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Abstract

Some variants of quantum theory theorize dogmatic “unimodal” states-of-
being, and are based on hodge-podge classical-quantum language. They are
based on ontic syntax, but pragmatic semantics. This error was termed seman-
tic inconsistency [1]. Measurement seems to be central problem of these theo-
ries, and widely discussed in their interpretation. Copenhagen theory deviates
from this prescription, which is modeled on experience. A complete quantum
experiment is “bimodal”. An experimenter creates the system-under-study in
initial mode of experiment, and annihilates it in the final. The experimen-
tal intervention lies beyond the theory. I theorize most rudimentary bimodal
quantum experiments studied by Finkelstein [2], and deduce “bimodal proba-
bility density” π = |ψin〉 ⊗ 〈φfin| to represent complete quantum experiments.
It resembles core insights of the Copenhagen theory.
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1 Introduction

The name “Quantum Mechanics” carries the germ of mechanistic philosophy. Many
people endure to fit quantum theory into this name. They seem to work on causal or
ontic interpretations of quantum theory. Practical quantum theory is not mechanis-
tic. It resembles Bohm’s anti -Bohmian proposals [3]. We can not reduce an individual
quantum system-under-study to finite and coherent set of quantitative entities, that
define its qualitative infinity [3]. A mechanistic theory suffices this requisite. Classical
mechanics is a mechanistic theory, where coherent quantitative set (q, p) represents
qualitative diversity of the system-under-study. Quantum theory has no such repre-
sentatives. The doctrine with name “Quantum Mechanics” tacitly entails mechanistic
prescription, that deceptively raises paradoxes from experiments that are incompat-
ible with mechanistic prescription. We change the prescription to avoid paradoxes,
which seems neater way to reduce ambiguity. Our prescription is pragmatic, bimodal
and non-mechanistic, which obviates paradoxes. I call a practical quantum theory
“Pragmatic Relativity”, in that its syntax is pragmatic, and it relativizes absolute
“states-of-being” [4]. Pragmatic relativity is not a variant of Copenhagen theory.

Mechanistic theories are modeled on states-of-being. The “state-of-being” is uni-
modal dogmatic entity. An experimenter measures state-of-being of the system-under-
study solely in initial mode of the experiment. A final mode seems redundant, in
that it measures the same state. Classical experiments are unimodal idealistic mea-
surements, that envisage states-of-being of the system-under-study. States-of-being
objectivize the system-under-study, and entail its ontology.

Copenhagen theory deviates from this prescription. It has its roots in the philoso-
phy of Niels Bohr. It appeared to him when he thought “What does it mean to know
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Bimodal Quantum Theory 1.1 The System Interface

the atom, while we see it only when it changes”. He brought Heraclitean tendency
into physics.

I recapitulate the Copenhagen theory, theorizing most rudimentary bimodal quan-
tum experiments, and deduce “bimodal probability density” π = |ψin〉 ⊗ 〈φfin| to
represent complete quantum experiments.

1.1 The System Interface

Quantum theories model experiments on a miniscule part of Cosmos — a system-
under-study S — a microcosm. An isolated system-under-study is oxymora; we see
a system while we interact with it. This prescription respects temporal locality; a
quantum system is “local” immediate connection with the experimenter. There is no
“global” isolated system. Quantum experimenter E (who lives in exosystem, E ⊂ XS)
divides Cosmos into the dichotomy; endosystem S and exosystem XS, creating the
system interface or experimental channel S |XS. Experiment destroys this interface1,
being sole process that connects S with XS.

Experiment entangles system S with exosystem XS .

Quantum experiment is system-episystem entanglement S –XS. An experimenter
creates the system-under-study in initial mode of experiment, and annihilates it in
the final. We do not theorize the system-under-study apart from these two pragmatic
events. Quantum systems jump from initial mode to final mode of experiment, with-
out carrying a dogmatic entity that defines its reality after the experiment. The initial
system does not evolve into the final in intervention of the experiment. In classical
continuous experiments, an auxiliary “system interface” separates the system from
being effected by the experimenter; the system-under-study carries dogmatic state-of-
being that we seem to predict causally after the experiment. Classical experimental
channel is unidirectional interface; system-under-study acts on the experimenter, but
not conversely. These experiments are often termed “ideal experiments”, and de-
ceptively preempted by ontologists in the discussion of quantum theories. We see
classical systems as they are. There is no interface in quantum experiments, and ac-
tions respect reciprocity. Classical systems are dogmatic unimodal objects. Quantum
systems are bimodal pragmatic events. In classical experiments, the system-under-
study is an absolute object. In quantum experiments, the experimenter is an absolute
subject. A theory based on relative experimenter lies beyond Copenhagen theory, and
being developed elsewhere [4].

2 Quantum Disconnections and Acausality

Causality is succession of events: how an event descends from the preceding one. An
event is an act or happening, like initial and final modes of an experiment. Einstein

1This interface was arbitrary in Heisenberg’s version of Copenhagen theory, but Bohr’s insistence
eliminates it [1]. Heisenberg refrained from eliminating this split between observer and the system-
under-study, in order to preclude the dilemma of considering whole universe as system-under-study [5,
Ch. VII.1]. Heisenberg retained interface in order to save the observer. Rendering a theory of whole
cosmos non practical, I retain Bohr’s proposals.
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2.1 Bimodal Prescription and Vertex Model S. Dwivedi

called collision of two bodies an “event”. He ascribed “space-time” address to his
event; a dogmatic event. In our prescription, an event is pragmatic; the happening
itself (verb), than its address (noun).

