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Abstract

In this work, we upgrade the Inopin-Schmidt quark confinement and baryon-
antibaryon duality proof with Santilli’s new iso-mathematics. For a baryon-antibaryon
pair confined to the six-coloring kagome lattice of the Inopin Holographic Confinement
Ring (IHCR), we construct a cutting-edge procedure that iso-topically lifts the an-
tisymmetric wavefunctions and matrices to iso-wavefunctions and iso-matrices, respec-
tively. The initial results support our hypothesis that transitions between the energy and
resonance states of the hadronic spectra may be rigorously characterized by properly-
calibrated iso-topic liftings. In total, these rich developments suggest a promising future
for this emerging iso-confinement framework, which must be subjected to additional sci-
entific inquiry, scrutiny, and exploration.

Keywords: High energy particle physics; Higgs physics; Geometry and topology; Iso-
mathematics; Complex systems; Quark confinement; Baryon iso-wavefunction; Kagome lat-
tice theory; Spontaneous gauge symmetry breaking; Superfluids.

∗To the memory and honor of Dr. Andrej “Andy” Inopin.



2

1 Introduction
The new discipline of iso-mathematics [1, 2, 3, 4, 5] generates striking

implications for science, technology, engineering, and mathematics. For
example, its deployment has influenced novel innovations such as San-
tilli’s hadronic mechanics [6], intermediate controlled nuclear synthesis
[7, 8, 9, 10, 11, 12], and magnecular-based fuels [13, 14, 15, 16] for new,
clean, sustainable, cost-efficient power sources that do not emit harmful
radiation or toxic waste. Moreover, some of our recent work has initiated
iso-fractals with chaos [17, 18, 19, 20], dynamic IHCR-based topological
systems [21, 22], a topological iso-string theory in 4D iso-dual space-time
[23], the iso-dual tesseract [24], the iso-electronium and magnecule order
parameter upgrade hypotheses [25, 26, 27], and more.

In this paper, we focus on implementing iso-mathematics [1, 2, 3, 4, 5] in
the Inopin-Schmidt quark confinement proof [28], where we will demonstrate
that the baryon-antibaryon antisymmetric wavefunction can be iso-topically
lifted to a new iso-wavefunction that establishes 2D and 3D iso-matrices.
For this preliminary assessment, the objective is to launch an investigation
of the following hypothesis:

The transitions between the energy and resonance states of the
hadronic spectra may be rigorously characterized by properly-calibrated
iso-topic liftings, including the “Higgs-like scalar massive amplitude-
excitations” [29] and the “Nambu-Goldstone pseudo-scalar massless
phase-excitations” [30, 31, 32, 33] of the antisymmetric wavefunc-
tion’s topological deformation order parameters for the simultaneous
and spontaneous breaking of multiple gauge symmetries that are cor-
related with Legget’s superfluid B phases [28, 34].

Thus, in the background of Section 2 we highlight the pertinent back-
ground results of the Inopin-Schmidt quark confinement proof [28], where
we briefly review the IHCR-based topology and the fundamental complex
structures for encoding the six-coloring kagome lattice’s energy and res-
onance state space of the hadronic spectra. Next, in the procedures of
Section 3 we explain how to iso-topically lift the IHCR (equipped with the
six-coloring kagome lattice) and the topological deformation order parame-
ters that encode the baryon states and transitions in the confinement proof
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[28]. Consequently, in the main results of Section 4 we employ the outcomes
of Section 3 to define the cutting-edge iso-wavefunctions and iso-matrices
for a baryon-antibaryon pair [28]. And finally we conclude with Section 5,
where we briefly recapitulate these discoveries and suggest alignments for
future modes of research.

2 Background review: the Inopin-Schmidt quark confinement sce-
nario
In eq. (7) of [19] X = C is the field of complex numbers that encodes

a Euclidean 2D coordinate-vector space, where the complex number x ∈ X
encodes a 2D coordinate-vector that is defined in eq. (6) of [19] as

x = xR + xI = (xR, xI)C = (|x|, 〈x〉)P , ∀x ∈ X, (1)

such that (xR, xI)C is the 2D Cartesian coordinate-vector and (|x|, 〈x〉)P is
the 2D polar coordinate-vector representation of the position of x that was
deployed in the work of [19, 28, 35].

