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Abstract. In De Sitter / Anti De Sitter space-time and in other geometries, reference sub-

manifolds from which proper time is measured along integral curves, are described as events. 

We introduce here a foliation with the help of a scalar field. The scalar field need not be unique 

but from the gradient of the scalar field, an intrinsic Reeb vector of the foliations perpendicular 

to the gradient vector is calculated. The Reeb vector describes the acceleration of a physical 

particle that moves along the integral curves that are formed by the gradient of the scalar field. 

The Reeb vector appears as a component of an anti-symmetric matrix which is a part of a rank-

2, 2-Form. The 2-form is extended into a non-degenerate 4-form and into rank-4 matrix of a 2-

form, which when multiplied by a velocity of a particle, becomes the acceleration of the 

particle. The matrix has one U(1) degree of freedom and an additional SU(2) degrees of 

freedom in two vectors that span the plane perpendicular to the gradient of the scalar field and 

to the Reeb vector. In total, there are U(1) x SU(2) degrees of freedom. SU(3) degrees of 

freedom arise from three dimensional foliations but require an additional symmetry to exist in 

order to have a valid covariant meaning. The model aims at Causal Sets, that when not aligned 

along geodesic curves, force material clocks of different types, not to move geodetically, thus 

meaning forces and matter. This paper mostly deals with U(1) type clocks but also discusses 

SU(2) and SU(3) and in a more detailed way in appendix C. 

 

Matter in the Einstein Grossmann equation is replaced by the action of the acceleration field, 

i.e. by a geometric action which is not anticipated by the metric alone. This idea leads to a new 

formalism that replaces the conventional stress-energy-momentum-tensor. The formalism will 

be mainly developed for classical physics but will also be discussed for quantized physics 

based on events instead of particles. The result is that a positive charge manifests small 

attracting gravity and a stronger but small repelling acceleration field that repels even 

uncharged particles that have a rest mass. Negative charge manifests a repelling anti-gravity 

but also a stronger acceleration field that attracts even uncharged particles that have rest mass. 
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1.  Introduction 

The motivation of this theory is to show that matter can be put into correspondence with an 

acceleration field. There are two ways that measurement of proper time by a physical clock between 

events will be shortened: either by gravity in which the clock moves along geodesic curves but in 

curved space-time or by other interactions that prevent the clock from moving along a geodesic curve. 

These two approaches have to appear in the equation of gravity in order to describe Nature by a fully 

geometric model. The latter is not anticipated by the metric tensor alone and therefore it requires a 

new approach. 

In this work, we will study the gradient of a real scalar field P  which is 
ii

dx

dP
P  .  If a physical 

particle moves along the integral curves that are formed by iP  then its velocity is 
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  where c is the speed of light. For convenience, throughout the paper we 

will use the notation s

s

s PPPNZ 
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. The next step is to calculate the acceleration of such a 

particle, based on iP . Taking the exterior derivative of 
ii dx

Z

P
 as a 1-form, we will derive a 2-Form, 

while we continue with differential geometry conventions, comma as derivative and semi-colon as 

covariant derivative, 
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dZ
ZZ ,  and for a vector field kV , 
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V , where ix  are the 

contravariant coordinates. Also, the covariant derivatives are defined as in differential geometry, 
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   are the affine connection, also known as 

second-type Christoffel symbols. We derive, 
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We now contract this anti-symmetric matrix with our original vector, 
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It is immediately evident that the vector 
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 is perpendicular to 
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and from a contraction of an anti-symmetric matrix ijA by 0
Z

P
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Physical meaning: ijA  transforms the vector 
Z

Pi
 to 

2

iU
as a rotation and scaling transformation and 

is therefore, of rank 2. It can be extended to a non-degenerate matrix of rank 4, ijA
~

which defines a field 

of acceleration, i.e.  
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  where ia  is the covariant acceleration of the mass 

that interacts with the field, c is the speed of light,   is proper time and ijg  is the metric tensor.  The 

acceleration matrix ijA
~

 will be discussed later and will appear as the sum of two matrices ijij BA  . If 

the ijA  and ijB  are real then )
~

()( ijijijij BADetBADet   for other choices of  ijij BB 
~

. 

Z

P

Z

Z

Z

P

Z

Z

Z

P

Z

PPZ

Z

P

Z

Z

Z

P

Z

PPZ

Z

P

Z

Z

Z

PU

Z

PU
A

ijji

ij

k

kijji

k

kjiijji
ij

22

)
22

()
22

(
22 22





(3) 

 

We identify this representation with foliation theory,(Reeb, 1948, 1952 [1] and Godbillon-Vey, 1971, 

[2],[3]). We can write  
Z

Pi  and 
2

iU
 and we reach the Reeb representation  ^d  

where 
2

iU
  is known as the Reeb vector [1] of the foliation that is perpendicular to the 1-Form  . 

The representation of the vector    leads to a far simpler term than the one represented by the 

Reinhart-Wood formula [2]. For this cohomology class, the following holds,   
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The Godbillon-Vey 3-Form, of the foliation F that is perpendicular to the 1-Form   is defined as 

 dFGV ^)(  . Its De Rham Cohomology class is ),(]^[ 3 RMHd   where here R denotes the 

real numbers. This cohomology class is an invariant of the foliation F and is a closed 3-Form. An 

interesting property of the Reeb vector is that its restriction to the foliation F integrates to 0 on each 

closed curve on F. 

 

A generalization of (2) to the complex numbers is easily defined 
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i PPPPZ  and because the metric tensor is symmetric and real, we can write 

i

i PPZ * . An interesting way to reach the Reeb vector 
2

iU
 is by the Lie derivative [4] 
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In which the second term is positive because the differentiated 
Z

Pi
 vector has a low index. 

The first term becomes, 
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The second term is, 
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We add (6) and (7) to get (5) and notice that 
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It is again the Reeb vector. It is important to say that the foliation F is covariant because its tangent 

vectors )(FT  consist of vectors which are perpendicular to 
Z

Pi  and orthogonality of vectors is 

invariant under local change of coordinates. The question that we should ask now, is how is the Reeb 

vector 
2

iU
 related to the curvature of the integral curves which are generated by  ? First of all, we 

have to notice that 
i

i PPZ *  is not constant and therefore 0
kk

dx

dZ
Z  unlike the case of a 

velocity of a particle 
2cVV i

i  . The squared curvature of the integral curves that are generated by 

iP  is expressible, according to differential geometry, by the measurement of how much the unit 

vector 
Z

Pi
 changes along an arc length parameterization t  of the integral curves. Calculation of the 

second power of trajectory curvature of integral curves along a conserving field, can be left as an 

exercise to the reader but the author prefers to present its calculation. This calculation is valid for all 

integral curves that are generated by vector fields that are scalar gradients. In our case, the integral 

curves should not be geodesic if they pass through material fields. 

