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Indefinite metric vectors are absolutely required as the physical states in Minkowski space because
that is indefinite metric space and the physical space-time. For example, Maxwell equations are wave
equations in Minkowski space. However, traditional Quantum theory ordinarily has been studied
only in definite metric space, i.e., Hilbert space. There are no clear expression for indefinite metric
vectors. Here we show a wave function example using Dirac’s delta function for indefinite metric
vectors in Minkowski space. In addition, we show the vectors can interfere with itself. This example
also suggests indefinite metric will be absolutely required.

I. INTRODUCTION

When we take advantage of unobservable potentials
that can be identified as indefinite metric vectors, we
can interpret single photon and electron interferences and
entanglement without quantum-superposition.[1, 2]

First, we deal with the definition of metric space. Arbi-
trary state vectors |ϕ〉 and |ψ〉 satisfy following conditions
in definite metric space.

〈ϕ|ψ〉 = 〈ψ|ϕ〉∗

〈ψ|ψ〉 ≥ 0

〈ψ|ψ〉 = 0⇔ |ψ〉 = 0 (1)

In contrast, the second and third relations are replaced
with 〈ψ|ψ〉 = α and 〈ψ|ψ〉 = 0 ⇔ |ψ〉 6= 0 or 0 in indefi-
nite metric space. Where α is an arbitrary number.

Minkowski space is divided into time-like (T), light-like
(L), space-like (S) parts and point of the origin P (x =
0, t = 0). Traditional quantum theory has been studied
in T ⊕ P. Where ⊕ stands for direct sum. However
the unobservable potentials which can be identified as
indefinite metric vectors propagate at the speed of light.
Hence the vectors will be on the origin P and surface
of the light cone L, i.e., P ⊕ L. Of course photons in
free space are on P⊕ L. Because there exist some entity
related to the unobservable potentials but can not be
observe any entities, there must be the vector |ψ〉P⊕L 6= 0
with the norm 〈ψ|ψ〉P⊕L = 0. Where |ψ〉 is the state
expressing the unobservable potentials. However there
always exist the unobservable potentials on T ⊕ P ⊕ L.
Then 〈ψ|ψ〉L = α.

When there are physical observable entity
|ϕ〉 on T ⊕ P, |ϕ〉T⊕P + |ψ〉T⊕P⊕L 6= 0 ⇒
(〈ψ|+ 〈ϕ|) (|ϕ〉+ ψ〉)T⊕P⊕L ≥ 0. The space-like part S
is estimated to have the rest of the characteristics, i.e.,
negative norm (〈ψ|+ 〈ϕ|) (|ϕ〉+ ψ〉)S < 0.

Therefore we should study the states in T⊕P⊕L as the
physical states instead of (1). In this letter, we show a
wave function example using Dirac’s delta function for in-
definite metric vectors in Minkowski space satisfied with
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the following conditions.

〈ϕ|ψ〉T⊕P⊕L = 〈ψ|ϕ〉∗T⊕P⊕L
〈ψ|ψ〉T⊕P⊕L = α

〈ψ|ψ〉T⊕P⊕L = 0⇔ |ψ〉T⊕P⊕L = 0 or 6= 0

(2)

with

(〈ψ|+ 〈ϕ|) (|ϕ〉+ ψ〉)T⊕P⊕L ≥ 0 (3)

II. AN EXAMPLE EXPRESSION

Let |ϕ〉 is an observable physical state in T⊕P, and
|ψ〉 is an indefinite metric vector in T⊕ P⊕ L. These
stats are expressed by wave functions ϕ(x) and ψ(x) as
follows.

〈ϕ|ϕ〉T⊕P =

∫
ϕ∗(x)ϕ(x)dx ≥ 0

〈ϕ|ψ〉T⊕P⊕L =

∫
ϕ∗(x)ψ(x)dx = 〈ψ|ϕ〉∗T⊕P⊕L

〈ψ|ψ〉T⊕P⊕L =

∫
ψ∗(x)ψ(x)dx = α

(4)

We can easily confirm the following ϕ(x) and ψ(x) satisfy
the above relations.

ϕ(x) = f(x) = |f(x)|e−iφ

ψ(x) = a(x)

{
1

2
eiθ/2 − 1

2
e−iθ/2

}√
δ(x) (5)

where f(x), δ(x), a(x), α and θ are a traditional wave
function, i.e., 〈ϕ|ϕ〉T⊕P = 〈f |f〉 =

∫
|f(x)|2dx ≥ 0,

Dirac’s delta function, an arbitrary complex function
of x, an arbitrary complex number of dimension [x]−1

and phase difference between P and arbitrary space-time
point of ψ(x) respectively.