The 1-sphere IHCR T 1
R ⊂ X—with the amplitude-radius R, the

amplitude-curvature K = 1
R

, and the center of origin O = (0, 0)C—is iso-
metrically embedded in X and is defined in eq. (16) of [19] as

T 1
R = {x ∈ X : |x| = R}, (2)

where T 1
R is the multiplicative group of all non-zero complex numbers with

the modulus R; in terms of “topological circle trichotomy”, T 1
R simultane-

ously delineates between the interior dynamical system of the superluminal
“micro” 2-brane sub-space

X− = {x ∈ X : |x| < R} (3)

and the exterior dynamical system of the non-superluminal “macro” 2-
brane sub-space

X+ = {x ∈ X : |x| > R}. (4)

The initial results of the iso-fractal IHCR topology initiation of [19] strongly
suggest that X− ⊂ X and X+ ⊂ X may be strongly connected to Santilli’s
interior and exterior dynamical systems, respectively.
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In the quark confinement proof of [28], the three colored quarks for the
baryon are confined to a red-green-blue triangular sub-lattice in a quark
bag and the three corresponding anticolored antiquarks for the antibaryon
are confined to a complementary antired-antigreen-antiblue triangular sub-
lattice in an antiquark bag, where the two sub-lattices are superimposed to
the surface of T 1

R and form a six-coloring kagome lattice in the upgraded
Gribov vacuum. In [28], the three quarks are point-particles located at
r, g, b ∈ T 1

R (so |r| = |g| = |b| = R) with the red-green-blue triangular
sub-lattice phase angle position constraint

〈b〉 = 〈g〉+
2π

3
= 〈r〉+

4π

3
, (5)

while the three antiquarks are point-antiparticles located at r̄, ḡ, b̄ ∈ T 1
R

(so |r̄| = |ḡ| = |b̄| = R) with the complementary, antisymmetric antired-
antigreen-antiblue triangular sub-lattice phase angle position constraint

〈r̄〉 = 〈r〉 ± π
〈ḡ〉 = 〈g〉 ± π
〈b̄〉 = 〈b〉 ± π,

(6)

which are visually depicted in Figure 1 (also see Figures 3–4 of [28]).
In [28] the conventional “quantum numbers” are replaced with complex-

valued order parameters for topological deformations of Laughlin quasi-
particle fractional statistics [37] in the superfluidic space-time scenario for
the spontaneous and simultaneous breaking of multiple gauge symmetries
with antiferromagnetic ordering. Each quark and antiquark confined to T 1

R

is assigned three distinct types of such order parameters that are “Cooper-
paired” together with the position-dependent Leggett superfluid B phase
angles [34] of eqs. (5–6): ∀x ∈ {r, g, b, r̄, ḡ, b̄} we have

1. the total angular momentum order parameter is [28]

ψJ(x) ∈ ΦJ(x) = ψJ(x)R + ψJ(x)I
= (ψJ(x)R, ψJ(x)I)C
= (|ψJ(x)|, 〈ψJ(x)〉)P

(7)

for the spin-orbit coupling [38] of T 1
R and the spontaneously-generated

antiferromagnetic ordering [37] of eqs. (29–31) in [28],
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Fig. 1: The three quark-antiquark pairs of the six-coloring kagome lattice are

confined to T 1
R in a bag [28] and located at {r, g, b, r̄, ḡ, b̄} ⊂ T 1

R. The interior

dynamical system of T 1
R is the superluminal “micro” 2-brane sub-space X−, while

the exterior dynamical system of T 1
R is the non-superluminal “macro” 2-brane

sub-space X+, such that T 1
R simultaneously delineates X− and X+ in accordance

to M.C. Escher’s famous reflecting sphere duality [28, 36].
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2. the iso-spin order parameter is [28]

ψI(x) ∈ ΦI(x) = ψI(x)R + ψI(x)I
= (ψI(x)R, ψI(x)I)C
= (|ψI(x)|, 〈ψI(x)〉)P ,

(8)

3. and the color charge order parameter is [28]

ψC(x) ∈ ΦC(x) = ψC(x)R + ψC(x)I
= (ψC(x)R, ψC(x)I)C
= (|ψC(x)|, 〈ψC(x)〉)P .