 

Caution:  The t  parameterization may not be the time measured by any physical particle because the 

scalar field from which the vector field is derived may be the result of an intersection of multiple 

trajectories along which P  is measured. However, a particle that follows the gradient curves will 

indeed measure t even if its trajectory is not geodesic. Let t  be the arc length measured along the 

curves formed by the vector field P . By differential geometry, we know that the second power of 

curvature along these curves is simply 
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such that 
g  is the metric tensor.  (9) is an excellent candidate for an action operator. For 

convenience, we will write 
k

k PPNorm   and  
 P

dt

d
P   . For the arc length parameter t . Here  

is the main trick, as was mentioned about 2NormZ  , Norm  may not be constant because P  is not 

the 4-velocity of any particle, (to see an example of changing Norm , see “APPENDIX  – The time 

field in the Schwarzschild solution”),  An arc length parameterization along these curves is equivalent 

to proper time measured by a particle that moves along the curves, and in the real numbers case, P can 

be indeed time. Unlike velocity’s squared norms, Z  is not constant. 
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Following the curves formed by 
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In the real case, we have achieved the Reeb vector, 
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And our candidate for a trajectory curvature action 
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Non-geodesic motion, as a result of interaction with a field, is not a geodesic motion in a gravitational 

field, i.e. it is not free fall.  Moreover, material fields by this interpretation prohibit geodesic motion 

curves of particles moving at speeds less than the speed of light and by this, reduce the measurement 

of proper time.  We return to the idea of acceleration by material fields. 

 

We recall the work of Tzvi Scarr and of Yaakov Friedman [5] which used an anti-symmetric matrix to 

map a 4-velocity vector V to a 4-acceleration vector a . Since (2), 
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such that c is the speed of light, where V  is the 4-velocity of a material frame and A  is the Scarr-

Friedman matrix [5]. The known relation 0
Va  is obvious. 

The real valued action above (11), will lead to a very different energy momentum tensor than that of a 
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electric charge up to multiplication by a constant. Another perhaps more illuminating way is to look at 
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 where 0  is the permeability constant of vacuum, F  is the electro-magnetic tensor. 

 



 

 

 

 

 

 

 

2.  SU(2) X U(1) symmetries – partially symplectic space-time 

There is, however, a problem with A . There is a degree of freedom in the matrix A  which is 

defined by two vectors, 
Z

Pi
 and by 
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iU
. That means two additional vectors can be defined in order 

to express acceleration in the plane which is perpendicular to the local plane spanned by 
Z

Pi
and
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iU
. 

We continue with the TzviScarr and Yaakov Friedman acceleration representation matrix [5] and for 

simplicity, we restrict our discussion to the real case. A  is singular and we can easily define a 

matrix that rotates vectors in a plane perpendicular to both U  and to P in order to extend A to a 

regular matrix by adding to A  a second singular matrix, denoted by B . That is the matrix 
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Kronecker delta.In the real numbers case, there are two ways to extend  A  to a regular matrix and to 

keep the norm of the acceleration vector after the extended matrix is multiplied by vectors 
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 BABA (14) is the matrix we have been 

looking for and it also results in an immediate degree of freedom in the representation of the 

acceleration matrix by two additional vectors to  and U but not in the matrix itself. (14) is quite 

similar to Dirac matrices but unlike them, it describes two acceleration planes and not a bi-spinor [6]. 
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degree of freedom in  B itself but only in its representation vectors, i.e., the normalized gradient of a 

scalar and its Reeb vector. As was suggested in (14), the singular  A  acceleration matrix is replaced 
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 order non-degenerate form. The 

demand for a manifold to be symplectic, is that there will be a 1-Form   such that  d  and 

such that  .̂..^n
will be of order n2  which is the dimension of the manifold and that   

will be a closed form as in our case. By a theorem of Darboux [8], there exists a local basis 
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In a n2  dimensional Riemannian or Pseudo-Riemannian manifold, if there is a series of, n vectors, 
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non-degenerate exterior derivatives and therefore non-degenerate Reeb vectors  )(,...,)1( nUU  then 

show that the nxn   Gram determinant ))()(( 
 jUiUDet is invariant for all such choices. In the 



 

 

 

 

 

 

real case, it can be shown that any other choice is reducible to  )(,...,)1( nUU by a composition of 

an )(nSO transformation followed by a reflection which generalizes to )(nSU and a reflection in the 

complex case. Consider an action operator as the third root of Gram’s determinant of 3 Reeb vectors. 

 

3.  SU(3) symmetry 

We may want to express the acceleration matrix  A  by three scalar fields that are defined in the 

foliation F that is perpendicular to 
Z

Pi
. This is because iP  is a geometric object that defines 

foliations of space-time and can be conversely defined by the foliations. Another motivation is to show 

that )3(SU  that is seen in Quantum Chromo-Dynamics, may originate from geometry. By a theorem 

of Frobenius, necessary conditions for 3 vectors )3,2,1( jh to span the foliation F is that the vectors 

)(sh are Holonomic if their Lie brackets depend on them 



3

1

)()](),([
j

j jhckhih  for some 

coefficients jc . The Lie brackets of each two vectors must depend on the vectors that span )(FT . We 

may write our 3 scalars cba ,,  (here c  is not the speed of light and not the previous coefficients but a 

scalar field) and their gradients that span the foliation’s tangent space )(FT as follows, 

c
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kkkkkk  )3( , )2( , )1( . 

We now express  A  by )1(kh , )2(kh , )3(kh in a covariant formalism but we need some constraint 

on P . 

Condition:
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


 PPPP ;**;   

This condition is not trivial and in general, 
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


 PPPP ;**;  . 

Consider the following matrix: 

 jijijijiji ccbbaagD ***  
 (15) 

and 
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 PPPPZ  . That is very interesting, 

because as was already said, we can represent ji PP*  by orthogonal fields that span the tangent space 

of the perpendicular foliation to jP ,  namely T(F). Consider the following: 
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Now comes a little trick: 
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By (4), it is obvious that the first two terms constitute minus twice the Reeb vector, 
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Consider our assumption, jijijijiji ccbbaagD ***    and we have obtained an expression 

of the Reeb vector by the orthonormal vectors that represent the foliation. The additives of (15) are 

tensors. This leads us to an open question as follows: Is the condition 





 PPPP ;**;  , the 

minimal condition which is needed for a representation of the Reeb vector by jjj cba ,,  as the sum of 

tensor terms ?  In other words, is the condition 





 PPPP ;**;    a necessity for the tensor 

representation of the acceleration matrix by the foliation scalars, cba ,, ? 

 

 

 

 

4.  Invariance of the Reeb vector under different functions of P 

Here we wish to explore another degree of freedom in the action operator of the “acceleration field” 

which results from the Reeb vector, as shown by a representative vector field 
idx

dP
 which is tangent to 

a non-geodesic integral curve. We wish to show that P  can be replaced with a smooth function 

)(Pf  and that mU  is invariant under such a transformation. 



 

 

 

 

 

 

We revisit our acceleration field and write 
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  . We will prove the invariance of  mU where P  is real, 

however, a similar proof is also valid where P is complex and where P is replaced with a smooth 

function of P . 

