 2002) and the serious statement, or comment to the relation of this effect to the
maximal acceleration must be elaborated. The analogical statement is valid for the Hawking
effect in the theory of black holes.

It is not excluded that the maximal acceleration constant will be discovered by ILC. The
unique feature of the International Linear Collider (ILC) is the fact that its CM energy can be
increased gradually simply by extending the main linac.

Let us remark in conclusion that it is possible to extend and modify quantum field theory
by maximal acceleration. It is not excluded that the kinematical maximal acceleration constant
will enable to reformulate the theory of renormalization.
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