(9)

To clarify the representation of eqs. (7–9) that are local to x, we refer to
ψJ(x), ψI(x), and ψC(x) as order parameter states in the order parameter
state spaces ΦJ(x), ΦI(x), and ΦC(x), respectively [28]. Note that the
order parameters of eqs. (7–9) take the same complex coordinate-vector
notation form as the positions of eq. (1), where they have a synchronized
2D Cartesian-polar notation [28]—a complete list of these order parameters
is listed in Table 1 of [28].

Thus from [28], we know that T 1
R acquires a Berry phase as the or-

der parameters evolve and undergo transitions, where ∆|ψJ(x)|, ∆|ψI(x)|,
and ∆|ψC(x)| correspond to “Higgs-like” massive amplitude-excitations
(characteristic of Nambu-Goldstone scalar boson fluctuations) for effective
mass generation [29], and ∆〈ψJ(x)〉, ∆〈ψI(x)〉, and ∆〈ψC(x)〉 correspond
to massless phase-excitations (characteristic of Nambu-Goldstone pseudo-
scalar boson fluctuations) [30, 31, 32, 33]—see Figures 8–9 in [28]. The
order parameters of eqs. (7–9) rotate freely in 2D and 3D space to gener-
ate correlated helices with Laughlin quasi-particle fractional statistics [37]
while the Leggett superfluid B phases [34] of eqs. (5–6) remain constant
and impose long range order (see Figure 10 in [28])—this serves as a baryon
(and antibaryon) wavefunction constraint [28].

The r, g, and b implementations of eqs. (7–9) identify the respective
quark wavefunctions from eqs. (34–36) of [28] as

Ψ(r) = ψC(r)× ψJ(r)× ψI(r)× r, Ψ(r)
def
= 〈r|Ψ〉,

Ψ(g) = ψC(g)× ψJ(g)× ψI(g)× g, Ψ(g)
def
= 〈g|Ψ〉,

Ψ(b) = ψC(b)× ψJ(b)× ψI(b)× b, Ψ(b)
def
= 〈b|Ψ〉,

(10)
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and similarly the r̄, ḡ, and b̄ implementations of eqs. (7–9) identify the
respective antiquark wavefunctions from eqs. (37–39) of [28] as

Ψ(r̄) = ψC(r̄)× ψJ(r̄)× ψI(r̄)× r̄, Ψ(r̄)
def
= 〈r̄|Ψ〉,

Ψ(ḡ) = ψC(ḡ)× ψJ(ḡ)× ψI(ḡ)× ḡ, Ψ(ḡ)
def
= 〈ḡ|Ψ〉,

Ψ(b̄) = ψC(b̄)× ψJ(b̄)× ψI(b̄)× b̄, Ψ(b̄)
def
= 〈b̄|Ψ〉,

(11)

such that the full baryon and antibaryon states confined to T 1
R from eqs.

(32–33) of [28] are

Ψtotal(r, g, b) = Ψ(r)×Ψ(g)×Ψ(b)
Ψtotal(r̄, ḡ, b̄) = Ψ(r̄)×Ψ(ḡ)×Ψ(b̄)

(12)

for the antisymmetry of the two-particle cases

Ψ(r, r̄) = −Ψ(r̄, r)
Ψ(g, ḡ) = −Ψ(ḡ, g)
Ψ(b, b̄) = −Ψ(b̄, b)

(13)

for the confined quark and antiquark (two-particle) cases from eqs. (40–42)
of [28]. Eqs. (10–13) permitted the definition of the 2D baryon-antibaryon
antisymmetric matrix (

0 Ψtotal(r, g, b)
Ψtotal(r̄, ḡ, b̄) 0

)
(14)

from eq. (43) of [28] and the expanded 3D quark-antiquark antisymmetric
matrix  0 Ψ(r) Ψ(g)

Ψ(r̄) 0 Ψ(b)
Ψ(ḡ) Ψ(b̄) 0

 (15)

from eq. (44) of [28]. Now, lets use iso-mathematics [1, 2, 3, 4, 5, 19] to
attack the energy and resonance states of the hadronic spectrum.