Suppose that we replace P by f(P)such that f  is positive and increasing or decreasing, then 
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 (18) 

Which proves the invariance of the Reeb vector 
2

kU
 under different parameterizations of the scalar 

field P . 

 

5.  Energy density by an acceleration field – Reeb vector at the classical non-covariant limit 

We now show, how much energy density does this term k

kUU
4

1
 represent. 

For a clock that moves along the integral curves, formed by 
Z

P
, we have from (2) and (11) 
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 (19) 

 

In special relativity, the squared curvature of a trajectory of a particle is expressible by its 4-

acceleration, divided by the squared speed of light, 2

/

c

a

cd

cdV 


  where the proper time   

differentiates the velocity V  and where  is an arc-length parameterization. 

The classical limit of a gravitational field is not covariant and that even worse, the classical field is 

intrinsic to the body of mass M  that generates gravity; however, it is valid tool for the assessment of a 

physical model. We consider small mass at rest in a Newtonian (obviously not covariant) gravitational 

field. By the principle of equivalence, this mass is accelerated, otherwise it would freely fall. So, if a 

force field can keep small mass from falling, the field’s classical limit of energy, is the same as the 



 

 

 

 

 

 

energy of the classical non-covariant gravitational field. This results hints at the energy of an 

acceleration field that opposes weak gravity. Summation of the squared norm of non-covariant 3-

acceleration, 2a  of clocks that are kept from falling in the weak gravity generated by the mass M  is 
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Where K  is Newton’s gravity constant. Now we calculate the non-relativistic and non-covariant 

negative potential energy gE , 

 
g

M

E
r

KM
dm

r

Km











0

2

0 0 2
 

 (21) 

 

So from (20) and (21) 
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(22) implies the following relation between energy and the non-gravitational acceleration field that 

prohibits geodesic motion, where 
2 c  is the energy density and   is the mass density. 
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where c  is the speed of light. (23) dictates in four dimensions, 
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Note that unlike (24), (23) is not a covariant expression. What does it mean in the non-covariant 

classical limit of the electro-static field E . Since an electric field is also a form of an energy density, 

20

2
EDensityEnergy


   where 0 is the permittivity of vacuum and from (24) we can infer the 

following non-covariant classical limit, 220

2
8 aEK 


  where  2E  and 2a  are square norms of the 

3-vectors E


 and a


. We can infer, 
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 (25) 

 

The acceleration in (25) is dauntingly small and very difficult to measure. It requires an immense field 

of 1 million volts over 1 millimetre to expose an acceleration of uncharged clocks, which is about 

8.61cm/sec^2, less than 0.01 g, providing that there are no other fields that cancel out this acceleration. 

In fact, we will see below that charge also generates gravity and that for the choice K8 in (23), the 



 

 

 

 

 

 

acceleration will be about 4.305 cm/sec^2. By the principle of parsimony, the fact that this 

acceleration field stores energy, i.e. 
K

a
DensityEnergy

8

2

  means that this acceleration is aligned 

with the electric charge, electro-static field curves because this can explain the electric charge 

attraction and repulsion by simply, increasing or decreasing the energy stored in such a weak 

acceleration field. As we shall see, if instead of K 8  we develop this theory such that K 4 divides 

the square norm of acceleration, no acceleration of neutral particles will be measured within a 

homogeneous electrostatic field. This is because, we will develop the Euler Lagrange equations of the 

Ricci scalar plus (11) and see that charge also generates gravity and not only inertial mass does. 

 

We now use a covariant terminology of 4-acceleration a  and 


aaa 2
. 

As a more general theory, we can write 
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a
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 , such that  8 . 

Another important remark is that in the classical non-covariant limit, the divergence of the electric 

field can be written as, 
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Such that   denotes charge density and not the previously defined energy density. 

By experiments done by Hector Serrano, for NASA, the author believes that the acceleration field of 

even uncharged clocks in an electric field is towards the electron and out of the proton. A relation 

between charge and gravity can be developed, leading to unprecedented repercussions on the 

feasibility of Alcubierre Warp Drive, reference is given where it is discussed later.  

There is a remark of Serrano [9], about a moving capacitor in vacuum, in a reply to Peter Liddicoat: 

“Actually by the generally accepted definition of what constitutes high vacuum 10^-6 Torr is about in 

the middle. This pressure is about equal to low Earth orbit. More importantly at this pressure the 

‘Mean Free Path’ of the molecules in the chamber is far too great to support Corona/Ion wind effects. 

We’ve tested from atmosphere to 10^-7 Torr with no change in performance either. However, I’m glad 

the results have you thinking. It looks simple, but trust me it’s not”.. 

Hector Serrano has mentioned in a patent [10], that a capacitor manifests weak thrust also in vacuum. 

Another indirect evidence is the Flyby Anomaly [11] which is possibly caused by ionosphere charge. 

For further evidence, see Timir Datta et. al. work as an elegant way to focus field lines by metal cone 

and plane and to observe an effect [12]. The author believes the acceleration of charge-less particles in 

an electric field is from positive to negative. In section 9 it is shown that there is an electro-

gravitational effect opposite in direction to the acceleration of an uncharged particle in an electro-static 

field. There is at least informal evidence that the elecro-gravitational effect shows thrust of the entire 

dipole towards the positive direction [9] and the author does not imply asymmetrical capacitors of 1 - 

0.1 Pico-Farad with 45000 Volts. It is shown that such capacitors - according to the calculations in 

section 9, assuming a roughly approximated acceleration proportional to the gravitational field – will 

not manifest any measurable effect of at least 1 micro Newton thrust. Most likely is that any 

measurable thrust, using such small capacitors, will be solely based on ionic wind. 

 

6.  Experimental problems – electron mobility 

The down side of the non-geodesic acceleration is that it is about 10 orders of magnitude smaller than 

the accepted and known electric field interaction. For example, negative charge suspended above the 



 

 

 

 

 

 

Earth will cause charge to move in the ground. This charge will have a much stronger effect than the 

interaction with the acceleration field as is, and will cause a shielding effect i.e. the fields will cancel 

out within the Earth. Even the almost ideal insulator, i.e. diamond crystals, have impurities such as 

Nitrogen Vacancies [13] that allow charge carriers to move in the lattice i.e. high electron mobility. In 

the purest diamonds, the NV impurities are about 1810  nodes per 3cm  comparing to 231077.1 x  

carbon atoms per 3cm . The donor electrons lie deep in the band gap of 5.47eV, at about 1.7 eV.  

 

7. Vaknin’s theory 

We quote here one of the four models of Vaknin [14] as follows: This work contains a possible 

realization of space-time as an ideal geometric object that becomes physically accessible only where a 

wave function which is called “chronon” collapses. The physical model is therefore of events and not 

of particles. This paper offers the idea that matter occurs where the Reeb vector is not zero. Showing 

consistency of this model with Quantum Mechanics is a very difficult task although it is possible to 

show that the energy of an electric field is stored in an acceleration field by replacement of the electro-

magnetic tensor with the anti-symmetric acceleration field.  

