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 Randomness in quantum physics revisited. 

Jet Propulsion Laboratory California Institute of Technology, Pasadena, CA 91109, USA 

Abstract. 
There has been proven that mathematical origins of randomness in quantum and 
Newtonian physics are coming from the same source that is dynamical instability. 
However in Newtonian physics this instability is measured by positive finite Liapunov 
exponents averaged over infinite time period, while in quantum physics the instability is 
accompanied by a loss of the Lipchitz condition and represented by an infinite divergence 
of trajectories in a singular point. Although from a mathematical viewpoint such a 
difference is significant, from physical viewpoint it does not justify division of 
randomness into “deterministic “(chaos) and “true” (quantum physics). The common 
origin of randomness in Newtonian and quantum physics presents a support of the 
correspondence principle that is being searched by quantum chaos theory.  
	  
1.	  Introduction.	  
This work is motivated by quantum chaos that is a branch of physics which studies 
how chaotic classical dynamical systems can be described in terms of quantum theory. 
The primary question that quantum chaos seeks to answer is: "What is the relationship 
between quantum physics and classical chaos?" The correspondence principle states that 
classical mechanics is the classical limit of quantum mechanics. If this is true, then there 
must be quantum mechanisms underlying classical chaos, although this may not be a 
fruitful way of examining classical chaos. If quantum mechanics does not demonstrate an 
exponential sensitivity to initial conditions, how can exponential sensitivity to initial 
conditions arise in classical chaos, which must be the correspondence principle limit of 
quantum mechanics?  
	  The	   objective	   of	   this	   work	   is	   to	   find	   more	   evidence	   in	   support	   of	   the	  
correspondence	   principle,	   and	   in	   particular,	   to	   unify	   theory	   of	   transition	   from	  
determinism	  to	  randomness	  in	  physics. 
  The concept of randomness entered Newtonian and quantum physics in different ways, 
but approximately at the same time. In 1926, Synge, J.L. introduced a new type of 
instability - orbital instability- in classical mechanics, [1], that can be considered as a 
precursor of chaos discovered a couple of decades later, [2]. In 1927, Heisenberg, W., [3] 
postulated randomness in quantum physics via the uncertainty principle. Since then it 
was a well-established opinion in the scientific community that there is a “deterministic “ 
randomness, attributed to chaos, and a “true” randomness postulated by quantum physics. 
In this paper we contest this sub-division by providing a proof that the randomness in 
quantum physics does not have to be postulated: it follows from dynamics instability as 
randomness in Newtonian physics does. However in Newtonian physics this instability is 
measured by positive finite Liapunov exponents averaged over infinite time period, while 
in quantum physics the instability is accompanied by a loss of the Lipchitz condition and 
represented by an infinite divergence of trajectories at a singular point. Although from a 
mathematical viewpoint such a difference is significant, from physical viewpoint it does 
not justify division of randomness into “deterministic “(chaos) and “true” (quantum 
physics). 
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We start this paper with revisiting mathematical formalism of chaos in a non-traditional 
way that is based upon the concept of orbital instability. After that, turning to the 
Madelung version of the Schrödinger equation, we describe a transition from 
determinism to randomness in quantum mechanics. In the last part we discuss the 
discontinuity of the transition from quantum to Newtonian mechanics in context of 
randomness. 
2. Randomness in Newtonian physics. 
a. Orbital instability as a precursor of chaos. 
Chaos	  is	  a	  special	  type	  of	   instability	  when	  the	  system	  does	  not	  have	  an	  alternative	  
stable	   state	   and	   displays	   an	   irregular	   aperiodic	   motion.	   Obviously	   this	   kind	   of	  
instability	   can	  be	  associated	  only	  with	   ignorable	  variables,	   i.e.	  with	   such	  variables	  
that	  do	  not	  contribute	  into	  energy	  of	  the	  system.	  In	  order	  to	  demonstrate	  this	  kind	  
of	   instability,	  consider	  an	   inertial	  motion	  of	  a	  particle	  M	  of	  unit	  mass	  on	  a	  smooth	  
pseudosphere	  S	  having	  a	  constant	  negative	  curvature	  G0,	  Fig.	  1.	  
G0 = const > 0 	   	   	   	   	   	   	   	   	   (1)	  
	  
	   	   	   	   	   	    

 
	  Figure	  1.	  Inertial	  motion	  on	  a	  smooth	  pseudosphere.	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
	  
Remembering	  that	  trajectories	  of	  inertial	  motions	  must	  be	  geodesics	  on	  S,	  compare	  
two	  different	  trajectories	  assuming	  that	   initially	  they	  are	  parallel,	  and	  the	  distance	  
ε0 	  between	  them,	  are	  small	  (but	  not	  infinitesimal!),	  

0 < ε0 <<1 	   	   	   	   	   	   	   	   	   (2)	   	  
	   	   	   	   	   	   	  