3 Procedures: iso-topically lifting the complex confinement and
encoding structures
Here, we propose the two distinct approaches for iso-topically [1, 2, 3, 4,

5, 19] upgrading the fundamental complex structures of the Inopin-Schmidt
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quark confinement scenario [28]. Note: these procedures may be engaged
independently or conjointly. Thus, we opt to demonstrate these procedures
conjointly: we’ll start by executing the approach of Section 3.1 and carry
its results over to the approach of Section 3.2.

3.1 Inopin’s holographic confinement ring and the six-coloring
kagome lattice

The IHCR T 1
R ⊂ X and the six-coloring kagome lattice positions of

its confined quark-antiquark constituents {r, g, b, r̄, ḡ, b̄} ⊂ T 1
R in the dual

baryon-antibaryon bag [28] are iso-topically lifted [1, 2, 3, 4, 5, 19] via the
following procedure:

1. First, we select some positive-definite iso-unit ε̂ > 0 with the corre-
sponding iso-unit inverse κ̂ = 1

ε̂
> 0 [1, 2, 3, 4, 5, 19].

2. Second, we deploy ε̂ to define the IHCR iso-topic lifting (and its in-
verse) as

f(ε̂) : T 1
R → T 1

R̂

f−1(ε̂) : T 1
R̂
→ T 1

R

(16)

to establish
x̂ = x× ε̂, ∀x ∈ T 1

R → ∀x̂ ∈ T 1
R̂
, (17)

so eq. (2) becomes

T 1
R̂
≡ T 1

Rε̂ ≡ {x ∈ X : |x̂| = |x| × ε̂ = R̂ = R× ε̂}, (18)

such that T 1
R̂

is the iso-1-sphere IHCR centered at O with the positive-

definite amplitude-radius R̂ = R× ε̂ > 0 and the amplitude-curvature
K̂ = 1

R̂
> 0. Here, note that because T 1

R ⊂ X one could also iso-
topically lift the complete X via X → Xε̂ to get a similar result of
T 1
R̂
⊂ Xε̂.

3. Third, given the obtained results of eqs. (16–18) and the recollection
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of {r, g, b, r̄, ḡ, b̄} ⊂ T 1
R, we clarify that

r̂ ≡ r × ε̂ for r → r̂
ĝ ≡ g × ε̂ for g → ĝ

b̂ ≡ b× ε̂ for b → b̂
ˆ̄r ≡ r̄ × ε̂ for r̄ → ˆ̄r
ˆ̄g ≡ ḡ × ε̂ for ḡ → ˆ̄g
ˆ̄b ≡ b̄× ε̂ for b̄ → ˆ̄b

(19)

applies to the three iso-quark-iso-antiquark pairs confined to the
six-coloring kagome lattice [28] with the uniform iso-amplitude iso-
position constraint

|r̂| ≡ |ĝ| ≡ |b̂| ≡ |ˆ̄r| ≡ |ˆ̄g| ≡ |ˆ̄b|, (20)

the red-green-blue triangular sub-lattice iso-phase angle iso-position
constraint

〈b̂〉 ≡ 〈ĝ〉+
2π

3
≡ 〈r̂〉+

4π

3
(21)

preserved from eq. (5), and the complementary, antisymmetric
antired-antigreen-antiblue triangular sub-lattice iso-phase angle po-
sition constraint

〈ˆ̄r〉 ≡ 〈r̂〉 ± π
〈ˆ̄g〉 ≡ 〈ĝ〉 ± π
〈ˆ̄b〉 ≡ 〈b̂〉 ± π

(22)

preserved from eq. (6).

4. Finally, given the acquired results of eqs. (16–22), we can, for example,
write the iso-multiplication [1, 2, 3, 4, 5, 19] between the iso-positions
of the three colored iso-quarks as

r̂ ×̂ ĝ ×̂ b̂ (23)

and for the three anticoloring iso-antiquark iso-positions we can put

ˆ̄r ×̂ ˆ̄g ×̂ ˆ̄b. (24)
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Fig. 2: The three quark-antiquark pairs of the six-coloring kagome lattice are

confined to T 1
R and located at {r, g, b, r̄, ḡ, b̄} ⊂ T 1

R [28]. When T 1
R is iso-topically

lifted [1, 2, 3, 4, 5, 19] to T 1
R̂

via the iso-unit ε̂, then the quark-antiquark pairs

are iso-topically lifted to {r̂, ĝ, b̂, ˆ̄r, ˆ̄g, ˆ̄b} ⊂ T 1
R̂

via the “magnification” (or “de-

magnification”) iso-transition T 1
R → T 1

R̂
. The iso-topic lifting scales the ampli-

tudes of the quark-antiquark pair positions (left). A slightly more sophisticated