Von Neumann’s theory [6], though rendered a variant of Copenhagen theory [2],
is unimodal. It theorizes initial mode vector ψ (or ket |ψ〉 in Dirac’s terminology).
Inferences from past experiments endow the system-under-study with states-of-being,
while predictions for future experiments are statistical. This theory seems to have
temporal asymmetry; past experience represents the system-under-study causally,
while future predictions do not. Dirac’s theory [7] is also unimodal, that ascribes the
system-under-study an state-of-being |ψ〉. The error lies in their modal structure that
we cure next.

2.1 Bimodal Prescription and Vertex Model

Quantum theory2 advances modal logic. Classical experiments were unimodal; a
classical experimenter prepared and registered the system-under-study simultaneously.
This simultaneity ascribes to the system its unimodal “states-of-being”. Classical
experimenter measures state-of-being of the system-under-study.

Quantum theory renounces this simultaneity and unimodality. Quantum experi-
ments are bimodal; a quantum experimenter injects, prepares or creates the system-
under-study in its initial mode, and extracts, registers or annihilates it in the final
mode of experiment. Quantum experimenter specifies bimodal external acts, not
unimodal internal states.

Quantum experiment is succession of external acts on the system-under-study. We
can only define it by its initial and final modes. Initial mode creates the system-under-
study by sending a probe, and interacting with it. The system-under-study undergoes
a drastic irreversible change; we call it “intervention” of the experiment. The exper-
imenter is not supposed to know of the intervention; an attempt to know it ends the
experiment, that we call its final mode. Final mode annihilates system-under-study.

We know (and can know) the system-under-study only while interacting with it,
or acting upon it; in initial and final modes the experiment. Quantum knowledge is
both bimodal and pragmatic.

A quantum experiment can be described by at least two modes; initial and final,
with no causal connection.

2.1.1 Quantum Topology

Quantum topology is theory of quantum connections; how quantum events do connect.
Processes such as creation and annihilation are quantum events.

Definition 2.1. A quantum system Q is represented by two bimodal pragmatic ver-
tices Qin and Qfin , connecting system-under-study with the experimenter E. The
initial vertex Qin represents initial mode of experiment, and final vertex Qfin repre-
sents the final mode. Qin represents creation of the system-under-study and Qfin its
annihilation. The archetypal action diagram of a “complete” quantum experiment is
give by

2By quantum theory, I tacitly mean Copenhagen theory, unless otherwise explicated.
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Bimodal Quantum Theory 2.2 Quantum Jumps and Acausality

Arrows EQin and EQfin represent initial and final actions |ψin〉 and 〈φfin| of
episystem E on the system Q . The intervention I is a disconnected event, that lies
outside the theory. The system-under-study jumps from Qin to Qfin , at least for
the experimenter E. Actions connecting pragmatic vertices of Q with E constitute
experimenter’s frame FE{ψi, φf ; τ} ; where ψ and φ represent initial and final external
actions of his choices, i and f represent their indices, and τ represents “proper time”
of experimenter’s clock. ψ or ket | 〉 represents creator, and φ or bra 〈 | represents
annihilator. Experimental frame FE{ψi, φf ; τ} belongs to episystemic composite frame
space In⊗ Fin⊗Time ; |ψin〉 ∈ In , 〈φfin| ∈ Fin , τ ∈ Time .

2.2 Quantum Jumps and Acausality

Quantum systems “jump” from Qin to Qfin with no causal connection. A complete
bimodal quantum experiment connects Qin and Qfin to experimenter E . The experi-
menter does not know how Qin evolved into Qfin . His knowledge is restricted merely
to the mode vectors of his choices randomly drawn from his frame FE{ψi, φf ; τ} .

Quantum events Qin and Qfin are disconnected, and we can not entail causality
to assimilate their evolution. This discontinuity was often called quantum jump and
endured by ontologists to refute. It appears that quantum jumps are indispensable,
and can not be renounced while defining reality. We are eventually led to probabilistic
prescription; talk about what is possible, than real.

Many people blame quantum theory for not being causal. Some disqualify it, and
work on its causal or ontic variants, that lack modal semantics; this compendium is
abundant. Heuristically, I entail acausality a symptom of more elaborate prescription
for theorization. Unimodal dogmatic theories, having mechanistic syntax, are causal ;
bimodal pragmatic theories are not.

3 Quantum Probability

Quantum probability was erroneously called charge density, when probability was
confused with (electron) density. Born later resolved this problem in his probabilistic
interpretation of quantum theory [8], and generalized charge density e|ψ|2 of elec-
trons in atoms to more general quantum systems. Contemporary quantum theories
are modeled on density operator ρ = |ψ〉 ⊗ 〈ψ| (a variant of Pauli’s “probability
amplitude”). However, density operator ρ = |ψ〉 ⊗ 〈ψ| (often called density matrix)
is not Schrödinger probability operator; it does not fulfill criterion of Schrödinger
operators, and does not correspond to his eigenvalue equation. It was erroneously
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3 Quantum Probability S. Dwivedi

called a quantum operator because it was represented by matrices. It seems a pseudo
Schrödinger operator, in that P = Tr (ρ) . Nevertheless, I retain terms density opera-
tor or statistical operator for it.