As	  shown	  in	  differential	  geometry,	   the	  distance	  between	  these	  geodesics	   increases	  
exponentially	  

ε = ε0e
−G0 t , G0 < 0 ,	   	   	   	   	   	   	   	   (3)	  

Hence	  no	  matter	  how	  small	   the	   initial	  distance	  ε0 ,	   the	  current	  distance	  ε 	  tends	   to	  
infinity.	  
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Let	   us	   assume	   now	   that	   accuracy	   to	   which	   the	   initial	   conditions	   are	   known	   is	  
characterized	   by	   the	   scale	   L.	   This	   means	   that	   any	   two	   trajectories	   cannot	   be	  
distinguished	  if	  the	  distance	  between	  them	  is	  less	  than	  L	  i.e.	  if	  
ε < L 	   	   	   	   	   	   	   	   	   (4)	  
The	  period	  during	  which	  the	  inequality	  (4)	  holds	  has	  the	  order	  

Δt ≈ 1
|−G0 |

ln L
ε0
	   	   	   	   	   	   	   (5)	  

However	  for	  	  
t >> Δt 	   	   	   	   	   	   	   	   (6)	  
these	  two	  trajectories	  diverge	  such	  that	   they	  can	  be	  easily	  distinguished	  and	  must	  
be	   considered	   as	   two	   different	   trajectories.	  Moreover	   the	   distance	   between	   them	  
tends	  to	   infinity	  no	  matter	  how	  small	   is	  ε0 .	  That	   is	  why	  the	  motion	  once	  recorded	  
cannot	   be	   reproduced	   again	   (unless	   the	   initial	   condition	   are	   known	   exactly),	   and	  
consequently	  it	  attains	  stochastic	  features.	  The	  Liapunov	  exponent	  for	  this	  motion	  is	  
positive	  and	  constant	  

σ = limt→∞
ε0→0
[1
t
ln
ε0e

−G0 t

ε0
]= −G0 = const > 0 	   	   	   (7)	  

Remark.	   In	   theory	   of	   chaos,	   the	   Liapunov	   exponent	   measures	   divergence	   of	   initially	   close	  
trajectories	   averaged	  over	   infinite	   period	  of	   time.	  But	   in	   this	   particular	   case,	   even	   “instantaneous”	  
Liapunov	  exponent	  taken	  at	  a	  fixed	  time	  has	  the	  same	  value	  (7).	  
	  
Let	  us	   introduce	  a	  system	  of	  coordinates	  on	  the	  surface	  S:	   the	  coordinate	  q1	  along	  
the	   geodesic	   meridians	   and	   the	   coordinate	   q2	   along	   the	   parallels.	   In	   differential	  
geometry	   such	   a	   system	   is	   called	   semigeodesic.	   The	   square	   distance	   between	  
adjacent	  points	  on	  the	  pseudosphere	  is	  	  
ds = g11dq

2
1
+ 2q12dq1dq2 + g22dq

2
2 	   	   	   	   (8)	  

where	  

g11 =1, q12 = 0, g22 = −
1
G0
e(−2 −G0q1) 	   	   	   	   (9)	  

	  	  	  The	   Lagrangian	   for	   the	   inertial	  motion	   of	   the	   particle	  M	   on	   the	  pseudosphere	   is	  
expressed	  via	  the	  coordinates	  and	  their	  temporal	  derivatives	  as	  

L = gij qi qj = q
2
1 −
1
G0
e(−2 −G0q1) q22 	   	   	   	   	   (10)	  

and	  consequently,	  	  
∂L
∂q2

= 0 	   	   	   	   	   	   	   	   (11)	  

∂L
∂q1

≠ 0 if q2 ≠ 0 	   	   	   	   	   (12)	  
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Hence	  q1	   and	  q2	  play	   the	   roles	  of	  position	  and	   ignorable	  coordinates,	   respectively,	  
and	   therefore,	   the	   inertial	   motion	   of	   a	   particle	   on	   a	   smooth	   pseudosphere	   is	  
unstable	  with	  respect	  to	  the	  ignorable	  coordinate.	  This	  instability	  known	  as	  orbital	  
instability	  is	  not	  bounded	  by	  energy	  and	  it	  can	  persist	  indefinitely.	  As	  shown	  in	  [2],	  
eventually	   orbital	   instability	   leads	   to	   stochasticity.	   Later	   on	   such	   motions	   were	  
identified	  as	  chaotic.	  
b. Randomness in chaotic systems. 
In this sub-section we present a sketch of general theory of chaos in context of origin of 
randomness starting with the flow generated by an autonomous ODE  
dxi
dt

=Vi (x), i =1,2,...m                                                                                    (13)                    

and compare two neighboring trajectories in m-dimensional phase space with initial  
conditions x0 and x0 +Δx0  denoting Δx0 = w . These evolve with time yielding the 

tangent vector Δx(x0 ,t)  with its Euclidian norm 

d(x0 ,t) = Δx(x0 ,t)                   (14)                                                                                                          

