Six conjectures on primes based on the study of 3-Carmichael numbers and a question about primes

Marius Coman Bucuresti, Romania email: mariuscoman130gmail.com

Abstract. In this paper are stated six conjectures on primes, more precisely on the infinity of some types of pairs of primes, all of them met in the study of 3-Carmichael numbers.

Conjecture 1:

For any pair of odd primes [p, q] there exist an infinity of pairs of distinct positive integers [m, n] such that the numbers $x = p^*(m + 1) - n$ and $y = q^*(n + 1) - m$ are both primes.

Examples: : for [p, q] = [3, 3] we have [x, y] = [5, 13] for [m, n] = [2, 4]; : for [p, q] = [7, 11] we have [x, y] = [29, 73] for [m, n] = [4, 6].

Conjecture 2:

For any pair of odd primes [p, q] there exist an infinity of pairs of distinct positive integers [m, n] such that the numbers $x = p^{*}(m - 1) + n$ and $y = q^{*}(n - 1) + m$ are both primes.

Examples: : for [p, q] = [7, 7] we have [x, y] = [11, 23] for [m, n] = [2, 4]; : for [p, q] = [5, 13] we have [x, y] = [11, 67] for [m, n] = [2, 6].

Conjecture 3:

For any pair of odd primes [p, q] there exist an infinity of pairs of distinct positive integers [m, n] such that the numbers x = p + (m + 1)*n and y = q + m*n are both primes.

Examples: : for [p, q] = [5, 5] we have [x, y] = [17, 13] for [m, n] = [2, 4]; : for [p, q] = [5, 7] we have [x, y] = [29, 23] for [m, n] = [2, 8].

Conjecture 4:

For any pair of odd primes [p, q] there exist an infinity of pairs of distinct positive integers [m, n] such that the numbers x = p*m - 2*n and y = q*n + 2*m are both primes.

Examples: : for [p, q] = [11, 11] we have [x, y] = [23, 61] for [m, n] = [3, 5]; : for [p, q] = [11, 13] we have [x, y] = [23, 71] for [m, n] = [3, 5].

Conjecture 5:

For any pair of odd primes [p, q] there exist an infinity of pairs of distinct positive integers [m, n] such that the numbers $x = p^*m - 2^*n$ and $y = q^*n - 2^*m$ are both primes.

Examples: : for [p, q] = [3, 3] we have [x, y] = [7, 17] for [m, n] = [11, 13]; : for [p, q] = [3, 5] we have [x, y] = [13, 61] for [m, n] = [17, 19].

Conjecture 6:

For any pair of odd primes [p, q] there exist an infinity of pairs of distinct positive integers [m, n] such that the numbers $x = p^{m} + 2^{n}$ and $y = q^{n} + 2^{m}$ are both primes.

Examples: : for [p, q] = [5, 5] we have [x, y] = [29, 41] for [m, n] = [3, 7]; : for [p, q] = [5, 11] we have [x, y] = [19, 79] for [m, n] = [1, 7].

Question:

Are there an infinity of primes with the property that can be written as p*m + n - q as well as q*n + m - p, where p, q are distinct primes and m, n are distinct positive integers? But under the condition that m, n, p, q are all four primes? Such number is, for instance, 397 = 13*31 + 7 - 13 = 61*7 + 31 - 61.

Note:

Like I already said in Abstract, I met these pairs of primes in the study of 3-Carmichael numbers: see my previous paper "Connections between the three prime factors of a 3-Carmichael number".