I theorize a probability ω to account for system’s ontology, and call it mode prob-
ability. It represents modes-of-being of the system-under-study. When we set out
observation on the system-under-study, we may or may not observe all its character-
istic (or systemic) variables or coordinates proper to the experimenter E or his frame
FE{ψi, φf ; τ} . The system-under-study might fall in one of these modes-of-being:

• Apparent mode - The system-under-study may be rendered in apparent mode
of being when all its variables are specifiable at one instance (in experimenter’s
frame), and system-under-study could be specified (or objectivized) uniquely
by means of these systemic variables. [Theories modeled on apparent mode
perception are relic of ontology.]

• Partial mode - The system-under-study may be rendered in partial mode of
being when some of its variables are specifiable at one instance (in experimenter’s
frame), and system-under-study could not be specified with ultimate precision
by means of these variables. Systems in partial mode of being are maximal-
informative-systems (in language of Von Neumann) or simply quantum systems.
[Practical quantum theories are usually modeled on partial mode perception,
which are pragmatic in usage; deceptively ontic in form.]

• Hidden mode - The system-under-study may be rendered in hidden mode of
being when none of its variables are specifiable at one instance (in experimenter’s
frame), and system-under-study could not be specified by any means.

These modes can alternatively be called Full, Possible and Null modes of being.
Quantum mode is possible mode, not full (or apparent) being. Quantum mode is
maximal informative mode.

Systemic variables are often complementary. Two complementary variables, say
(q, p) entail phase or state space of classical systems. In quantum usage, knowledge of
one precludes that of another. Classical systems or objects are systems in apparent-
mode-of-being; with specification to all their systemic variables. Quantum systems
are maximal-informative-systems, in partial-mode-of-being; with specification to few
of their systemic (complementary) variables, or all within minimal uncertainty set
out by Heisenberg [9].

Some endure to supplement quantum systems with some “hidden” noncomple-
mentary variables, that render it in apparent mode-of-being, and anticipate that we
would eventually recede to classical epistemology. These hidden-variables could not
be subjected to perception, as their name implies, and these endeavors lead nowhere.

We (can) specify the system-under-study (only) by means of its mode-of-being. I
entail some systems in practice:

• Objects - If the system-under-study is in apparent-mode-of-being, and an ex-
perimenter E learns (or measures) all its systemic variables, we call the system-
under-study an object. [It is not in that all experimenters agree upon its appear-
ance. They change it when then attempt to perceive it. They independently,
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Bimodal Quantum Theory 4 Probability Density Operator

and rather separately render it an object. Our object differs from ontological
“absolute” objects (like Moon). See Section 8.1]

• Maximal-informative-systems - If the system-under-study is in partial-
mode-of-being, and an experimenter E learns (or measures) only few of its
systemic variables, or all within minimal uncertainty implied by uncertainty
relations [9], we call the system-under-study a maximal-informative-system or
quantum system Q.

• Forbidden-systems - If the system-under-study is in forbidden-mode-of-being,
and an experimenter E does not (or can not) learn (or measure) any of its
systemic variables, we call the system-under-study a forbidden-system. [Vacuum
is a forbidden system.]

In quantum usage, we confront with maximal-informative-systems. Experiments
perceiving maximal-informative-systems many be called maximal informative experi-
ments or simply quantum experiments.

4 Probability Density Operator

Despite its rudimentary form S = K lnψ [10], Schrödinger’s wavefunction is often
written nowdays in polar form [11]

ψ(R, S) := R exp

(
i

}
S

)
. (4.1)

Its partial differentiation w.r.t action S yields

ψ(R, S) + i}
∂ψ(R, S)

∂S
= 0 . (4.2)

Definition 4.1. A hypothetical “toy” identity operator I (without physical mean-
ing), in analogy to identity matrix I, corresponds to Schrödinger eigenvalue equation

(SE) Î|ψ〉 = I|ψ〉 = |ψ〉 with I ≡ I ≡ 1 ,

SE : I −→ Î . (4.3)

In view to Def. 4.1, (4.2) yields Schrödinger identity operator

Î = −i} ∂

∂S
. (4.4)

I theorize, phenomenologically, most rudimentary bimodal quantum experiments
studied by Finkelstein (1996) [2]; Malus-Born experiment. Our system-under-study is
a beam of “photons” traversing optical arrangement of Malus experiment. The
archetype of the experiment is

absorb←− analyze←− polarize←− emit .

The experimenter has a frame of experiment FE{ψi, φf ; τ}, that constitutes of his
choices for initial and final mode vectors (or polarization vectors) ψin and φfin ;
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4 Probability Density Operator S. Dwivedi

where i and f represent indices of initial and final mode vectors. [Caution! φfin

is distinguished from ψin , and both represent physically distinguished actions (i.e.,
ψin 6= φfin). ψin and φfin belong to different mathematical spaces called initial space
and final space. Finkelstein studies their operational symmetry [2]. Here, ψ (and
ket | 〉) is preempted for initial and φ (and bra 〈 |) for final mode vectors. bra 〈 |
represents modal dual (MD) of ket | 〉 for arbitrary mode vectors, MD : | 〉 −→ 〈 | ,
and φfin may not be confused as modal dual of ψin , except for ψ ≡ φ .] Extreme clas-
sical cases are with φfin ‖ ψin and φfin ⊥ ψin ; former passes the photon, while later
blocks it. Quantum phenomena occurs with oblique polarizers φfin ∠ ψin . For oblique
polarizers, Malus calculated the fraction of photons transmitted, that he found to be