 

Vaknin's description of the realization of event is as follows:"Time as a wave function with observer-

mediated collapse. Entanglement of all Chronons at the exact "moment" of the Big Bang. A relativistic 

QFT with Chronons as Field Quanta (excited states.) The integration is achieved via quantum 

superpositions". 

 

The main difference between Vaknin’s approach and the author’s approach is that Vaknin’s approach 

is algebraic where the author’s approach is geometric. Thus, the outcome is two different theories that 

discuss a similar idea. We now show the simplest implementation of Vaknin’s model as a quantization 

idea of time by collapsible events, as an additional constraint to the action  
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Where g is the root of the negative metric tensor determinant for the volume element, such that 
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The term 4c  is the speed of light to the power of 4 and K  is Newton’s gravity constant. 2Curv  is a 

generalization of the square norm of the Reeb vector to the complex numbers field, 
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degree of freedom. 

 



 

 

 

 

 

 

7.1.  Physical meaning: The field jsjs BA   will rotate and scale a scalar wave function   of a 

particle, 
jj

dx

d
  where
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We generalize the acceleration field energy density from 
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As we saw in (18),  P  does not have to be the proper time measured along curves. Instead, it can be a 

function of such proper time. (18) motivates the decomposition of P into wave functions because P  

does not have to be a monotonically increasing function of the proper time measured along integral 

curves formed by kP . The problem is that P  is not any wave function of a particle. The simplest 

physical interpretation of the  wave function is that it describes events in space-time and not 

particles. Therefore, P  becomes a sum of wave functions and )(...)2()1(lim nP
n

 


 is a 

decomposition of the function P as a sum of wave functions. 

 

As quantum states, these event wave functions )1( , )2( ,… must be normalized to probability 1 on 

the space-time manifold and they should be independent of each other as was written in two integral 

constraints. The best motivation for the constraints 1)(*)(
4

4 


dgkk   and for 

jk s.t.  0)(*)(
4
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dgjk    is given by Vaknin [14] and Storkin [15] where 

they emphasize that physical events are discrete. Storkin considers decreasing probability functions of 

the number of events in a given -volume, e.g. Poisson distribution within 2+1 dimensions Minkowsky 

space-time. Causal sets are partially ordered graphs of events along paths in space-time. The approach 

of this paper is more robust than that of Storkin because causal sets are the result of the order of events 

along the integral curves that are naturally formed by kP  along with the mentioned constraints that 

induce a countable set of wave functions. 

 

7.2.  Auto-rotation: In this section, we will study the field of a particle, whose rest mass energy is 

presumably stored in an acceleration field. The equation  
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which results in the equation above. By (8), If we replace s  with 
Z

Ps
, we get 

2

jU
 on both sides of 

the equation.  What is the meaning of k  ? Dirac’s equation consists of spinors [6], and of matrix 

blocks as basis elements of the Lie Algebra of a rotation group. In Dirac’s equation, k  is not the 
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from the motivation to represent spatial spin axes as three orthogonal quantum states and to predict 
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k  is the 

energy density of the particle. There is a new open problem and a new ongoing research which is 

intended to answer whether k , as presented here, offers a useful way to describe matter on the 

quantum level. 

 

8.  General Relativity for the deterministic limit 

By General Relativity, we have to add the Hilbert-Einstein action [16][17][18] to the negative sign of 

the square curvature of the gradient of the scalar field in order to replace the energy-momentum tensor 

in the Einstein’s field equations. Negative means that the curvature operator is mostly negative. As 

before, we assume  8  (from the previously discussed term, Kaa 
 8/  as an energy density). 
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g  is a scalar density of the volume element, R  is the Ricci curvature [16] and g  is the 

determinant of the metric tensor used for the 4-volume element as in tensor densities [17]. 



 

 

 

 

 

 

 

The variation of the Ricci scalar is well known. It uses the Platini identity and Stokes theorem to 

calculate the variation of the Ricci curvature and reaches the Einstein tensor [18], as follows, 
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The reader may skip the following equations up to equation (33). Equations (33), (34) and (36) are 

however crucial. 
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We subtract (28) from (29) 
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We subtracted the Euler Lagrange operators of g
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 in (28) from the Euler Lagrange 

operators of g
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
2  in (29) and got (30) and we will subtract (31) from (32) to get two tensor 

equations of gravity, these will be (33), and (36). 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

Assuming  8 , where the metric variation equations (27), (28), (29) and (30) yield 
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R  is the Ricci tensor and 
 RgR

2

1
  is the Einstein tensor [18].In general, by (27) and  8

(33) can be written as  
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If we consider Vaknin’s model [14] of realization of space-time by collapse events 

 ni ,....,3,2,1( )  then we have to add the lambda * constraint to the action operator and the 

resulting Euler Lagrange equations for a vanishing metric variation are: 
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for some cosmological constant  . Also, note our choice  8 . 

 

We can also see that the ordinary local conservation laws are modified if 0; k
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9.  electro-gravity –unexpected gravity induced by electric charge 

 

We return to (34) 
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This means that charge can cause gravity or anti-gravity and its sign is opposite to the acceleration 

field around the charge. A more general form is 
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      where   8 , K  is Newton’s gravity constant and 0  is the 
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This renders Alcubierre Warp Drive [19] a feasible technology by charge separation.  Capacitors of 

several pico-Farads will not yield any measurable thrust [20] because they do not separate enough 

charge. However, separation of virtual charge that appears during transition states of electrons as they 

interact with photons, and by a short lived vacuum charge, is not ruled out because they can explain 

the effect known as EMDrive [21] by Warp Drive [19] caused by (37).  

 

 

10.  Total acceleration around electric charge 

In the classical non-relativistic limit, acceleration a  around a charge Q  at radius r will be the result 

of (37) and by the acceleration field that prohibits geodesic motion, see (25), 
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11.  Proof of conservation 

 

Theorem: Conservation law of the real Reeb vector. 

From the vanishing of the divergence of Einstein tensor and (33) in the paper, we have to prove the 

following: 
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Proof: 

From the zero variation by the scalar time field (36) 
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Notice that 
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and we are done. 