Now the Liapunov exponent can be introduced as the mean exponential rate of 
divergence of two initially close trajectories 

λ(x0 ,w) = limt→∞
d (0)→0

(1
t
)ln
d(x0 ,t)
d(x0 ,0)

              (15)                                                                                

  
Figure 2. Two nearby trajectories that separate as time evolves. 
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Ficure 3. Tangent space for the Liapunov exponents. 
Therefore in general the Lyapunov exponent cannot be analytically expressed via the 
parameters of the underlying dynamical system (as it was done in case of inertial motion 
on a pseudosphere), and that makes prediction of chaos a hard task. However some 
properties of the Liapunov exponents can be expressed in an analytical form. Firstly, it 
can be shown that in an m-dimensional space, there exist m Liapunov exponents  

λ1 ≥
λ2...≥ λm                   (16)                                                                                                           

while at least one of them must vanish. Indeed, as follows from Eqs. (13) and (14), w 
grows only linearly in the direction of the flow, and the corresponding Liapunov 
exponent is zero. Secondly it has been proven that the sum of the Liapunov exponents is 
equal to the average phase space volume contraction 

λi
i=1

m

∑ = Λ0           (17)                                                                                                                                                  

where the instantaneous phase space volume contraction 
Λ =∇⋅V           (18)                                                                                                                                                   
But 
Λ0 = Λ          (19)   
when 
∇⋅V = const           (20)                                                                                                                                           
Therefore in case (20), the sum of the Liapunov exponents is expressed analytically      

λi
i=1

m

∑ =∇⋅V          (21)                                                                                                                            

Thus	   the	   result	   we	   extracted	   from	   the	   theory	   of	   chaos,	   which	   can	   be	   used	   for	  
comparison	   to	  quantum	  randomness	   is	   the	   following:	   the	  origin	  of	   randomness	   in	  
Newtonian	  mechanics	   is	   instability	  of	   ignorable	  variables	  that	   leads	  to	  exponential	  
divergence	   of	   initially	   adjacent	   trajectories;	   this	   divergence	   is	   measured	   by	  
Liapunov	  exponents,	  which	  form	  a	  discrete	  spectrum	  of	  numbers	  that	  must	  include	  
positive	  ones.	  
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3.	  Randomness	  in	  quantum	  mechanics.	  
a.	  Background.	  
Quantum mechanics has introduced randomness into the basic description of physics via 
the uncertainty principle. In the Schrödinger equation, randomness is included in the 
wave function. But the Schrödinger equation does not simulate randomness: it rather 
describes its evolution from the prescribed initial (random) value, and this evolution is 
fully deterministic. The main purpose of this section is to trace down the mathematical 
origin of randomness in quantum mechanics, i.e. to find or build a “bridge” between the 
deterministic and random states. In order to do that, we will turn to the Madelung 
equation, [1]. For a particle mass m in a potential F, the Madelung equation takes the 
following form 
∂ρ
∂t
+∇•( ρ

m
∇S) = 0                     (22) 

∂S
∂t
+
1
2m
(∇S)2 + F − 

2∇2 ρ

2m ρ
= 0           (23)         

Here ρ and S are the components of the wave functionψ = ρeiS / , and   is the Planck 
constant divided by 2π . The last term in Eq. (23) is known as quantum potential. From 
the viewpoint of Newtonian mechanics, Eq. (22) expresses continuity of the flow of 
probability density, and Eq. (23) is the Hamilton-Jacobi equation for the action S of the 
particle. Actually the quantum potential in Eq. (23), as a feedback from Eq. (22) to Eq. 
(23), represents the difference between the Newtonian and quantum mechanics, and 
therefore, it is solely responsible for fundamental quantum properties.  

The Madelung equations (22), and (23) can be converted to the Schrödinger equations 
using the ansatz 

 ρ =Ψ exp(−iS / h)         (24)  

where ρ and S being real function. 

Reversely, Eqs. (22), and (23) can be derived from the Schrödinger equation 

i ∂Ψ
∂t

+
2

2m
∇2Ψ− FΨ = 0         (25) 

using the ansatz , which is reversed to (24) 

Ψ = ρ exp(iS / )          (26) 

So there is one-to-one correspondence between the solutions of the Madelung and the 
Schrödinger equations. From the stochastic mechanics perspective, the transformation of 
nonlinear Madelung equation into the linear Schrödinger equation is just a suitable 
mathematical technique that provides an easy way of finding their solutions.    
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b. Search for transition from determinism to randomness. 
   In this sub-section we will apply our recent results, [5], to the problem of 
correspondence between quantum and Newtonian randomness. Turning to Eq. (23), we  
start with some simplification assuming that F = 0.  Rewriting Eq. (23) for the one-
dimensional motion of a particle, and differentiating it with respect to x, one obtains 

m∂
2x(X ,t)
∂t2

−
2

2m
∂
∂X
[ 1
ρ(X )

