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Abstract. In this paper are stated six conjectures on 

primes, more precisely on the infinity of some types of 

pairs of primes, all of them met in the study of 3-

Carmichael numbers. 

 

 

Conjecture 1:  

 

For any pair of odd primes [p, q] there exist an infinity 

of pairs of distinct positive integers [m, n] such that 

the numbers x = p*(m + 1) – n and y = q*(n + 1) – m are 

both primes. 

 

Examples: 

: for [p, q] = [3, 3] we have [x, y] = [5, 13] for [m, 

n] = [2, 4]; 

: for [p, q] = [7, 11] we have [x, y] = [29, 73] for 

[m, n] = [4, 6]. 

 

Conjecture 2:  

 

For any pair of odd primes [p, q] there exist an infinity 

of pairs of distinct positive integers [m, n] such that 

the numbers x = p*(m - 1) + n and y = q*(n - 1) + m are 

both primes. 

 

Examples: 

: for [p, q] = [7, 7] we have [x, y] = [11, 23] for 

[m, n] = [2, 4]; 

: for [p, q] = [5, 13] we have [x, y] = [11, 67] for 

[m, n] = [2, 6]. 

 

Conjecture 3:  

 

For any pair of odd primes [p, q] there exist an infinity 

of pairs of distinct positive integers [m, n] such that 

the numbers x = p + (m + 1)*n and y = q + m*n are both 

primes. 

 

Examples: 

: for [p, q] = [5, 5] we have [x, y] = [17, 13] for 

[m, n] = [2, 4]; 
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: for [p, q] = [5, 7] we have [x, y] = [29, 23] for 

[m, n] = [2, 8]. 

 

Conjecture 4:  

 

For any pair of odd primes [p, q] there exist an infinity 

of pairs of distinct positive integers [m, n] such that 

the numbers x = p*m – 2*n and y = q*n + 2*m are both 

primes. 

 

Examples: 

: for [p, q] = [11, 11] we have [x, y] = [23, 61] for 

[m, n] = [3, 5]; 

: for [p, q] = [11, 13] we have [x, y] = [23, 71] for 

[m, n] = [3, 5]. 

 

Conjecture 5:  

 

For any pair of odd primes [p, q] there exist an infinity 

of pairs of distinct positive integers [m, n] such that 

the numbers x = p*m – 2*n and y = q*n - 2*m are both 

primes. 

 

Examples: 

: for [p, q] = [3, 3] we have [x, y] = [7, 17] for [m, 

n] = [11, 13]; 

: for [p, q] = [3, 5] we have [x, y] = [13, 61] for 

[m, n] = [17, 19]. 

 

Conjecture 6:  

 

For any pair of odd primes [p, q] there exist an infinity 

of pairs of distinct positive integers [m, n] such that 

the numbers x = p*m + 2*n and y = q*n + 2*m are both 

primes. 

 

Examples: 

: for [p, q] = [5, 5] we have [x, y] = [29, 41] for 

[m, n] = [3, 7]; 

: for [p, q] = [5, 11] we have [x, y] = [19, 79] for 

[m, n] = [1, 7]. 

 

Question:  

 

Are there an infinity of primes with the property that 

can be written as p*m + n – q as well as q*n + m – p, 

where p, q are distinct primes and m, n are distinct 

positive integers? But under the condition that m, n, p, 

q are all four primes? Such number is, for instance, 397 

= 13*31 + 7 – 13 = 61*7 + 31 – 61. 
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Note:  

 

Like I already said in Abstract, I met these pairs of 

primes in the study of 3-Carmichael numbers: see my 

previous paper “Connections between the three prime 

factors of a 3-Carmichael number”. 