 

Conclusion 

An upper limit on measurable time from each event backwards to the "big bang" singularity as a limit 

or from a manifold of events as in de Sitter or anti - de Sitter, may exist only as a limit and is not a 

practical physical observable because it can only be theoretically measured. Since more than one curve 

on which such time can be virtually measured intersects the same event - as is the case in material 

fields which prohibit inertial motion, i.e. prohibit free fall - such a time can't be realized as a 

coordinate. Nevertheless, using such time as a scalar field, enables to describe matter as acceleration 

fields by using the gradient of the scalar field and it allows new physics to emerge by a replacement of 

the stress-energy-momentum tensor. One arrives at electro-gravity as a neat explanation of the Dark 

Matter effect and the advent of Sciama's Inertial Induction, which becomes realizable by separation of 

high electric charge. This paper totally rules out any measurable Biefeld Brown effect in vacuum on 

Pico-Farad or less, Ionocrafts due to insufficient amount of electric charge [20]. The electro-

gravitational effect is due to field divergence and not directly due to intensity or gradient of the square 

norm. Inertial motion prohibition by material fields, e.g. intense electrostatic field, can be measured as 

a very small mass dependent force on neutral particles that have rest mass and thus can measure 

proper time. The non-gravitational acceleration should be from the positive to the negative charge. The 

electro-gravitational effect which is opposite in direction and half in intensity, requires large amounts 

of separated charge carriers and acts on the entire negative to positive dipole. 
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AppendixA– The time field in the Schwarzschild solution 

Motivation: To make the reader familiar with the idea of maximal proper time from a sub-manifold 

and to calculate the background scalar time field of the Schwarzschild solution from that sub-

manifold. We choose as a sub-manifold, a small 3 dimensional 3-spehere around the “Big Bang” 

singularity and therefore this example is limited to a “Big Bang” manifold. So, we want to connect 

each event in a Schwarzschild solution to a primordial sub-manifold a fraction of second after the 

presumed “Big Bang”, with the longest possible curve under the assumption that no closed time-like 

curves occur.  

In this limited case, the scalar field is uninteresting as it does not represent interactions with any 

charged particle or with other force fields and therefore, the Reeb vector is zero. 
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Schwarzschild coordinates for a freely falling particle. This theory predicts that where there is no 

matter, the result must be zero. The speed of a falling particle from very far away, as measured by 

an observer in the gravitational field is 
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Where  is the Schwarzschild radius. If speed is normalized in relation to the speed of light then 
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U
V  . For a far observer, the deltas are denoted by and, 
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Here is not a tensor index and it denotes derivative by ! 
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Which results in 
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Here, is not a tensor index and it denotes derivative by  ! 

For the square norms of gradients, we use the inverse of the metric tensor,  
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Note that here is not a tensor index and it denotes derivative by  ! 
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Please note, here is not a tensor index and it denotes derivative by  ! 
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So 
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And finally, from (A.6) and (A.10) we have, 
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which shows that indeed the gradient of time measured, by a falling particle until it hits an event in the 

gravitational field, has zero curvature as expected. 

 

Appendix B – Planck Area Gravity – Based on a lecture by professor Seth Lloyd of the M.I.T 

combined with the Geometric Chronon model and its correlation with sub-atomic particles 

Suppose we have an atomic length L , The speed of light is c  so the maximal acceleration will be 
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If the right-hand side if multiplied by 
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yields the area that is subtracted or added due to gravity or anti-gravity. 
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Then by (B.1) 
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Because 
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Which is either an addition to the area or subtraction from the area due to the divergence term 
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Divide these areas by the area of the two-dimensional sphere 2 4 L   and we have ratios, 
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If we consider that we have an “arrow” which is the Reeb vector     alone with an infinitesimally 

small support and it is within a ball of radius   and we attribute the divergence of the field to this 

“arrow” only, then we should not consider the increase or decrease of area around the ball due to the 

Ricci curvature as influencing    due to Gauss law as we should if we consider the source of the field 

as a charge – like phenomenon. Then we can say that the field appears along a distance   and has 

induced a geodesic motion prohibition as an acceleration, 
  

 
 and 

 

 
   

  
 

   and 
 

 
   

  
 

   . 

We can play with the added portion area as a portion of energy around a particle. Let us consider, for 

instance, the 
 

   
 portion of the Muon energy, 105.6583745(24) MeV 

This value is about 0.550304033979167 MeV and the electron mass is about 0.5109989461 MeV. 

It is a nice thought experiment but we need much more than that. We can’t solve (34) or (35) yet but 

we can at least have a better idea of the field behavior in the Planck scale. 

 

We didn’t take into account that the geodesic motion prohibition field i.e. acceleration field changes 

its density on the sphere in accordance with increased or decreased area ratio,  

  
    

       
          

    . We consider the Gauss law around an electric charge. So here we 

present a second approach to area addition and subtraction around an electrically charged particle. 

(B.4) can be rewritten as a more enlightening term, 
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Such that   is either bigger than 1 or smaller than 1 and denotes the increase or decrease in area. 

Note that the term   measures how much the square acceleration field changes as the area grows or 

dwindles. 

The resulting equation is a cubic equation:    )
2

1
(

96

1
1 12  that can be easily solved 

numerically. 
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The area is increased or decreased by   and the portion of the area that changes is 
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around a positive charge. The problem is that there is no stable charged particle without spin and 

therefore our discussion could mean a temporary decomposition of electrically neutral Bosons into 

two energy states, one temporarily behaving like a negative charge and one like a positive one. The 

reasoning behind such a claim is that if matter is expressible by a weak acceleration field and the weak 

acceleration field energy is the energy of an electric field, then elementary neutral particles, even with 

zero magnetic momentum and with zero electric dipole, should have an internal electric field. 

The question is how to infer such a structure. The idea is that area changes are relative to energy ratios 

even if they are changes due to charge electro-gravity and not due to inertial mass. It is a manifestation 

of a holographic principle [23], [24]. Our modest test will be to divide the Higgs energy by 2 and then 

either by ...192.005150 ,or by ...62.6395393 . That is by Beta = 384.010301743200560 or by Alpha 

=125.279078679349110. 

 



 

 

 

 

 

 

For example: 125 GeV / 125.279078679349110 ~= 0.9977 GeV which should be a Baryonic energy 

state. Another energy is 125 GeV / 384.01030174320056 ~= 325.5 MeV 

This energy is the model dependent vacuum constituent Quark energy according to Zhao Zhang et. al. 

[25]. 

 

According to this paper, no neutral particle can avoid having an internal structure, otherwise, the 

particle would not be able to manifest an acceleration field as energy. This leads to the possible model 

of BS Meson, Z Boson and Higgs Boson as either oscillating + and – charge such that both the 

magnetic and electric dipoles are zero, or as spinning + and - charge such that both magnetic and 

electric dipoles vanish. The problem is the Z and the Higgs bosons which are considered elementary 

particles. The Z boson mass is 2/ 0021.01876.91 CGeV . If we split this mass into two charges, 

then 1/ 192.00515087160028 of area around the negative charge will be added, which is considered as 

proportional to mass [23]. But that portion is of half of the mass that splits to two charges, so we 

seek1/384.00258393161619 of the mass of the Z boson as having a physical meaning. 

 

MeV 237.4613384.0103)/(1876.91 GeV    (B.8) 

 

which is the energy difference between the Phi (previously Eta) and Omega Mesons ! 

 

By the Checkered Board Model and EMS [26] the mass of the up Quark deviates from the Standard 

Model’s 2MeV/C 2.3~ and is 2MeV/C 237.31  according to that very same model, the down Quark 

is 242.39Mev/C unlike the S.M. 2MeV/C 4.8~ . The Z boson can contribute to mass fluctuations 

through half of its mass by area fluctuations around a positive charge too but that yields 

MeV 727.87572 and there is no known 727.876 MeV resonance in the particles world. 