∂2 ρ(X )
∂X 2

]= 0        (27) 

 where )(Xρ  is the probability distribution of x over its possible values X . 
Let us choose the following initial conditions for the deterministic state of the system: 
x = 0, ρ = δ(| x |→ 0), ρ = 0 at t = 0                         (28)                
We intentionally did not specify the initial velocity x  expecting that the solution will 
comply with the uncertainty principle. 
Now let us rewrite the one-dimensional version of Eqs. (22) and (23) as 
∂2ρ

∂t2
+
2

2m2
∂4ρ

∂X 4
+ ξ = 0 at t→ 0             (29)   

where ξ  includes only lower order derivatives of ρ. For the first approximation, we 
ignore ξ (later that will be justified,) and solve the equation  
 

 
∂2ρ

∂t2
+ a2 ∂

4ρ

∂X 4
= 0 at t→ 0 a2 = 

2T 2

2m2L4
            (30)    

subject to the initial conditions (28). The closed form solution of this problem is known 
from the theory of nonlinear waves, [6] 

ρ =
1

4πt 
2m

cos( x2

4t 
2m

−
π
4
) at t→ 0    (31)   

Based upon this solution, one can verify that 0→ξ at t→ 0 , and that justifies the 
approximation (30) (for the proofs see the sub-section b*). It is important to remember 
that the solution (31) is valid only for small times, and only during this period it is 
supposed to be positive and normalized. 
Rewriting Eq. (27) in dimensionless form 

    x − a2 ∂
∂X
[ 1
ρ(X )

∂2 ρ(X )
∂X 2

]= 0       (32)    

and substituting Eq. (31) into Eq. (32) at X = x, after Taylor series expansion, simple 
differentiations and appropriate approximations, one arrives at the following differential 
equation instead of (32) 
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x = c x
t2
, c = − 3

8π2a2
      (33) 

This is the Euler equation, and it has the following solution, [7] 

x =C1t
1
2
+s
+C2t

1
2
−s

at 4c+1> 0   (34)   

x =C1 t +C2 t ln t at 4c+1= 0   (35)   

x =C1 t cos(s ln t)+C2 t sin(s ln t) at 4c+1< 0   (36)  

where 2s = | 4c+1|        (37) 
Thus, the qualitative structure of the solution is uniquely defined by the dimensionless 
constant a2 via the constants c and s, (see Eqs. (33) and (37). But the cases (35) and (36) 
should be disqualified at once since they are in a conflict with the approximations used 
for derivation of Eq. (33), (see sub-section b*).  
Hence, we have to stay with the case (34). This gives us the limits 
0 <| c |< 0.25,         (38) 
In addition to that, we have to drop the second summand in Eq. (34) since it is in a 
conflict with the approximation used for derivation of Eq. (30) (see sub-section b*). 
Therefore, instead of Eq. (34)) we now have 

 x =C1t
1
2
+s

at 4c+1> 0      (39) 
      For illustration, let us evaluate the constant c based upon the following data: 
 =10−34m2kg / sec,m =10−30kg, L = 2.8×10−15m, L /T = C = 3×10m / sec  

where m- mass of electron, and C -speed of light. Then,  
c = −1.5×10−4 , i.e. | c |< 0.25        
  
Hence, the value of c is within the limit (38). Thus, for the particular case under 
consideration, the solution (39) is 
x =C1t

0.9998                                   (40) 
 In the next sub-section, prior to analysis of the solution (39), we will present the proofs 
justifying the solution (31). 
b*. Proofs. 

1. Let us first justify the statement that ξ→ 0 at t→ 0      (see Eq. (29)).  

 For that purpose, consider the solution (31)       

 ρ =
1

4πat
cos( X

2

4at
−
π
4
) at t→ 0                       (1*)  

As follows from the solution (39),  
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x
t
≈ o(t s−1/2 )→∞, x2

t
≈ o(t2s )→ 0 at t→ 0  since 0 < s <1/ 2  (2*)  

Then, finding the derivatives from Eq. (1’) yields 

| ∂
nρ

∂X n
| / | ∂

n−1ρ

∂X n−1
|≈ o(t−1)→∞ at t→ 0      (3*)  

and that justifies the inequalities 

 | ∂
4ρ

∂X 4
|>>| ∂

3ρ

∂X 3
|,| ∂

2ρ

∂X 2
|,| ∂ρ
∂X
|,ρ         (4*)   

Similarly, 

| ∂
nρ

∂t n
| / | ∂

n−1ρ

∂t n−1
|≈ o(t−1)→∞ at t→ 0      (5*)  

and that justifies the inequalities 

 | ∂
2ρ

∂t2
|>>| ∂ρ

∂t
|,| ∂ρ
∂X
|2                         

Also as follows from the solution (18) 

| ∂S
∂x
|≈ o(t S−0.5), | ∂

2S
∂x2

|≈ o(t−1),

| ∂S
∂x
| / | ∂

2S
∂x2

|≈ o(t S+0.5)→ 0 at t→ 0
                            (6*)   

It should be noticed that for Eq. (34), the evaluations (6*) do not go through, and that was 
the reason for dropping the second summand.       
Finally, the inequalities (4*), (5*) and (6*) justify the transition from Eq. (29) to Eq. (31). 