iso-topic lifting scales the amplitudes and rotates the azimuthal phase angles of

the quark-antiquark pair positions (right). These iso-topic liftings could be cali-

brated to encode strictly continuous or non-strictly continuous energy and reso-

nance states in the hadronic spectrum.
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The example results of eqs. (23–24) merely exemplify one simple application
of Santilli’s iso-multiplication [1, 2, 3, 4, 5, 19].

At this point, the IHCR T 1
R ⊂ X and the six-coloring kagome lattice

positions of {r, g, b, r̄, ḡ, b̄} ⊂ T 1
R for the dual baryon-antibaryon bag have

been iso-topically lifted [1, 2, 3, 4, 5, 19] to the iso-IHCR T 1
R̂
⊂ X and

the six-coloring kagome lattice iso-positions of {r̂, ĝ, b̂, ˆ̄r, ˆ̄g, ˆ̄b} ⊂ T 1
R̂

, respec-
tively, for the dual iso-baryon-iso-antibaryon bag; For this, the obtained
iso-complex iso-position results of eqs. (16–24) support the hypothesis that
Santilli’s iso-mathematics [1, 2, 3, 4, 5, 19] may upgrade the Inopin-Schmidt
quark confinement proof [28] by interpreting the transitions between energy
and resonance states in the hadronic spectrum as iso-topic liftings. We note
that the said iso-topic liftings have the flexibility to be calibrated to encode
strictly continuous or non-strictly continuous levels in the hadronic spec-
trum, which should be subjected to additional scrutiny and development
via the scientific method in future work.

3.2 Topological deformation order parameters
The order parameter states ψJ ∈ ΦJ , ψI ∈ ΦI , and ψC ∈ ΦC of

eqs. (7–9)—that are now assigned to the six-coloring iso-positions at

{r̂, ĝ, b̂, ˆ̄r, ˆ̄g, ˆ̄b} ⊂ T 1
R̂

of the confined quark-antiquarks—are iso-topically
lifted [1, 2, 3, 4, 5, 19] via the following procedure:

1. First, we select some positive-definite iso-unit ρ̂ > 0 with the corre-
sponding iso-unit inverse %̂ = 1

ρ̂
> 0 [1, 2, 3, 4, 5, 19]. Note that

for illustration purposes we have opted to select the new iso-unit ρ̂
which may or may not be distinct from ε̂: we could select ρ̂ 6= ε̂ or the
simpler case ρ̂ = ε̂.

2. Second, we deploy ρ̂ to define the order parameter iso-topic liftings
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(and their inverses) as

fJ(ρ̂) : ΦJ(x̂) → ΦJρ̂(x̂)
f−1J (ρ̂) : ΦJρ̂(x̂) → ΦJ(x̂)

fI(ρ̂) : ΦI(x̂) → ΦIρ̂(x̂)
f−1I (ρ̂) : ΦIρ̂(x̂) → ΦI(x̂)

fC(ρ̂) : ΦC(x̂) → ΦCρ̂
(x̂)

f−1C (ρ̂) : ΦCρ̂
(x̂) → ΦC(x̂)

(25)

to establish

ψ̂J(x̂) ≡ ψJ(x̂)× ρ̂, ∀ψJ(x̂) ∈ ΦJ(x̂) → ∀ψ̂J(x̂) ∈ ΦJρ̂(x̂)

ψ̂I(x̂) ≡ ψI(x̂)× ρ̂, ∀ψI(x̂) ∈ ΦI(x̂) → ∀ψ̂I(x̂) ∈ ΦIρ̂(x̂)

ψ̂C(x̂) ≡ ψC(x̂)× ρ̂, ∀ψC(x̂) ∈ ΦC(x̂) → ∀ψ̂C(x̂) ∈ ΦCρ̂
(x̂),

(26)
∀x̂ ∈ T 1

R̂
. Here, note that we used the same iso-unit to iso-topically

lift the three ψJ ∈ ΦJ , ψI ∈ ΦI , and ψC ∈ ΦC to ψ̂J ∈ ΦJρ̂ , ψ̂I ∈ ΦIρ̂ ,

and ψ̂C ∈ ΦCρ̂
, respectively, but another option is that we could also

select three different iso-units for independent liftings. Such selections
really just depend on what we want to do in a given scenario. In the
limited context of this paper, we are interested in the simultaneous,
uniform scaling of all order parameters with a single value of ρ̂.

