A bold conjecture about a way in which any prime can be written

Marius Coman Bucuresti, Romania email: mariuscoman130gmail.com

Abstract. In this paper I make a conjecture which states that any prime greater than or equal to 5 can be written in a certain way, in other words that any such prime can be expressed using just two other primes and a power of the number 2.

Conjecture:

Any prime greater than or equal to 5 can be written at least in one way as $(9*p^2 - q^2)/(2^n)$, where p and q are primes and n non-null positive integer.

Verifying the conjecture:

(For the first nine such primes)

:	$5 = (9*7^2 - 11^2)/64$, so [p, q, n] = [7, 11, 6] but
	also $5 = (9*7^2 - 19^2)/16$ so $[p, q, n] = [7, 19]$
	4];
:	$7 = (9*5^2 - 13^2)/64$, so [p, q, n] = [5, 13, 3];
:	$11 = (9*5^2 - 7^2)/16$, so [p, q, n] = [5, 7, 4];
:	$13 = (9*5^2 - 11^2)/8$, so [p, q, n] = [5, 11, 3] but
	also $13 = (9*7^2 - 5^2)/32$ so [p, q, n] = [7, 5, 5];
:	$17 = (9*7^2 - 13^2)/16$, so [p, q, n] = [7, 13, 4];
:	$19 = (9*7^2 - 17^2)/8$, so [p, q, n] = [7, 17, 3] but
	also $19 = (9*13^2 - 37^2)/8$ so $[p, q, n] = [13, 37, 37]$
	3] but also $19 = (9*17^2 - 13^2)/128$ so [p, q, n] =
	[17, 11, 7];
:	$23 = (9*13^2 - 7^2)/64$, so [p, q, n] = [13, 7, 6];
:	$31 = (9*11^2 - 29^2)/8$, so [p, q, n] = [11, 29, 3]
	but also $31 = (9*13^2 - 23^2)/32$ so [p, q, n] = [13,
	23, 5];
:	$37 = (9 \times 23^2 - 5^2)/128$, so [p, q, n] = [23, 5, 7].
Note:	
For t	the prime 29 I didn't find primes solution [p, q] up
to t	he denominator 2^12, but surely I conjecture that
there	e exist such solutions.
Note:	
For	some of the primes we found that they verify also the

For some of the primes we found that they verify also the formula $(9*p^2 - q^4)/(2^n)$.