2. Next let us first prove the positivity of ρ in Eq. (31) for small times. Turning to the 
evaluation (2*)  

x2

t
≈ o(t2s )→ 0 at t→ 0 , one obtains for small times 

ρ =
1

4πat
cos(− π

4
) > 0 at t→ 0     (7*)   

In order to prove that ρ is normalized for small times, turn to Eq.(30) and integrate 
 it over X 

−∞

∞

∫ ∂2ρ

∂t2
dX + a2

−∞

∞

∫ ∂4ρ

∂X 4
dX = 0       (8*)   
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Taking into account the initial conditions (28) and requiring that ρ and all its space 
derivatives vanish at infinity, one obtains 

∂2

∂t2
ρdX = 0

−∞

∞

∫         (9*)   

But as follows from the initial conditions (28) 

ρdX
−∞

∞

∫ = 0, ∂
∂t

ρdX = 0 at t = 0
−∞

∞

∫     (10*) 

Combining Eqs. (9*) and (10*), one concludes that the normalization constraint is 
preserved during small times. 
3. The solutions (34), (35) and (36) have been derived under assumption that 
x2

t
→ 0 at t→ 0      (11*) 

since this assumption was exploited for expansion of  ρ in Eq. (31) in Taylor series. 
However, in the cases (35) and (36),  

x2

t
≈ o(1) at t→ 0 ,  

and that disqualify their derivation. Actually these cases require an additional analysis 
that is out of scope of this paper. For the same reason, Eq. (13) has been truncated to the 
form (39). 
 

c. Analysis of solution. 
Turning to the solution (39), we notice that it satisfies the initial condition (28) i.e. x =0 
at t =0 for any values ofC1 : all these solutions co-exist in a superimposed fashion; it is 
also consistent with the sharp initial condition for the solution (31) of the corresponding 
equation (22). The solution (31) describes the simplest irreversible motion: it is 
characterized by the “beginning of time” where all the trajectories intersect (that results 
from the violation of the Lipchitz condition at t=0, Fig.5); then the solution splits into a 
continuous set of random samples representing a stochastic process with the probability 
density ρ controlled by Eq. (31). The irreversibility of the process follows from the fact 
that the backward motion obtained by replacement of t with (-t) in Eqs. (31) and (39) 
leads to imaginary values. Actually Fig.4 illustrates a jump from determinism to a 
coherent state of superimposed solutions that is lost in solutions of the Schrödinger 
equation. 
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Figure 4. Hidden statistics of transition from determinism to randomness.  
 Let us show that this jump is triggered by instability of the deterministic state. Indeed, 
turning to the solution represented by Eq. (39) with |C1 |≤ 0.25 , we observe that for fixed 

values of C1 , the solution (39) is unstable since  

d x
dx

=
x
x

> 0        (41)    

 and therefore, an initial error  always grows generating randomness. Initially, at t=0, 
that growth is of infinite rate since the Lipchitz condition at this point is violated (such a 
point represents a terminal repeller) 

d x
dx

→∞ at t→ 0       (42)   

This means that an infinitesimal initial error becomes finite in a bounded time interval. 
That kind of instability (similar to blow-up, or Hadamard, instability) has been analyzed 
in [5]. Considering first Eq.(39) at fixed C1 as a sample of the underlying stochastic 

process (54), and then varying C1 , one arrives at the whole ensemble of one-parametrical 
random solutions characterizing that process, (see Fig.5). It should be stressed again that 
this solution is valid only during a small initial period representing a “bridge” between 
deterministic and random states, and that was essential for the derivation of the solutions 
(39), and (31).   
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Figure 5. Family of random trajectories and particle velocities 

Returning to the quantum interpretation of Eqs. (22) and (23), one notice that during this 
transitional period, the quantum postulates are preserved. Indeed, as follows from Eq. 
(41),  

x→∞ at t→ 0         (43)   

i.e. the initial velocity is not defined, (see the flat area in Fig. 5), and that confirms the 
uncertainty principle. It is interesting to note that an enforcement of the initial velocity 
would “blow-up” the solution (39); at the same time, the qualitative picture of the 
solution is not changed if the initial velocity is not enforced: the solution is composed of 
superposition of a family of random trajectories with the singularity (43) at the origin. 
Next, the solution (39) justifies the belief sheared by the most physicists that particle 
trajectories do not exist, although, to be more precise, as follows from Eq. (39), 
deterministic trajectories do not exist: each run of the solution (39) produces different 
trajectory that occurs with probability governed by Eq. (31). It is easily verifiable that the 
transition of motion from one trajectory to another is very sensitive to errors in initial 
conditions in the neighborhood of the deterministic state. Indeed, as follows from Eq. 
(39), 

C1 = x0t0
−(s+0.5) ,

∂C1
∂x0

= t0
−(s+0.5) →∞ as t0 → 0   (44)   

  where x0 and t0 are small errors in initial conditions. 