P = cos2 ∆θ , (4.5)

where ∆θ is angle difference between polarizer |ψin〉 and analyzer 〈φfin| . His fraction
P was rediscovered by Born, that he called transition probability [2]. The generalized
form of Malus-Born transition probability is

P = |〈φfin|ψin〉|2 . (4.6)

For Malus experiment, ψin and φfin are both normalized: 〈ψfin|ψin〉 = 〈φfin|φin〉 = 1 ,
where ψfin is modal dual of ψin and φfin is modal dual of φin . Modal dual of polarizer is
analyzer with same polarization angle θ . The analyzer 〈φfin| with same polarization
angle θ (i.e., ψ ‖ φ) as polarizer |ψin〉 transmits the photon. ψin and φfin are not
orthogonal necessarily, except for φ ⊥ ψ, 〈φfin|ψin〉 = 0 ; orthogonal polarizer and
analyzer “block” the photon. In either case, ψin and φfin are not normalized or
orthogonal simultaneously; they do not form orthonormal bases for Malus experiment.

Trace (Tr) of Schrödinger “toy” identity operator (4.4),

Tr (Î) = 〈φfin|Î|ψin〉 = 〈φfin|ψin〉 , (4.7)

returns amplitude of Malus-Born experiment.

Definition 4.2. Bimodal probability density π = |ψin〉 ⊗ 〈φfin| represents a binary
composite action, creation⊕ annihilation, of experimenter E on the system-under-
study. It is mere notational, and order of ψin and φfin is irrelevant. It represents a
complete quantum experiment proper to experimenter’s frame FE{ψi, φf ; τ} .

Caution! It may not be confused with unimodal density matrix ρ, which is
ρin = |ψin〉〈ψin| for initial mode, and ρfin = |φfin〉〈φfin| for final mode of experi-
ment. Unimodal quantum theories are modeled on “initial density matrix” or “initial
statistical operator” ρin , not final ρfin .

Trace (Tr) of bimodal probability density π ,

Tr (π) = 〈φfin|π|ψin〉 = |〈φfin|ψin〉|2 , (4.8)

returns transition probability (4.6) of Malus-Born experiment. [Caution! For uni-
modal density operators, Tr (ρin;φ) = 〈φfin|ρin|φin〉 = |〈φfin|ψin〉|2 and Tr (ρfin;ψ) =
〈ψfin|ρfin|ψin〉 = |〈φfin|ψin〉|2 . It owes semantic error, and makes no experimen-
tal sense; we preempt bimodal density operator π = |ψin〉〈φfin| and bimodal trace
Tr (π;ψin, φfin) = 〈φfin|π|ψin〉 , instead.]
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Bimodal Quantum Theory 4 Probability Density Operator

Definition 4.3. ω is probability of mode-of-being of the system-under-study, or sim-
ply mode probability. For a system-under-study in apparent-mode-of-being, ω = 1.
For a system-under-study in hidden-mode-of-being, ω = 0. For quantum systems in
partial-mode-of-being, ω ∈ (0, 1) .

For ∆θ = π/4 , Malus calculated P = 1/2. This seems paradoxical for beam
consisting of one photon. It makes an absurd assertion “half of the photon passes
through analyzer”. For one photon, ω ∈ (0, 1) ; an individual quantum system is
maximal-informative-system with mode probability ω ∈ (0, 1) . For extreme classical
cases, ∆θ = 0 or π/2, we know whether a photon passes or not e.g., ω = 1 or 0 . For
∆θ = 0 and ω = 1, a photon is apparent (or objective); experimenter knows that it
passes the analyzer. For ∆θ = π/2 and ω = 0, it is forbidden; experimenter knows
that it does not pass the analyzer. For ∆θ ∈ (0, π/2) and ω ∈ (0, 1) , experimenter
does not know the system-under-study at individual level. ω represents possibility (or
potential) for a quantum system, despite extreme classical cases (ω = 1 or 0). We
should better call ω quantum probability henceforth.

(4.5) makes sense for many photons. Yet we do not know which photon passes,
and which does not. We can not know quantum systems at individual level. Quantum
theory is many system theory.

For three different cases: φfin ‖ ψin , φfin ∠ ψin and φfin ⊥ ψin , (4.8) yields
Tr (π) = 1 for parallel polarizers φfin ‖ ψin ;

Tr (π) ∈ (0, 1) for oblique polarizers φfin ∠ ψin ;

Tr (π) = 0 for perpendicular polarizers φfin ⊥ ψin .

(4.9)

In view to Def. 4.3, (4.8) and (4.9), Tr (π) corresponds to quantum probability ω ,

Tr : π −→ ω , ω = Tr (π) = 〈φfin|π|ψin〉 = |〈φfin|ψin〉|2 . (4.10)

Bimodal probability density π represents “potential” for mode probability ω . Tran-
sition probability P is tacitly equivalent to mode probability ω .