 

Here is a summary of the electro-gravity energy in the Planck scale around a positive and a negative 

charge that split an elementary boson and by this, these energies are beyond the Standard Model. 

 

Table 1. Presumed Beta and Alpha energy ratios due to a splitting of an Elementary charge-less 

boson into positive and negative charge – a supposed process which is beyond the Standard Model. 

A second assumption is that the magnetic moments and the electric dipoles of such bosons are zero, 

therefore split charge should be fluctuating and so is the area around positive and negative charge. 

Area contraction 

ration around e+ 

r1=0.984035643 

Alpha=2/(1-r1) 

1/125.27908 of 

the energy 

Area expansion 

ratio around e- 

r2=1.005208194 

Beta=2/(r2-1) 

1/384.0103087 

of the energy 

Energy sum 
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Energy 
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energy delta 
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GeV About 
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91.1876 91.1876 91.1876GeV 91.1876GeZ Boson 
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GeV 
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energy delta 
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0.237461334 

GeV 

About 237.46 

MeV 

0.965337049 

About 0.965GeV 
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0.49041438 
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row 
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-l energies 

 

 

 

The mass ratio between Muon and Electron 

 

(B.7) took into account the change of a unit field through a unit area as that area expands due to non –

zero Einstein Tensor. The field however should be concentrated along an “equator” of a ball and zero 

at its poles due to spin around a negative charge. In this calculation, we only take into account the 

uneven distribution of the field but not its motion due to spin.  The integration of the acceleration field 

should be of a field, 

 

 
  

 
        (B.9) 

 

Where   is the angle from the “equator”. A ball integration on two hemispheres is then, 

 

 

  
  

 
                      

  
 

 

   
 

      
         

 
   

  
 

 

   

       
  

 

 
       

 
 
   

  
 

 

       
 

 

 (B.10) 

If the field is uniform then the integration would be 
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And the ratio between (B.11) and (B.10) is 

 

 
 

 
 (B.12) 

 

 

which means that the acceleration field has to grow by  
 

 
 in order to sum up as in (B.11). We can 

imagine    as a vector that points towards or outwards - of an integral curve in space-time but that the 

Minkowsky norm of the field is always the same, only the probability that this vector points towards a 

certain direction in space-time changes. This idea leads to the compensating scaling value in (B.12). 

 



 

 

 

 

 

 

So equation (B.7) becomes a different equation, 
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But     
                        

     

 

The ratio 
    

                        
 

 

   
           , which is very close to the ratio between the 

mass of the Muon to the mass of the Electron, 206.768277. The difference is expected because we did 

not take into account a spinning field. We followed the M.I.T professor Seth Lloyd offer that addition 

or subtraction of quantum area, means addition or subtraction of energy and reached            . 

For the solution of 

   
 

  
  

 

 
 
 

 
 
 
    

 

 
       (B.14) 

We get about  44.63955018. These ratios ~1/45 and ~1/207 could mean a decay path for charged 

leptons where the numerical stability of 1/45 is worse than that of 1/207. 

 

A more exact root for (B.13) yields, 

 

 
    

                        
 

 

   
                    (B.15) 

 

The difference in accuracy in this alue by 64 and 128 bits is just the last 2  -  3 digits. 

If we divide the Muon energy by this value we get very close to the energy of the electron and the 

delta in Mega electron volts is: 

105.658745 MeV / 206.75133988502202 – 0.5109989461 (MeV) = 0.00004187500790 MeV 

Which is 41.87500790 eV. That energy is small but beyond the energy of any Neutrino mass. It is an 

unknown energy. Should it be a particle, this particle is beyond the Standard Model and its existence 

should manifest itself through a g-2 Muon anomaly. 

The ratio between the electron’s energy and this energy is 

0.5109989461 / 0.00004187500790 which is approximately, 12202.95760492718728 almost 12203. 

We can get this value if we return to the  (B.7) roots and see that their multiplications a bit lower than 

12203, but (B.7) assumes a gravitational field caused by an acceleration field around a negative and 

around a positive charge with no spin. The roots of (B.7) yield 1+ and 1- area ratios. These area ratios 

multiply to 12027.11454948692699 and not to 12027 < 12203. The exact number is obtained if we 

look at the following polynomials: 
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Which is 1 + or 1- the portion of area added around a negative charge or subtracted around a positive 

charge such that the acceleration field is smaller by a factor of    
 

  
 . 

The idea to use a damping of    
 

  
  is because of the factor  

 

  
 in (B.7). This implies that charge 

fluctuations could be of the order 
 

  
 of the charge of the electron e. 

The two polynomials in (B.16) with the    sign have each 3 roots each and the big roots are 

a=1.00520707510980 for (+) and b=0.98426221868924 for (-). 

And 
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Which with numerical accuracy is even closer to 12202.95760492718728. 



 

 

 

 

 

 

Other choices except for 96 in    
 

  
  are further away from 12202.95760492718728 even after 4 

digits after the floating point. The third root is from (B.13)   
 

  
  

 

 
 
 

 
 
 
    

 

 
       

So the following system is 

  
 

  
  

 

 
   

 

  
         

 

  
        

  
 

  
  

 

 
   

 

  
         

 

  
        

  
 

  
  

 

 
 
 

 
 
 

    
 

 
       

 

 

         
     

              
             (B.18) 

 

~ 0.51099894586371 MeV instead of 0.5109989461 MeV. 

 

 

The mass ratio between W Boson and the Tau particle 

 

The calculation in (B.18) turned out to be very accurate. In fact, if we update the Muon energy from 

105..6583745 MeV to 105.65837455 MeV then (B.18) yields the energy 0.5109989461 MeV. 

We did not use, however, the other root of (B.14)   
 

  
  

 

 
 
 

 
 
 
    

 

 
       for which 

            
 

     
 

This ratio is very close to the mass ratio between the W boson and the Tau particle. 

 
         

                                            
 1800.75739300965255 MeV 

 

The energy of the Tau particle is 1776.82 MeV so the delta is 23.93739300965255 MeV. Dividing this 

energy by the Tau energy yields 0.01347204163035791470154545761529 

= 
 

                                 
 

 

To understand where such a value can come from, we will return to (B.1) but this time with    
    

when       in the real numbers format. 

(B.7) transforms into a simpler equation     
      

   
 instead of     

          

   
 because    

    

which means   
 

  
  

 

 
             

 

  
         . 

In the very same manner (B.13) and (B.14) turn into   
 

  
  

 

 
       which yields the following 

second order polynomial root equations,      
 

  
  

 

 
   . The roots are easy to calculate 

especially that we know that one has to be slightly above 1 and one root is below 1. 

   
       

 

 

 

  

 
 

     
 

  

 
 (B.19) 

 

   
       

 

 

 

  

 
 

     
 

  

 
 (B.20) 

 



 

 

 

 

 

 

 

                    

and 
 

     
                                    

very close to the ratio                                  . 