Actually Eq. (39) represents a hidden statistics of the underlying Schredinger equation. 
As pointed out above, the cause of the randomness is non-Lipchitz instability of Eq. (39) 
at t=0. Therefore, trajectories of quantum particles have the same “status” as trajectories 
of classical particles in a chaotic motion with the only difference that the random 
“choice” of the trajectory is made only at t0 → 0 . It should be emphasized again that the 
transition (39) is irreversible. However, as soon as the difference between the current 
probability density and its initial sharp value becomes finite, one arrives at the 
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conventional quantum formalism described by the Schrödinger, as well as the Madelung 
equations. Thus, in the conventional quantum formalism, the transition from the classical 
to the quantum state has been lost, and that created a major obstacle to interpretation of 
quantum mechanics as an extension of the Newtonian mechanics. However, as 
demonstrated above, the quantum and classical worlds can be reconciled via the more 
subtle mathematical treatment of the same equations.  This result is generalizable to 
multi-dimensional case as well as to case with external potentials.  

d. Comments on equivalence of Schrödinger and Madelung equations. 
Equivalence of Schrödinger and Madelung equations was questioned by some quantum 
physicists on the ground that to recover the Schrödinger equation from the Madelung 
equation, one must add by hand a quantization condition, as in the old quantum theory. 
However, this argument has been challenged by other physicists. We will not go into 
details of this discussion since this paper is focused on mathematical rather than physical 
equivalence of Schrödinger and Madelung equations. Firstly we have to notice that the 
Schrödinger equation is more attractive for computations due to its linearity, while the 
Madelung equations have a methodological advantage: they allow one to trace down the 
Newtonian origin of the quantum physics. Indeed, if one drops the Planck’s constant, the 
Madelung equations degenerate into the Hamilton-Jacobi equation supplemented by the 
Liouville equation. However despite the fact that these two forms of the same governing 
equations of quantum physics can be obtained from one another without a violation of 
any of mathematical rules, there is more significant difference between them, and this 
difference is associated with the concept of stability. Indeed, as demonstrated above, the 
solution of the Madelung equations with deterministic initial condition (28) is unstable, 
and it describes the jump from the determinism to randomness. This illuminates the 
origin of randomness in quantum physics. However the Schrödinger equation does not 
have such a solution; moreover, it does not “allow” posing such a problem and that is 
why the randomness in quantum mechanics had to be postulated. So what happens with 
mathematical equivalence of Schrödinger and Madelung equations? In order to answer 
this question, let us turn to the concept of stability. It should be recalled that stability is 
not an invariant of a physical model. It is an attribute of mathematical description: it 
depends upon the frame of reference, upon the class of functions in which the motion is 
presented, upon the metrics of configuration space, and in particular, upon the way in 
which the distance between the basic and perturbed solutions is defined, [9]. As an 
example, consider an inviscid stationary flow with a smooth velocity field, [2] 
vx = Asin z +C cos y, vy = Bsin x + Acos z, vz =C sin y +bcos x (45) 

Surprisingly, the trajectories of individual particles of this flow are unstable (Lagrangian 
turbulence). It means that this flow is stable in the Eulerian representation, but unstable in 
the Lagrangian one. The same happens with stability in Hilbert space (Schrödinger 
equalion), and stability in physical space (Madelung equations). One should recall that 
stability analysis is based upon a departure from the basic state into a perturbed state, and 
such departure requires an expansion of the basic space.  However, Schrödinger and 
Madelung equations in the expanded spaces are not necessarily equivalent any more, and 
that explains the difference in the concept of stability of the same solution as well as the 
interpretation of randomness in quantum mechanics.  
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There is another “mystery” in quantum mechanics that can be clarified by transfer to the 
Madelung space: a belief that a particle trajectory does not exist. Indeed, let us turn to Eq. 
(39). For any particular value of the arbitrary constant C1, it presents the corresponding 
particle’s trajectory. However as a result of non-Lipchitz instability at t = 0, this constant 
is supersensitive to infinitesimal disturbances, and actually it becomes random at t=0. 
That makes random the choice of the whole trajectory, while the randomness is 
controlled by Eq. (30). Actually this provides a justification for the belief that a particle 
can occupy any place at any time: it is due to randomness of its trajectory. However it 
should be emphasized that the particle makes random choice only once: at t = 0. After 
that it stays on the chosen trajectory. Therefore in our interpretation, this belief does not 
mean that a trajectory does not exist: it means only that the trajectory exists, but it is 
unstable. Based upon that, we can extract some deterministic information about the 
particle trajectory by posing the following question: find such a trajectory that has the 
highest probability to appear. The solution of this problem is straight forward: in the 
process of collecting statistics for the arbitrary constant C1 find such its value that has the 
highest frequency to appear. Then the corresponding trajectory will have the highest 
probability to appear as well. 
Thus, strictly speaking, the Schrödinger and Madelung equations are equivalent only in 
the open time interval 
t > 0           (46), 
since the Schrödinger equation does not include the infinitesimal area around the 
singularity at  
t = 0            (47) 
while the Madelung equation exists in the closed interval  
t ≥ 0           (48)  
 But all the “machinery” of randomness emerges precisely in the area around the 
singularity (47). That is why the source of randomness is missed in the Schrödinger 
equation, and the randomness had to be postulated.  
Remark. An example of fundamental difference between stability in open and closed 
intervals is given in [9].  
Hence although historically the Schrödinger equation was proposed first, and only after a 
couple of months, Madelung introduced its hydrodynamic version that bears his name, 
strictly speaking, the foundations of quantum mechanics would be saved of many 
paradoxes had it be based upon the Madelung equation.  
 