Recall (4.7) and Def. 4.2 for unimodal quantum theories, where ψ and φ form

orthonormal bases, and ME {Â} = Tr (Â) for an arbitrary Schrödinger operator Â .
A trivial case in Malus experiment with polarizer |ψin〉 and analyzer 〈ψfin| with same

polarization angle θ (∆θ = 0) resembles unimodal quantum theories. Here, Tr (Î) =

ME (Î) = 〈ψin|Î|ψin〉 = ρin . We preempt ρ̂ ≡ Î , and dispense with “toy” identity

operator. We endow ρ̂ with physical semantics that Î lacked. We have Schrödinger
probability density eigenvalue equation

ρ̂|ψ〉 = ρ|ψ〉 , (4.11)

with Schrödinger “unimodal probability density operator”

ρ̂ = −i} ∂

∂S
. (4.12)

Its unimodal trace (Tr) returns “unimodal probability density”

ρ = Tr {ρ̂} , ρ = |ψ〉 ⊗ 〈ψ| . (4.13)

ρ̂ = −i} ∂/∂S and ρ = |ψ〉〈ψ| have little utility in bimodal quantum theories, than
π = |ψin〉〈φfin| .
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4.1 Unimodal Mathematical Expectation S. Dwivedi

4.1 Unimodal Mathematical Expectation

For a predicate P of the system-under-study, “unimodal mathematical expectation”
(ME) is given by

P def
= ME {P̂} =

Tr (P̂ρ)

Tr (ρ)
=

Tr (P̂ ρ̂)

Tr (ρ̂)
=
〈ψ|P̂|ψ〉
〈ψ|ψ〉

, (4.14)

where P̂ is Schrödinger operator of predicate P ; ME : P̂ −→ P . Here ρ̂ = −i} ∂/∂S
and ρ = |ψ〉⊗〈ψ| ; ψ (4.1) is initial mode vector, often deceptively envisaged unimodal
dogmatic statevector of the system-under-study. For pure mode vectors ρ2 = ρ ; for
mixture of mode vectors ρ2 ≤ ρ ; and Tr (ρ) = 1 for both.

5 Complementarity between Quantum Probability

and Ψ-Wave

For an arbitrary initial modevector |ψ〉, such as (4.1), unimodal mathematical expec-

tation (ME) of commutator [Ŝ, ρ̂]− yields

ME {[Ŝ, ρ̂]−} = 〈[Ŝ, ρ̂]−〉 = 〈ψ|[Ŝ, ρ̂]−|ψ〉 = i}〈ψ|ψ〉 , (5.1)

or

ME : [Ŝ, ρ̂]− −→ i} , 〈[Ŝ, ρ̂]−〉 = i} . (5.2)

[Caution! Our deduction follows from unimodal quantum theories, where ket |ψ〉
and bra 〈ψ| are both initial mode vectors, and orthonormal. We follow mathematical
expectation criterion of Von Neumann’s [6] or Dirac’s [7] unimodal quantum theories,
not from Section 6.2] In view to generalized uncertainty relation

σ2
Sσ

2
ρ ≥

(
〈[Ŝ, ρ̂]−〉

2i

)2

,

we obtain

σSσρ ≥
}
2

or ∆S∆ρ ≥ }
2
, (5.3)

where ∆ measures spread in S and ρ .
Quantum unimodal probability density (ρ) and Action (S) are complementary;

knowledge of one precludes that of another. For an apparent system-under-study or
object (with ρ = 1)3, action S is ambiguous, and does not represent property of
the system. For a partial or quantum system-under-study (with ρ ∈ (0, 1)), S is
known with definite precision (5.3). In either case, S is an episystemic variable, and
represents experimenter’s action on the system-under-study. In classical theory, S was
functional of the path, not function of the system. S represents action of episystem
on the system, not systemic variables.

3In unimodal quantum theories, quantum probability ω = Tr (ρ) . Roughly ρ =
√
ω ; ρ = 1, 0 for

ω = 1, 0 and ρ ∈ (0, 1) for ω ∈ (0, 1) .
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Bimodal Quantum Theory 6 Experimental Quantification

We adduce, in view to (4.1), (4.10) and (5.3),

Quantum probability ω and ψ function are complementary.

Knowledge of one precludes that of another. ψ , being a function of S , represents
action of episystem on the system, and ω , trace of ρ , represents quantum probability.
ψ constitutes experimenter’s frame FE{ψi, φf ; τ} , and represents no property of the
system-under-study at all.

Complementary entities are not apparent simultaneously. For an apparent system-
under-study (one with ω = 1), ψ is partial. ‘Apparent’, ‘proper’ and ‘characteristic’
are synonymous, at least in our context. Apparent systems do not have characteristic
or eigen ψ. Apparent systems (or absolute objects) have states of being, but not the ψ.
Statements like “eigenvector |ψ〉 of the system-under-study” or “state function ψ of
the system-under-study” are oxymoronic. A statement like “ψ is maximal informative
function for the system-under-study” is more relevant for what quantum experiments
ascertain.

Nevertheless, we could know ψ (4.1) during initial and final modes of quantum
experiments (with ω ∈ (0, 1)), with definite precision controlled by (5.3). It may not
be assimilated in that ψ represents the system-under-study partially, incompletely or
with finite precision; instead, we see the system-under-study as a counterpart of the
experimenter, not as an object in its own essence. For isolated systems or objects, ψ
(4.1) is ambiguous; uncertainty diverges ∆S,∆ψ →∞ .

Knowing and doing are complementary.

Schrödinger conceived ψ (4.1) as “particle like wavefunction” to reconcile wave-
particle duality and path discreteness of particles in Wilson cloud chamber [10]. Bohr
called particle and wave complementary modes of the system-under-study. ψ (4.1)
can not be known from particulate systemic variables alone in the sense of comple-
mentarity.