From the roots of the polynomials 

      
 

  
 
 

 
    (B.21) 

 

  

  
 

  
  

 

 
 
 

 
 
 

    
 

 
       

 

We get a pretty good match to the ratio between the mass of the W boson and the mass of the Tau 

particle. 

          
   

       
                          (B.22) 

 

The exact value of 1776.82 MeV is obtained if 80.385 GeV is replaced by 80.3829 GeV, which is 

80.385-0.0021 GeV. 

There are several questions that (B.21) raise. The first is why does (B.21) describe area reduction as 

expected around a positive charge ? The author expected calculations of area addition around a 

negative charge.  The other question is, why the Reeb vector that is used by the area ratio in the first 

equation in (B.21) is a null vector,    
    ? How is a null vector related to an energy potion of the 

W boson ? 

We could choose a different polynomial than in (B.21). We could choose one for a negative charge 

and one for a positive and use the following field scaling factor. 
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We used    
 

  
  and  

 

 
  before. The combination of the two by multiplication, reflects ideas from 

(B.18). 

So we have two polynomials 
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The average of area ratios is a bit surprising if we take out the sign, which means that like in (B.18) 

we used the term             for different values of     . 
The result is then  
 



 

 

 

 

 

 

 

   
 

 

   

 
 

 

   
                   

That is even closer to the value                                   we have been looking 

for. 

          
   

         
                          (B.25) 

Even closer to 1776.82 MeV 

So which seems a correct way to guess the rules that lead to mass of the Tau as a residual electro-

gravitational energy of the W+ boson, (B.25) or (B.22) ? The author prefers (B.25) because a null 

Reeb vector doesn’t seem plausible when discussing particles with rest masses. 

 

The Python code that was used for the mass ratio calculations out of area ratios 

 

import numpy as NP 

 

class ELECTROGRAVITY_CLASS: 

 

    def function_cubic_viete(self, a, b, c, d): # If all roots are real. 

 

        # Viete's algorithm when all roots are real. 

 

        b2 = NP.longdouble(b * b) 

        b3 = NP.longdouble(b2 * b) 

        a2 = NP.longdouble(a * a) 

        a3 = a2 * a 

 

        p = (3 * a * c - b2) / (3 * a2) 

 

        q = (2 * b3 - 9 * a * b * c + 27 * a2 * d) / (27 * a3) 

 

        offset = b / (3 * a) 

 

        t1 = 2 * NP.sqrt(-p / 3) * NP.cos(NP.arccos(NP.sqrt(-3 / p) * (3 * q) / (2 * p)) / 3) 

        t2 = 2 * NP.sqrt(-p / 3) * NP.cos(NP.arccos(NP.sqrt(-3 / p) * (3 * q) / (2 * p)) / 3 - NP.pi / 3) 

        t3 = 2 * NP.sqrt(-p / 3) * NP.cos(NP.arccos(NP.sqrt(-3 / p) * (3 * q) / (2 * p)) / 3 - 2 * NP.pi / 3) 

 

        x1 = t1 - offset 

        x2 = t2 - offset 

        x3 = t3 - offset 

 

        return (x1, x2, x3) 

 

MAIN_electrogravity_class = ELECTROGRAVITY_CLASS() 

 

f = 1 - 1/96 

 

x1, x2, x3 = \ 

MAIN_electrogravity_class.function_cubic_viete(1, -1, -f / 96, (f * f) / 192) 

 

x4, x5, x6 = \ 

MAIN_electrogravity_class.function_cubic_viete(1, -1, f / 96, (f * f) / 192) 



 

 

 

 

 

 

 

f = 4 / NP.pi 

 

x7, x8, x9 = \ 

MAIN_electrogravity_class.function_cubic_viete(1, -1, -f / 96, (f * f) / 192) 

 

print("Anti-gravity: X1,X2,X3 = (%.14lf, %.14lf, %.14lf)" %(x1, x2, x3)) 

print("Gravity: X4,X5,X6 = (%.14lf, %.14lf, %.14lf)" %(x4, x5, x6)) 

print("Anti-gravity: X7,X8,X9 = (%.14lf, %.14lf, %.14lf)" %(x7, x8, x9)) 

 

print("Muon mass in MeV/C^2 105.6583745") 

print("Predicted electron mass im MeV/C^2 %.14lf" % ((105.6583745 * (x7 - 1)) / (1 + (x1-1)*(1-

x4)))) 

 

x4, x5, x6 = \ 

MAIN_electrogravity_class.function_cubic_viete(1, -1, f / 96, f*f / 192) 

 

x8 = (1 + NP.sqrt(1 - 1/(NP.pi * 6)))/2 

 

print("Gravity: X4,X5,X6 = (%.14lf, %.14lf, %.14lf)" %(x4, x5, x6)) 

print("Gravity: X8 = %.14lf" % x8) 

 

print("Predicted Tau particle out of the W Boson 80385 MeV/C^2 = %.14lf " % (80385*(1-x4)/(1+1-

x8))) 

 

f = (1 - 1/96) * (4 / NP.pi) 

 

x7, x8, x9 = \ 

MAIN_electrogravity_class.function_cubic_viete(1, -1, -f / 96, (f * f) / 192) 

 

x10, x11, x12 = \ 

MAIN_electrogravity_class.function_cubic_viete(1, -1, f / 96, (f * f) / 192) 

 

print("Anti-gravity: X7,X8,X9 = (%.14lf, %.14lf, %.14lf)" %(x7, x8, x9)) 

print("Gravity: X10,X11,X12 = (%.14lf, %.14lf, %.14lf)" %(x10, x11, x12)) 

print("Average 1/(1 - (1/(X7-1) + 1/(1-x10))/2) = %.14lf" %(1/((x7 - x10)/2))) 

 

print("Better prediction: Tau out of the W Boson 80385 MeV/C^2 = %.14lf " \ 

          % (80385*(1-x4)/(1+0.5*(x7-x10)))) 

 

input("Press Enter to exit> ") 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

C – Towards a unified force theory – 1,2,3 types of accelerated clocks 

 

The following  action  can  be extended  to U(1) x SU(2) and to SU(3) symmetries by considering 

more than one Reeb vector. 
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Since the matrix of a Symplectic form  can  be described as two rotation and scaling hyper-planes, 

there is a possibility to locally add another scalar )2(P  and the Reeb vector of its gradient )2(P  
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 and obviously 
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 from  the definition of a Reeb vector. 

The action is then dictated by the root of  the Gram determinant and is added to the previous action, 
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The physical meaning of )2(U
 is another acceleration field in another plane. We will consider (C.2) 

as the “Electro-Weak Geometric Chronon Action”. 

In the three dimensional space, Minkowsky perpendicular to P
 we can view three holonomic vectors 

fields that span the foliation tangent space as required by the Froben ius theorem . These can be locally 

described by three gradients, 

 )5(,)4(,)3( PPP
 and accordingly we can discuss their Reeb vectors,  TWS ,,

. 

This time we can’t require the orthogonality condition which is described in (C.2) because there are no 

three Minkowsky – perpendicular hyper planes in space-time. 