4. Randomness in physics and the correspondence principle.   
The discovery of the origin of randomness in quantum mechanics opens up a strong 
support to the correspondence principle: the randomness in physics (both quantum and 
Newtonian) is caused by dynamical instability. However this support comes with some 
complications: the types of dynamical instability in Newtonian and quantum physics are 
qualitatively different. 
     Indeed in Newtonian physics it is Liapunov instability of ignorable variables, i.e. such 
variables that do not contribute into energy of the system. For an m-dimensional system, 
this instability manifests itself in appearance of positive Liapunov exponents in the 
spectrum of m Liapunov exponents, while each of these exponents measures the averaged 
divergence of adjacent trajectories.  
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     In quantum physics, the instability has a different nature: it is caused by the loss of 
uniqueness of the solution in a singular point due to failure of Lipchitz condition at this 
point. In context of terminal dynamics, [8], this point represents a terminal repeller that is 
characterized by infinite divergence of trajectories. As a result of that, quantum system 
makes a random choice of the trajectory only once – at the beginning of the transition 
from determinism to randomness, while a Newtonian system may change trajectories 
continuously during its chaotic motion. 
 
a. Terminal repeller. 

In order to capture the fundamental properties of the effects associated with failure of the 
Lipchitz condition, let us turn to a simple ODE 

m v = αvk , k = N
N + 2

<1, m,α > 0      (49)  

where N is a natural number.  

One can verify that that for Eq. (49), the equilibrium point v = 0 becomes a terminal 
repeller, and since 

d v
dv

= k α
m
vk−1→∞ at v→ 0       (50)  

it is infinitely unstable. If the initial condition is infinitely close to this repeller, the 
transient solution will escape it during a finite time period 

t0 =
mdv
αvkv0

0

∫ =
mv0

1−k

α(1− k)
<∞       (51)  

while for a regular repeller the time period would be infinite. Here the motion is  
irreversible since the inversion of time in the solution of Eq. (50) 

v = ±[α
m
(1− k)t]1/1−k        (52)  

leads to imaginary values of v since k < 1. 

But in addition to that, terminal repellers possess even more surprising characteristics: the 
solution (52) becomes totally unpredictable. Indeed, two different motions described by 
Eq. (52) are possible for “almost the same” initial conditions:  
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v0 = +ε→ 0 or v0 = −ε→ 0 at t = 0     (53) 

The most essential property of this result in that the divergence of these two solutions is 
characterized by an unbounded rate   

σ = limt→t0
(1
t
ln αt

1/(1−k )

m | v0 |
)→∞ at | v0 |→ 0     (54)  

In contrast to the classical case where t0 →∞ , here σ can be defined within an 
arbitrarily small time interval t0 since during this interval the initial infinitesimal distance 
between the solutions becomes finite. Thus a terminal repeller represents a vanishingly 
small, but infinitely powerful “pulse of randomness” that is pumped into the system via 
terminal repeller., Figs.6,7. Obviously, failure of the uniqueness of the solution here 
results from the violation of the Lipchitz condition(50) at v = 0.  

 

Figure 6.Terminal repeller in phase space (k < 1), classical repeller in phase space (k > 1). 
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Figure 7. Terminal repeller in physical space. 

Now one can verify that the solution (39) that describes transition from determinism to 
randomness in quantum physics belong to the same class as the solution (52) that starts 
with the terminal repeller , (compare Fig. 7 with Fig. 5 that present qualitative description 
of solutions).  

b. Discontinuous transition from quantum to Newtonian physics. 

As follows from the comparison between the mechanisms of instability in quantum and 
Newtonian physics performed in the previous subsections, the transition from quantum to 
Newtonian randomness is not smooth. Let us take a deeper look into the transition from 
quantum to Newtonian physics in terms of the mathmatical formalism. For that purpose, 
start with the Madelung equations (22),(23) and let the Planck constant to be zero. As a 
result, we arrive at the system of the Hamilton-Jacoby and Liouville equations that 
desribes Newtonian mechanics. 