Von Neumann (1932) adduced that we can not describe quantum systems causally
even though we know their wavefunction. For him, state variables (q, p) and wave-
function ψ are essentially different structures [6, Ch. III]. To describe system’s states-
of-being, one needs to supplement ψ with additional parameters that were called
hidden. Hidden parameters were preempted by classical mechanicians to reduce sta-
tistical relations to causal ones, for example, in kinetic theory of gases. It became
philosopher’s stone of physics, and many endured in vain to search it, including En-
stein [12], Bohm [13, 14] and many others. Von Neumann adduces that to reduce
quantum theory from statistical to causal interpretation, by means of supplementing
hidden parameters, is impossible [6, Ch. IV.2]. He renders statistical interpretation
of Born as only consistent interpretation of quantum theory.

6 Experimental Quantification

Quantification transcends one system theories to many. Here, I quantify experiment,
not the system-under-study. Unimodal initial density operator ρin = |ψin〉〈ψin| rep-
resents “partial” or incomplete experiments. It also lacks modal structure, and owes
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semantic error [2]. So does the final density operator ρfin = |φfin〉〈φfin| [15]. A com-
plete quantum experiment has (at least) two modes; initial mode injects, prepares or
creates the system-under-study, and final mode extracts, registers or annihilates it.
The intervention lies beyond the theory. Bimodal density operator π = |ψin〉〈φfin|
represents an individual “complete” experiment on the system-under-study. Several
quantum experiments are represented by an assembly of bimodal density operators
πe , e representing index of the experiment. The experimenter E creates and anni-
hilates the system-under-study in several trials proper to his frame FE{ψi, φf ; τ} ; i
and f index initial and final mode vectors of his choices. Each experimental “trial”
entails a unique bimodal density operator

πe = |ψin
e 〉 ⊗ 〈φfin

e | , (6.1)

with unique initial and final mode vectors indexed e , randomly drawn from FE{ψi, φf ; τ} .

6.1 Experimental Assembly

Complete quantum experiments Ee constitute an experimental sequence.

Definition 6.1. An experimental sequence SeqEe represents experiments Ee on the
system-under-study. All experiments in SeqEe are distinguished and order relevant.

Classical experiments constitute a set SetEe , representing indistinguished and
order irrelevant experiments. We see the same Moon, regardless of whether we repeat
experiments or reverse their order. Quantum experiments are distinguished and order
relevant. Nevertheless, repeating experiments on same photons in Malus experiment
gives different results, but changing their order does not. Malus experiments consti-
tute a series SerEe with experiments distinguished, but order irrelevant. Still more
fundamental quantum experiments might constitute a sequence SeqEe .

6.2 Bimodal Mathematical Expectation

For a complete individual experimental “trial” on the system-under-study, mathe-
matical expectation (ME) of a predicate P of the system-under-study is given by

P def
= ME {P̂} =

Tr (P̂π)

Tr (π)
=
〈φfin|P̂|ψin〉
〈φfin|ψin〉

, (6.2)

where P̂ is Schrödinger operator of predicate P ; ME : P̂ −→ P . Here Tr (π) < 1 ,
except for parallel polarizer and analyzer.

Definition 6.2. For an assembly of experimental “trials” on the system-under-study rep-
resented by SeqEe, experimental average of a predicate P of the system-under-
study measured over N trials is given by

Avg.P def
=

1

N

N∑
e

MEe {P̂} =
1

N

N∑
e

Tr (P̂πe)
Tr (πe)

=
1

N

N∑
e

〈φfin
e |P̂|ψin

e 〉
〈φ fin

e |ψin
e 〉

, (6.3)

where e is the index of trials. For N →∞ , (6.3) gives maximal informative average.
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7 Experimental Phase

Initial and final statistical operators ρin = |ψin〉〈ψin| and ρfin = |φfin〉〈φfin| collapse
initial and final “phases” exp (iθin) and exp (iθfin) of initial and final mode vec-
tors ψin and φfin . Bimodal statistical operator π = |ψin〉〈φfin| reserves “bimodal
phase” exp {i(θin − θfin)} , here termed “experimental phase”. ρin and ρfin represent
merely transition amplitudes, with no information of intact initial and final mode
vectors. π represents transition amplitude as well as initial and final phases, collec-
tively exp {i(θin − θfin)} . Unimodal statistical operators ρin and ρfin represent partial
quantum experiments, with no information about experimental phase. Experimental
phase exp {i(θin − θfin)} represents a complete quantum experiment; so does the bi-
modal statistical operator π = |ψin〉〈φfin| , that preserves it. For Malus experiment,
experimental phase is exp {−i∆θ} .

8 Wave Mechanics and Objectivity

8.1 Objects and Frame Relativity

Classical objects are absolutisitc; all experimenters agree upon their being. Quantum
objects (if ever conceived by means of measuring complementary variables simulta-
neously) are relative; each experimenter creates his own object, that others do not
agree upon. Moon is a classical object; all experimenters rely on its being. Quantum
objects are yet hypothetical, but differ from classical ones in this semantics. If a
hidden-variable theorist theorizes an object proper to each experimenter, he does not
recede to classical causality as he plainly believes. Hidden-variable theories do not
seem to be counter proposal to Copenhagen theories, even though they ever succeed.

