A Conjecture on Near-square Prime Number Sequence of Mersenne Primes

Pingyuan Zhou

E-mail: zhoupingyuan49@hotmail.com

Abstract

In this paper we present a conjecture that there is a near-square prime number sequence of Mersenne primes to arise from the near-square number sequence $W_p = 2M_p^2 - 1$ generated from all Mersenne primes M_p , in which every term is larger prime number than corresponding perfect number $P_p = (M_p^2 + M_p)/2$. The conjecture has been verified for the first few prime terms in the near-square prime number sequence and we may expect appearing of near-square prime numbers of some known Mersenne primes with large *p*-values will become larger primes to be searched than the largest known Mersenne prime $M_{57885161}$.

Keywords: Mersenne prime; near-square prime number sequence of Mersenne primes; the largest known Mersenne prime.

2010 Mathematics Subject Classification: 11A41

It is well known that every Mersenne prime $M_p=2^p-1$ will lead to appearing of a corresponding perfect number $P_p=(M_p^2+M_p)/2$ and the largest known prime has almost always been a Mersenne prime in modern times[1]. In order to find a new way for searching larger prime numbers than the largest known Mersenne prime $M_{57885161}$ from known Mersenne primes themselves, we give the following discussion.

The traditional relation formula between perfect number P_p and Mersenne prime M_p can be expressed as

$$P_p = (M_p^2 + M_p)/2.$$
(1)

From (1) we have

$$W_p = 2(2P_p - M_p) - 1, (2)$$

where

$$W_p = 2M_p^2 - 1 (3)$$

is a near-square number of a Mersenne prime M_p , so that there is a near-square number sequence $W_p = 2M_p^2 - 1$ generated from all Mersenne prime M_p . If Mersenne primes M_p are infinite then $W_p = 2M_p^2 - 1$ is an infinite sequence. From $M_p = 2^p - 1$ we get structure of near-square number $W_p = 2M_p^2 - 1$ as follows

$$W_p = 2^{2p+1} - 2^{p+2} + 1, (4)$$

where p is exponent of Mersenne prime $M_p=2^p-1$. Hence we have the following conjecture.

Conjecture. There is a near-square prime number sequence of Mersenne primes to arise from the near-square number sequence $W_p = 2M_p^2 - 1$ generated from all Mersenne primes M_p , in which every term is larger prime number than corresponding

perfect number $P_p = (M_p^2 + M_p)/2$.

Obviously, the conjecture does not mean every near-square number W_p of Mersenne prime M_p is a prime number. In this near-square number sequence, we have verified the first few prime terms as follows[2]

$$W_{2}=2^{5}-2^{4}+1=17,$$

$$W_{3}=2^{7}-2^{5}+1=97,$$

$$W_{7}=2^{15}-2^{9}+1=32257,$$

$$W_{17}=2^{35}-2^{19}+1=34359214081$$

$$W_{19}=2^{39}-2^{21}+1=549753716737$$

....

From (2) we see every prime W_p is larger than corresponding perfect number $P_p = (M_p^2 + M_p)/2$. Therefore, we obtain

$$W_2=17 > P_2=6$$

 $W_3=97 > P_3=28$
 $W_7=32257 > P_7=8128$
 $W_{17}=34359214081 > P_{17}=8589869056$
 $W_{19}=549753716737 > P_{19}=137438691328$

. . .

Above discussion makes us fell larger prime numbers than the largest known Mersenne prime $M_{57885161}$ will arise from near-square numbers of some known Mersenne primes i.e. $W_p = 2M_p^2 - 1$ for M_p with large *p*-values. In other words, such large primes possibly appear among the following near-square numbers of known Mersenne primes:

$$\begin{split} &W_{30402457} = 2^{2 \cdot 30402457 + 1} - 2^{30402457 + 2} + 1 = 2^{60804915} - 2^{30402459} + 1, \\ &W_{32582657} = 2^{2 \cdot 32582657 + 1} - 2^{32582657 + 2} + 1 = 2^{65165315} - 2^{32582659} + 1, \\ &W_{37156667} = 2^{2 \cdot 37156667 + 1} - 2^{37156667 + 2} + 1 = 2^{74313335} - 2^{37156669} + 1, \\ &W_{42643801} = 2^{2 \cdot 42643801 + 1} - 2^{42643801 + 2} + 1 = 2^{85287603} - 2^{42643803} + 1, \\ &W_{43112609} = 2^{2 \cdot 43112609 + 1} - 2^{43112609 + 2} + 1 = 2^{86225219} - 2^{43112611} + 1, \\ &W_{57885161} = 2^{2 \cdot 57885161 + 1} - 2^{57885161 + 2} + 1 = 2^{115770323} - 2^{57885163} + 1. \end{split}$$

References

- [1]. Mersenne prime in The On-Line Wikipedia. http://en.wikipedia.org/wiki/Mersenne_prime
- [2]. Pingyuan Zhou, Distribution and Application of Root Mersenne Prime, Global Journal of Mathematical Sciences: Theory and Practical, Vol.3, No.2(2011), 137-142.

http://wenku.baidu.com/view/2c4da6100b4e767f5acfceo2.html