∂S
∂t
+
1
2m
(∇S)2 + F = 0        (55) 

∂ρ
∂t
+∇•( ρ

m
∇S) = 0                    (56) 

 
The most important mathematical property of this system of PDE is its hyperbolic type 
since the order of the highest temporal and space derivatives is the same. This property 
provide existence of weak discontinuities of S and ρ  that propagate with a finite speed 
[10] 
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λS =
ΔnS
m

= λ
ρ

        (57) 

where ∇nS is the projection od the vector∇S onto the normal n to the front of the 
discontinuity. 
Returning to the Madelung equations (22), (23), one can see that they are of parabolic 
type since the quantum potential brings the space derivatives of higher order than the 
temporal ones. As a result, all the discontinuities dissapeared, and any changes propagate 
instantaneously. Indeed in order for the second derivatives ∇2ρ,∇2S to exist, the first 
derivatives ∇ρ,∇S must be continuous. This qualitative difference in mathematical 
formalism reflects the corresponding difference in mechanisms of randomness formation 
in quantum and Newtonian dynamics. But does this difference “inflicts any damage” to 
the correspondence principle? 
 In order to answer this question, let us turn to fluid dynamics in which the continuity of 
transition from the Euler to the Navier-Stokes (NS) equations is mathematically similar to 
transition from Newtonian to quantum phyaics. 

The Euler equations 

∂v
∂t
+ v∇v = − 1

ρ
∇p+F        (58) 

∂ρ
∂t
+∇⋅ (ρv) = 0         (59) 

where v velocity, p pressure, and ρmass dencity are of hyperbolic type, and therefore, 
they include a capability to transport discontinuities in the form of sound or shock waves. 
The Navier-Stokes equations bring to Eq. (58) additional terms with higher order space 
derivative, and that makes the system parabolic. These “viscose”  terms play the same 
role as quantum potential in Eq. (23), while the role of the Planks constant is played by 
viscosity coefficient. As a result, the NS equations have different formulation of 
boundary conditions: slip boundary conditions on a rigid wall for NS equations, instead 
of no-slip ones for the Euler equations. For a mathematician, this difference is significant: 
it affects existence, uniqueness and satbility of solutions. Indeed the criteria of stability 
are different even for a vanishingly small viscosity, and that resembles the mismatch 
between the mechanisms of randomness in quantum and Newtonian physics discussed 
above. However there is something more that can allert physicists: the sound and shock 
waves that are of enormous importance in physics and in engineering applications 
dissapear in NS equations that are supposed to be more precise than the Euler equations. 
However a detailed analysis of NS equations shows that such allert is highly exaggurated. 
It turns out that “shock”waves exist in NS equation, but without sharp discontinuities that 
are slightly smoothed out due to viscosity. Actually they are closer to reality than original 
shock waves found from the Euler equations. However it does not seem reasonable to 
study shock waves with NS equations since the results will be imbedded in enormous 
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amount of mathematical details that does not have physical importance. For the same 
reason, it seems impractical to study chaos using limiting case of quantum mechanics. 

Therefore our conclusion is more optimistic than the beginning of this discussion: the 
discovery of the origin of randomness in quantum physics supports the correspondence 
principle rather than raises more doubts. 
5. Conclusion. 

This work is motivated by quantum chaos that is a branch of physics which studies 
how chaotic classical dynamical systems can be described in terms of quantum theory. 
The primary question that quantum chaos seeks to answer is: "What is the relationship 
between quantum physics and classical chaos?" The correspondence principle states that 
classical mechanics is the classical limit of quantum mechanics. If this is true, then there 
must be quantum mechanisms underlying classical chaos, although this may not be a 
fruitful way of examining classical chaos. If quantum mechanics does not demonstrate an 
exponential sensitivity to initial conditions, how can exponential sensitivity to initial 
conditions arise in classical chaos, which must be the correspondence principle limit of 
quantum mechanics? 	  The	  objective	  of	  this	  work	  is	  to	  find	  more	  evidence	  in	  support	  
of	  the	  correspondence	  principle,	  and	  in	  particular,	  to	  unify	  theory	  of	  transition	  from	  
determinism	  to	  randomness	  in	  physics.	  
As	  a	  result, there has been proven that mathematical origins of randomness in quantum 
and Newtonian physics are coming from the same source that is dynamical instability. 
However in Newtonian physics this instability is measured by positive finite Liapunov 
exponents averaged over infinite time period, while in quantum physics the instability is 
accompanied by a loss of the Lipchitz condition and represented by an infinite divergence 
of trajectories in a singular point. Although from a mathematical viewpoint such a 
difference is significant, from physical viewpoint it does not justify division of 
randomness into “deterministic “(chaos) and “true” (quantum physics). The common 
origin of randomness in Newtonian and quantum physics presents a support of the 
correspondence principle that is being searched by quantum chaos theory.  
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