Quantum objects are possible, but relative (proper to an experimenter E). Clas-
sical objects are inevitable, and absolutisitc (regardless of experimenter). Quantum
experimenter creates or invents quantum objects proper to his frame of experiment
FE{ψi, φf ; τ} alone. He lacks transformation of such objects to other ones. Quan-
tum objects are not invariant under quantum transformations; experimenters lack
consensus for their being. Quantum “objects” appear for each experimenter’s frame
alone, like “time” in special relativity. Quantum theory is frame relativity or quantum
relativity. Dirac called his frame relativity “Transformation Theory” [16]. Special rel-
ativity has no absolute “time”; experimenters or their frames have “proper time”, but
they lack consensus for it. Each experimenter has his own proper time. Quantum
relativity has no absolute “object”; experimenters have “proper or apparent object”,
yet each has his own. They lack consensus for its being. Quantum theory relativizes
“states-of-being”, as Galilean relativity relativized “space” and special relativity rela-
tivized “time”. Observers in special relativity have “unimodal frames”; experimenters
in quantum theory have “bimodal frames”. Special relativity relativizes “time”, but
retains composite “space-time” as reminiscent absolute [17]. Quantum theory rela-
tivizes “objects” and “states-of-being”, but retains the “experimenter” himself as sole
absolute. Bohr called relativization of experimenter “painful renunciation” [18], and
retained classical concepts for the experimenter alone [4]. Some people misassimilate
it as though he retained ontology for the system-under-study, and endow realistic in-
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terpretations of ψ to Copenhagen theories. Quantum relativity has deeper semantics
than special or general relativity [2]

Quantum objects do not have semantic resemblance with classical objects. I doubt
that quantum theory fully corresponds to classical in all logical, syntactic and semantic
manner as }→ 0. Correspondence principle does not seem to respect logical, syntactic
and semantic resemblances all together. Current form of quantum theory seems to
have syntactic resemblance alone with classical theory. Our goal is to develop a radical
syntax for the theory, that does not respect correspondence.

8.2 States of Being

States (of being) pervaded physics since René Descartes, who, emulating Pythago-
ras and Plato, entailed equivalence between mathematical and physical structures.
He eliminated role of observer ‘I’ and ‘God’ from the discussion of ‘Matter’ [18]; his
split God|World|I. Cartesian objects were “vortices of plenum” that pervaded en-
tire Cosmos. Cartesian world was envisaged an Object of objects. Newton brought
empiricism to cartesian project, but retained dogmatic states-of-being. States are uni-
modal mathematical structures; mathematical idealistic objects that do not change
in perception. We know them as they are.

This dogmatic epistemology ruined physics until advent of quantum theory of
Heisenberg (and Bohr), who sooner renounced it together with states-of-being [18].
Copenhagen division is God|World-I, where ‘God’ is split from composite ‘World–I’
(or entangled ‘system–experimenter’). Quantum experimenter has no mathemati-
cal structure to represent state-of-being of the system-under-study. His own choices
of (initial and final) mode vectors ψin and φfin constitute his frame of experiment
FE{ψi, φf ; τ} , being unique to each experimenter alone [2].

Cartesian experimenters had a frame too; their assertions about the system-under-
study were communicable to others. Cartesian experiments were idealistic; their
transformation (or translation of assertions) entailed absolute objects, things in their
own essence. Cartesian experimenters had a consensus for system’s being (in a state);
quantum experimenters have none. Quantum experimenters lack this communication
or ‘frame transformation’. They lack a dictionary to translate their assertions [2].

A quantum experiment changes system-under-study abruptly and irreversibly,
leaving no trace for it to be correlated with subsequent experiments. Quantum sys-
tems “jump” from one experiment to another (or one mode to another), lacking
causality. This jump is often called collapse or reduction of the state in hodge-podge
classical-quantum language. Quantum theory renounces states-of-being together with
possibility for these redundant notions. On the contrary, classical systems evolve from
one experiment to another, carrying the germ of state-of-being.

Blochinzev and Alexandrov objectivized ψ and ascribed it “state of being” of the
system-under-study [18]. Wigner took it too far, and completely deviated from the
Copenhagen doctrine [2]. His theory, often called “Orthodox theory”, is completely
dogmatic, where ψ, being statefuntion of the system, is an objective reality. Wigner
ascribes consciousness to the abrupt change in ψ during measurement, and calls it a
breakdown of quantum theory. Finkelstein (1991) calls the oxymora “statefuntion ψ
of the system” syntactic error in the theory [19]. Ludwig (2006) calls it “Fairy Tale”
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or “Myth” [20], that plagues quantum theories of today. States are incompatible with
bimodal quantum language. Finkelstein (1996) develops an algebraic “operational”
language to study some prototypical “bimodal” quantum experiments [2], and devel-
ops its semantics.

9 Correspondence

Quantum logic is bimodal. We see quantum systems in initial and final modes of
experiment; intervention lies outside the theory. If one ignores bimodality and ad-
heres to unimodal logic, he entails correspondence Qin → Qfin , and discrete trian-
gle of Section 2.1.1 collapses to continuous line (or channel) connecting E with Q .
Such a unimodal (no longer vertex) point Q represents unimodal state-of-being of
the system-under-study. In unimodal quantum theories, ψin represents action vec-
tor connecting experimenter E with unimodal system-under-study Q . Specification
of Q (with ω = 1) renders the system-under-study an “object”. For an apparent
system-under-study (with ω = 1), Q represents phase space of a classical system with
coordinates (q, p) . Heisenberg [9] set out a limitation for their simultaneous measure-
ment ∆q∆p ≥ }/2 , and q and p were called complementary variables in Copenhagen
theory. Some adduce that Q indeed represents partially the state-of-being of system-
under-study, and as } → 0, Q represents it fully. Quantum theory corresponds to
classical in the limit } → 0. Quantum theory was conceived an evolution of clas-
sical theory, and recedes to it as } → 0. It created an “interpretational problem”
for quantum “measurement”; quantum theory became a problem itself, rather than a
solution [2].