3. Third, given the obtained results of eqs. (25–26) and the recollection

of {r̂, ĝ, b̂, ˆ̄r, ˆ̄g, ˆ̄b} ⊂ T 1
R̂

, we clarify that

ψ̂J |I|C(r̂) ≡ ψJ |I|C(r̂)× ρ̂ for ψJ |I|C(r̂) → ψ̂J |I|C(r̂)

ψ̂J |I|C(ĝ) ≡ ψJ |I|C(ĝ)× ρ̂ for ψJ |I|C(ĝ) → ψ̂J |I|C(ĝ)

ψ̂J |I|C(b̂) ≡ ψJ |I|C(b̂)× ρ̂ for ψJ |I|C(b̂) → ψ̂J |I|C(b̂)

ψ̂J |I|C(ˆ̄r) ≡ ψJ |I|C(ˆ̄r)× ρ̂ for ψJ |I|C(ˆ̄r) → ψ̂J |I|C(ˆ̄r)

ψ̂J |I|C(ˆ̄g) ≡ ψJ |I|C(ˆ̄g)× ρ̂ for ψJ |I|C(ˆ̄g) → ψ̂J |I|C(ˆ̄g)

ψ̂J |I|C(ˆ̄b) ≡ ψJ |I|C(ˆ̄b)× ρ̂ for ψJ |I|C(ˆ̄b) → ψ̂J |I|C(ˆ̄b)

(27)

applies to the spontaneous antiferromagnetic ordering [37] constraints
of eqs. (29–31) in [28] for the iso-quark-iso-antiquark pairs confined to
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the iso-topically lifted six-coloring kagome lattice. In eq. (27), observe
that we’ve started to use the consolidated notation of ψ̂J |I|C to denote
any of the three order parameters, thereby reducing the number of
repeated definitions.

4. Finally, given the acquired results of eqs. (25–26), we can, for example,
write the iso-multiplication [1, 2, 3, 4, 5, 19] between the three distinct
iso-order parameters for some quark at x̂ ∈ T 1

R̂
as

ψ̂J(x̂) ×̂ ψ̂I(x̂) ×̂ ψ̂C(x̂) (28)

and for some antiquark at ˆ̄x ∈ T 1
R̂

, such that ˆ̄x = −x̂, we have

ψ̂J(ˆ̄x) ×̂ ψ̂I(ˆ̄x) ×̂ ψ̂C(ˆ̄x). (29)

At this point, the order parameter states ψJ ∈ ΦJ , ψI ∈ ΦI , and

ψC ∈ ΦC—assigned to the six-coloring iso-positions at {r̂, ĝ, b̂, ˆ̄r, ˆ̄g, ˆ̄b} ⊂ T 1
R̂

of the confined quark-antiquarks—have been iso-topically lifted to the iso-
order parameter states ψ̂J ∈ ΦJρ̂ , ψ̂I ∈ ΦIρ̂ , and ψ̂C ∈ ΦCρ̂

, respec-
tively. For this, the obtained iso-complex iso-topological deformation re-
sults of eqs. (25–29) support the hypothesis that Santilli’s iso-mathematics
[1, 2, 3, 4, 5, 19] may upgrade the Inopin-Schmidt quark confinement proof
[28] by interpreting the transitions between energy and resonance states
in the hadronic spectrum as iso-topic liftings. Additionally, the iso-topic
liftings exemplify amplitude variations that are dependent on the selected
iso-unit ρ̂, where such variations are indeed “Higgs-like” massive amplitude-
excitations [29] for order parameter scaling as T 1