Now we need the third root of the determinant of the Gram matrix of these new three Reeb vectors and 

the action becomes, 
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And the Einstein – Grossmann  minimum action equation can be written as 
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The latter third root of a determinant of Gram’s matrix can be viewed as the “Strong Geometric 

Chronon Action”. 

The probabilities of events must sum to 1 so for example 
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The sign of time 

 

This idea is quite similar to Dr. Sam Vaknin’s  idea of Quarks of time, see [14]. 

 

Consider the Levi – Civita tensor (and not the Levi – Civita symbol which is a tensor density and not a 

tensor) we can establish a vector which is parallel to the flow 
P  but can have either a positive or 

negative sign when contracted with P
, we have 

 
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V  defines the sign of the flow and therefore, the sign of 2

** 



 VPVP 

 and obviously,

0*)5(*)4(*)3(  






 PPPPPP

. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

References 

[1] G. Reeb. Sur certaines propri´t´s topologiques des vari´et´es feuillet´ees. Actualit´e Sci. Indust. 

1183, Hermann, Paris (1952). 

[2] B. Reinhart and J. Wood. “A Metric Formula for the Godbillon–Vey Invariant for Foliations”. 

Proceedings of the American Mathematical Society 38: 427-430, 1973. 

[3] S. Hurder and R. Langevin. Dynamics and the Godbillon-Vey Class of C
1
 Foliations. preprint, 

September 2000. 

[4] D. Lovelock and H. Rund, Tensors, Differential Forms and Variational Principles, Dover 

Publications Inc. Mineola, N.Y., 1989, ISBN 0-486-65840-6, p. 121-126, 4.4 The Lie 

Derivative. 

[5] Y. Friedman and T. Scarr, "Making the relativistic dynamics equation covariant: explicit     

solutions for motion under a constant force", Volume 86 Number 6, 2012 PhysicaScripta 

065008 doi:10.1088/0031-8949/86/06/065008. 

[6] Elie Cartan, The Theory of Spinors, Dover Publications Inc. Mineola, N.Y., ISBN 0-486-64070-

1, p. 145,149 (14), 1981. 

[7] Walter Pfeifer,  “The Lie Algebra su(N), an Introduction” , Chapter 5, The Lie Algebra SU(4), 

pp 87-106, 2003 (revised 2008), ISBN 3-7643-2418-X. 

[8] Ana Cannas da Silva , “Lectures on Symplectic Geometry”, Page 7, Darboux Theorem, 

Revision 2006, Original ISBN 978-3-540-45330-7, Springer-Verlag. 

[9] Hector Luis Serrano, (President of Gravitec Inc.) capacitor at 1.72 x 10^-6 Torr, Experiment by 

NASA and Gravitec, Video from July 3, 2003. 

[10] Hector Luis Serrano, Patent WO 00/58623, Page 12, Line 28, “such a vehicle can operate in any 

dielectric environment such as air or vaccum of space”, granted on November 2001. 

[11] L Acebo. The Flyby anomaly: A multivariate analysis approach, 20/Jan/2017, arXiv: 

1701.05735 

[12] T. Datta, M. Yin, A. Dimofte, M. C. Bleiweissand Z. Cai, "Experimental Indications of Electro-

Gravity", 8 Sep 2005 arXiv:physics/0509068[physics.gen-ph] 

[13] Y. Doi, T. Makino, H. Kato et al. D. Takeuchi, "Deterministic Electrical Charge-State 

Initialization of Single Nitrogen-Vacancy Center in Diamond", Published 31 March 2014, 

Physical Review X 4, 011057, DOI: 10.1103/PhysRevX.4.011057, Publisher: Aerican 

Physical Society, March/2014. 

[14] S. Vaknin, “Time Asymmetry Re-visited”, LC Classification: Microfilm 85/871 (Q). 

[microform], Library of Congress.LC Control Number: 85133690, Thesis (Ph. D.)--Pacific 

Western University, 1982, c1984, Ann Arbor, MI : University Microfilms International, 

1984. 

[15] Rafael D. Storkin, “Indications of causal set cosmology”, 10/Mar/2000, arXiv: gr-qc/0003043. 

[16] D. Lovelock and H. Rund, Tensors, Differential Forms and Variational Principles, Dover 

Publications Inc. Mineola, N.Y., ISBN 0-486-65840-6, p. 261, 3.19 and 3.26, for Ricci 

tensor and Ricci scalar. 

[17] D. Lovelock and H. Rund, “The Numerical Relative Tensors”, Tensors, Differential Forms and 

Variational Principles, 4.2, Dover Publications Inc. Mineola, N.Y. , ISBN 0-486-65840-6, p. 

113, 2.18, p. 114, 2.30. 

[18] D. Lovelock and H. Rund, Tensors, Differential Forms and Variational Principles, Dover 

Publications Inc. Mineola, N.Y., 1989 ,ISBN 0-486-65840-6, p. 262, 3.27 is the Einstein 

tensor. 

[19] M. Alcubierre, "The warp drive: hyper-fast travel within general relativity",    

Class.Quant.Grav.11:L73-L77, 1994, DOI: 10.1088/0264-9381/11/5/001. 

[20] Thomas B. Bahder and Chris Fazi, "Force on an Asymmetric Capacitor", Army Research  

Laboratory ARL, March 2003, site: http://arxiv.org/ftp/physics/papers/0211/0211001.pdf 

[21] Harold White et. al. “Measurement of impulsive thrust from a closed radio frequency cavity in 

vacuum”, 17/Nov/2016, Aerospace Research Central, http://dx.doi.org/10.2514/1.B36120. 

http://arxiv.org/ftp/physics/papers/0211/0211001.pdf
http://dx.doi.org/10.2514/1.B36120


 

 

 

 

 

 

[22] J. Albo, Book of Principles (Sefer Ha-ikarim), “Immeasurable time - Maamar18”, “measurable 

time by movement”.  (Circa 1380-1444, unknown), The Jewish  publication Society of 

America (1946), ASIN: B001EBBSIC, Chapter 2, Chapter 13. 

[23] Seth Lloyd  - “Deriving general relativity from quantum measurement”, Institute For Quantum 

Computing - IQC, lecture loaded to YouTube on 16/August/2013, 

http://www.youtube.com/watch?v=t9zcBKoFrME 

[24] Ted Jacobson, Thermodynamics of Spacetime: The Einstein Equation of State 

Physical Review Letters. 75, 1260 - Published 14 August 1995, 

DOI:https://doi.org/10.1103/PhysRevLett.75.1260 

[25] Zhao Zhang  et. Al., "Number of the QCD critical points with neutral color superconductivity” 

2008,arXiv:0808.3371v3  (Remark: See also Phys.Rev.D79:014004,2009, 

10.1103/PhysRevD.79.014004). 

[26] Theodore M. Lach, Masses of Sub-Nuclear Particles arXiv:nucl-th/0008026v1, August 2000. 

 

http://www.youtube.com/watch?v=t9zcBKoFrME