Such absurdity arises from the hodge-podge classical-quantum language. Quan-
tum theory is based on bimodal logic, and has no logical counterpart in unimodal
classical theories. Quantum experiments are pragmatic and bimodal. Classical ex-
periments are dogmatic and unimodal. Quantum experiments are incompatible with
classical language. Quantum language is subjective, bimodal and verb mode (Bohm’s
rheomode [14], Heisenberg’s pragmatic [18] or Finkelstein’s praxic [2]), that assim-
ilates bimodal actions. Some people misinterpret subjectivity with experimenter’s
consciousness, and attribute it to experimenter’s will. In Copenhagen theory, subjec-
tivity is restricted merely to non-objectivity. Classical language is objective, unimodal
and noun mode (dogmatic or ontic), that assimilates ultimate reality. They contradict
each other in their usage, and one scarcely finds a mutual correspondence. Quantum
experimenter puts “name” to his actions on the system-under-study. Classical exper-
imenter puts “name” to the system-under-study itself, like “Moon”.

Quantum theory does not correspond to classical theory.

Some variants of quantum theory correspond to classical theory in the limit } → 0.
This correspondence is mere syntactic. They do not seem to correspond in semantics,
while they lack one. These theories are based on hodge-podge classical-quantum
language that Weizsäcker [1] calls semantic inconsistency. These theories are based on
quantum syntax but classical semantics. Some people call it interpretational problem.
Their correspondence to classical theories is obvious. Copenhagen theory does not
correspond to classical theory.
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10 Summary

Unimodal statistical operators ρin = |ψin〉〈ψin| and ρfin = |φfin〉〈φfin| represent in-
complete or partial quantum experiments, and lack modal semantics [2]. Bimodal
statistical operator π = |ψin〉〈φfin| represents complete or full quantum experiments,
and reserves modal semantics. Unimodal variants of quantum theory, modeled on
ρin = |ψin〉〈ψin| , are based on hodge-podge classical-quantum language, that Finkel-
stein (1972) calls “hybrid” [cq] theories [21]. Classical theories are [c], Copenhagen
theories are [q]. The protocol of progress is [c] → [cq] → [q]. Ontic or causal quan-
tum theories are [cq] , that correspond to [c] in the limit } → 0 ; [q] theories do not.
Hidden variable theories seem to reduce [cq] and [q] theories to [c] ; [cq] theories are
more likely to reduce to [c] , than [q] theories. ρin = |ψin〉〈ψin| and ρfin = |φfin〉〈φfin|
represent [cq] experiments; π = |ψin〉〈φfin| represents [q] experiments, and resembles
core insights of the Copenhagen theory. Copenhagen theory jumps from realm of
classical physics, and creates the realm of quantum physics.

Some people claim that Copenhagen theory has no proper form, and could not
be assimilated due to lingual ambiguities alone. Heisenberg agreed at this point with
Stapp [22]. Stapp adduces that Copenhagen theory is pragmatic. Finkelstein studies
its modal semantics [2]. Copenhagen theory differs from other variants of quantum
theory in its modal structure. Some theories, being operational, seem to be closer
to Copenhagen theory. Theories that incorporate dogmatic states-of-being are uni-
modal. Some variants of quantum theory are pragmatic but unimodal. They are
based on hodge-podge classical-quantum language, that increases ambiguity. These
theories fit with experimental inferences, but lack a consistent semantics. Some peo-
ple call it “interpretational problem”, and many endure in vain to find one. Great
many alternative interpretations of quantum theory have been published, and prob-
ably none discuss the original one. Some discuss ontological “causal” interpretation
of quantum theory [23] (this school is in progress today), and others eliminate “ob-
server” from the discussion [24, 25] as Descartes did. Copenhagen theory has been
scarcely discussed after 1970’s [2] and dogmatic “states-of-being” seem to dominate
physics again, that we renounced in 1920’s. Other variants of quantum theory are
modeled on states-of-being in quantum domain, and discuss measurement problem in
their interpretation. Measurement is the central problem of these theories, and has
been widely discussed [26]. It gives rise to redundant concepts like “collapse” and “re-
duction” of wavefunction and state; quantum systems have no state to collapse [27].
Copenhagen theory is modeled on experiments, and has no measurement problem.
Copenhagen theory is both pragmatic and bimodal, and owes no semantic error.

Quantum theory has no interpretational problem.

Bohr’s insistence for classical concepts was restricted merely to the experimenter
alone. He theorizes an absolute experimenter, and calls its relativization “painful
renunciation”. A theory of relative experimenters is in progress [4]. Some people mis-
interpret it as though Copenhagen theory insists classical concepts in dogmatic and
causal sense, and endow states-of-being and realistic interpretations of ψ to Copen-
hagen theory.

This work aims at assimilating core insights of the Copenhagen theory.
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