R̂
iteratively acquires Berry

phases [28]. Hence, if one were to carefully select a proper iso-unit that
generates phase variations [28], then such iso-topic liftings could further-
more exemplify massless phase-excitations that are characteristic of Nambu-
Goldstone pseudo-scalar boson fluctuations [30, 31, 32, 33]. Such iso-order
parameters rotate freely in 2D and 3D space to generate correlated helices
with Laughlin quasi-particle fractional statistics [37] while the Leggett su-
perfluid B phases [34] remain constant and impose long range order [28]—
this serves as a contraint for the iso-topically lifted iso-baryon (and iso-
antibaryon) antisymmetric iso-wavefunctions in the upcoming Section 4.
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Fig. 3: Note: in this diagram only the green iso-quark at iso-position ĝ ∈ T 1
R̂

with

one order parameter is displayed for the sake of illustration simplicity. The iso-

unit ρ̂ is deployed to iso-topically lift the ĝ’s order parameter ψJ(ĝ) ∈ ΦJ(ĝ) to the

iso-order parameter ψ̂J(ĝ) ∈ ΦJρ̂(ĝ) via the iso-transition ΦJ(ĝ) → ΦJρ̂(ĝ). The

iso-topic lifting scales the amplitude of the iso-quark’s order parameter, where the

change of scale indicates a “Higgs-like” massive scalar amplitude-excitation [28,

29] (top). A slightly more sophisticated iso-topic lifting scales the amplitudes and

rotates the azimuthal phase angle of the iso-quark’s order parameter, where the

change of direction indicates a “Nambu-Goldstone” massless pseudo-scalar phase-

excitation [28, 30, 31, 32, 33] (bottom). Such iso-topic liftings are simultaneously

applied to each of the order parameters at each (iso-quark and iso-antiquark)

iso-position of the six-coloring kagome lattice.
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4 Main results: the baryon-antibaryon antisymmetric iso-
wavefunctions and iso-matrices
The conjoint iso-topic lifting procedural results of eqs. (16–24) from

Section 3.1 and eqs. (25–29) from Section 3.2 permit us to upgrade the
confined baryon-antibaryon antisymmetric wavefunctions and matrices [28]
constructed in eqs. (10–15) with Santilli’s iso-multiplication [1, 2, 3, 4, 5, 19].
Here, for illustration purposes, we assume the simple case of ρ̂ = ε̂ to pre-
serve relative scaling between T 1

R̂
and its six-coloring iso-order parameters

of ψ̂J ∈ ΦJρ̂ , ψ̂I ∈ ΦIρ̂ , and ψ̂C ∈ ΦCρ̂
.

First, given the established iso-units ε̂ and ρ̂, the quark wavefunctions
of eq. (10) are enhanced with iso-multiplication [1, 2, 3, 4, 5, 19] to define
the quark iso-wavefunctions for r̂, ĝ, b̂ as

Ψ̂(r̂) ≡ ψ̂J(r̂) ×̂ ψ̂I(r̂) ×̂ ψ̂C(r̂) ×̂ r̂, Ψ̂(r̂)
def
≡ 〈r̂|Ψ̂〉,

Ψ̂(ĝ) ≡ ψ̂J(ĝ) ×̂ ψ̂I(ĝ) ×̂ ψ̂C(ĝ) ×̂ ĝ, Ψ̂(ĝ)
def
≡ 〈ĝ|Ψ̂〉,

Ψ̂(b̂) ≡ ψ̂J(b̂) ×̂ ψ̂I(b̂) ×̂ ψ̂C(b̂) ×̂ b̂, Ψ̂(b̂)
def
≡ 〈b̂|Ψ̂〉,

(30)

and the antiquark wavefunctions of eq. (11) are similarly adjusted to define

the antiquark iso-wavefunctions for ˆ̄r, ˆ̄g, and ˆ̄b as

Ψ̂(ˆ̄r) ≡ ψ̂J(ˆ̄r) ×̂ ψ̂I(ˆ̄r) ×̂ ψ̂C(ˆ̄r) ×̂ ˆ̄r, Ψ̂(ˆ̄r)
def
≡ 〈ˆ̄r|Ψ̂〉

Ψ̂(ˆ̄g) ≡ ψ̂J(ˆ̄g) ×̂ ψ̂I(ˆ̄g) ×̂ ψ̂C(ˆ̄g) ×̂ ˆ̄g, Ψ̂(ˆ̄g)
def
≡ 〈ˆ̄g|Ψ̂〉

Ψ̂(ˆ̄b) ≡ ψ̂J(ˆ̄b) ×̂ ψ̂I(
ˆ̄b) ×̂ ψ̂C(ˆ̄b) ×̂ ˆ̄b, Ψ̂(ˆ̄b)

def
≡ 〈ˆ̄b|Ψ̂〉.

