A very exhaustive generalization of de Polignac's conjecture

Marius Coman Bucuresti, Romania email: mariuscoman13@gmail.com

Abstract. In a previous paper I made a generalization of de Polignac's conjecture. In this paper I extend that generalization as much as is possible.

Conjecture:

For any n even positive integer and for any i and j non-null positive integers there exist an infinity of distinct sets of i primes p1, p2, ..., pi and also an infinity of distinct sets of j primes q1, q2, ..., qj such that p1*p2*...*pi - q1*q2*...*qj = n.

Case [i, j, n] = [1, 1, 2]:

In this case we have p - q = 2, which gave us the twin primes conjecture.

Case [i, j, n] = [1, 1, n]:

In this case we have p - q = n, which gave us de Polignac's conjecture.

Case [i, j, n] = [2, 1, 2]:

In this case we have p1*p2 - q = 2.

Such triplets of primes [p1, p2, q], are: [7, 13, 89], [7, 19, 131], [7, 37, 257]...Note that the conjecture can be further extended in this case to: for any p1 odd prime there exist an infinity of pairs of primes [p2, q] such that p1*p2 - q = 2.

Case [i, j, n] = [1, 2, 2]:

In this case we have p - q1*q2 = 2.

Such triplets of primes [p, q1, q2], are: [79, 11, 7], [163, 23, 7], [331, 47, 7]...Note that the conjecture can be further extended in this case to: for any q1 odd prime there exist an infinity of pairs of primes [p, q2] such that p - q1*q2 = 2.

Conjecture:

(the most exhaustive generalization of de Polignac's conjecture)

For any n even positive integer and for any i, j, k, l non-null positive integers, for any k given primes al, a2, ..., ak and for any l given primes bl, b2, ..., bl, there exist an infinity of distinct sets of i primes p1, p2, ..., pi and also an infinity of distinct sets of j primes q1, q2, ..., qj such that p1*p2*...*pi*a1*a2*...*ak - q1*q2*...*qj*b1*b2*...bl = n.