(31)

Hence, eqs. (30–31) authorize us to rewrite eq. (12) as the full baryon and
antibaryon iso-states confined to T 1

R̂
as

Ψ̂total(r̂, ĝ, b̂) ≡ Ψ̂(r̂) ×̂ Ψ̂(ĝ) ×̂ Ψ̂(b̂)

Ψ̂total(ˆ̄r, ˆ̄g, ˆ̄b) ≡ Ψ̂(ˆ̄r) ×̂ Ψ̂(ˆ̄g) ×̂ Ψ̂(ˆ̄b),
(32)

where the antisymmetry of the two-particle cases in eq. (13) becomes

Ψ̂(r̂, ˆ̄r) ≡ −Ψ̂(ˆ̄r, r̂)

Ψ̂(ĝ, ˆ̄g) ≡ −Ψ̂(ˆ̄g, ĝ)

Ψ̂(b̂, ˆ̄b) ≡ −Ψ̂(ˆ̄b, b̂),

(33)
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while eq. (14) is iso-topically lifted to the 2D baryon-antibaryon antisym-
metric iso-matrix (

0 Ψ̂total(r̂, ĝ, b̂)

Ψ̂total(ˆ̄r, ˆ̄g, ˆ̄b) 0

)
, (34)

thereby enabling us to upgrade eq. (15) with the expanded 3D quark-
antiquark antisymmetric iso-matrix 0 Ψ̂(r̂) Ψ̂(ĝ)

Ψ̂(ˆ̄r) 0 Ψ̂(b̂)

Ψ̂(ˆ̄b) Ψ̂(ˆ̄b) 0

 . (35)

5 Conclusion and outlook
In total, the initial “iso-discoveries” of this preliminary assessment sup-

port our hypothesis. We found that upgrading the six-coloring antisymmet-
ric wavefunctions and matrices of the confined baryon-antibaryon pair [28]
with Santilli’s iso-mathematics [1, 2, 3, 4, 5] to install the corresponding iso-
wavefunctions and iso-matrices was a relatively straightforward process that
yielded cutting-edge results. These outcomes are significant because they
advance the Inopin-Schmidt quark confinement proof [28] to new heights
by equipping it with the power, flexibility, and capability of iso-topically
interpreting and encoding the hadronic energy and resonance states in a
generalized fashion.

Therefore, in order to further investigate our hypothesis and probe this
domain, results and claims, we plan to continue our assault along this re-
search trajectory. Hence, there is much work to be done in the near fu-
ture. In particular, it should be highly beneficial to further analyze this
emerging framework in terms of Santilli’s hadronic mechanics [6] and mag-
necules [8, 16, 26, 27, 39, 40, 41, 42, 43, 44], along with the Yuan-Mo-
Wang nonets model [45]. Also, the next step should be to introduce a more
rigorous iso-mathematical treatment with properly-calibrated iso-topic lift-
ings that generalize and match the experimentally-verified hadronic spec-
tra characteristics of the said models with a greater degree of precision
to expand the predictive accuracy and capability; for this, we’ll need to
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investigate iso-topic implementations for both the strictly continuous and
non-strictly continuous cases. More precisely, we must theoretically and
experimentally prove (or disprove) that the iso-order parameters of the an-
tisymmetric iso-wavefunctions and iso-matrices for the topological deforma-
tions do in fact quantify “Higgs-like scalar massive amplitude-excitations”
[29] and the “Nambu-Goldstone pseudo-scalar massless phase-excitations”
[30, 31, 32, 33] in the superfluidic space-time with Laughlin quasi-particle
[37] fractional statistics [28]. Furthermore, we must define a series of iso-
topic liftings that correspond to, for example, the periodic table of the
elements.

If the above listed future research objectives can be achieved, then it
will be imperative to exercise such developments in new, clean, sustainable,
cost-efficient power sources such as Santilli’s intermediate controlled nuclear
synthesis [7, 8, 9, 10, 11, 12] and magnecular-based fuels [13, 14, 15, 16],
which both have a significant potential for a wide-range of industrial appli-
cations and do not emit harmful radiation or toxic waste.
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