The dimension of 〈f |f〉 =
∫
|f(x)|2dx and 〈ψ|ψ〉 =∫

|ψ(x)|2dx are [x]0 which means the dimensions of f(x)

and ψ(x) are [x]−
1
2 . Because the dimension of

√
δ(x) is

[x]−
1
2 , the expression of (5) using

√
δ(x) is valid from the

point of view of dimension. From (5), followings can be
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calculated.

〈ψ|ψ〉T⊕P⊕L =

∫
ψ∗(x)ψ(x)dx

= |a(0)|2
{

1

2
− 1

4
eiθ − 1

4
e−iθ

}
=

1

2
|a(0)|2 (1− cos θ) (6)

When θ = 0 on P, θ = 0 on P⊕ L, because the un-
observable potentials move at light speed, i. e., static
on L. Hence 〈ψ|ψ〉P⊕L = 0. and θ 6= 0 is on T, i. e.,
〈ψ|ψ〉T = 1

2 |a(0)|2 (1− cos θ) ≥ 0. Hence the second and
third relations of (2) are obtained, though α ≥ 0.

In addition,

〈ϕ|ψ〉 =

∫
ϕ∗(x)ψ(x)dx

=

∫
a(x)f∗(x)

{
1

2
eiθ/2 − 1

2
e−iθ/2

}√
δ(x)dx

(7)

〈ψ|ϕ〉 =

∫
ψ∗(x)ϕ(x)dx

=

∫
a∗(x)f(x)

{
1

2
e−iθ/2 − 1

2
eiθ/2

}√
δ(x)dx

(8)

Therefore 〈ϕ|ψ〉T⊕P⊕L = 〈ψ|ϕ〉∗T⊕P⊕L. Hence the all
relations of (2) are obtained.

As for (3),

(〈ψ|+ 〈ϕ|) (|ϕ〉+ ψ〉) = 〈ϕ|ϕ〉+ 〈ϕ|ψ〉+ 〈ψ|ϕ〉+ 〈ψ|ψ〉

= 〈ϕ|ϕ〉+
1

2
|a(0)|2 (1− cos θ)

+〈ϕ|ψ〉+ 〈ψ|ϕ〉 (9)

This means special forms must be chosen for ψ(x) in
order to satisfy (3).

III. APPLICATION - SELF-INTERFERENCE

When we choose a(x) = if(x) and ϕ(x) = f(x) +
ψ(x) in (5), i.e., |ϕ〉 = |f〉+ |ψ〉 as a physical state, then
〈ϕ|ψ〉 = 〈ψ|ϕ〉∗ = −〈ψ|ϕ〉 and the norm is calculated to
be as follows.

〈ϕ|ϕ〉 = 〈f |f〉+ 〈ψ|f〉+ 〈f |ψ〉+ 〈ψ|ψ〉
= 〈f |f〉+ 〈ψ|ψ〉

= 〈f |f〉+
1

2
|a(0)|2 (1− cos θ)

(10)

Therefore |ϕ〉 = |f〉+|ψ〉 can make self interference. How-
ever 〈ϕ|ϕ〉 > 0. We will never satisfy (3) unless

|a(0)|2 = −〈f |f〉 (11)

IV. GENERALIZATION FOR VECTOR SPACE

Here we generalize the above discussion to vector
space. Let’s consider zero norm vectors set. The set
becomes vector space V0under following conditions.

A) For arbitrarily |γ〉, |γ′〉 ∈ V0, i.e., 〈γ|γ〉 = 〈γ′|γ′〉 =
0, V0 is closed under multiplication, i.e., |γ〉+ |γ′〉 ∈ V0

with associative law, existence of zero element, existence
of inverse element and commutative law of addition.

B) For arbitrarily |γ〉 ∈ V0 and λ ∈ F (field of scalars),
V0 is closed under multiplication of the scalar, i.e., λ|γ〉 ∈
V0 with associative law of scalar multiple, 1|γ〉 = |γ〉,
distributive law of scalar and elements.

From A), the norm |γ〉+ |γ′〉 is calculate to be 〈γ|γ〉+
〈γ′|γ′〉 + 2Re〈γ|γ′〉 = 2Re〈γ|γ′〉 = 0 then 〈γ|γ′〉 = iµ,
where µ is a real number, i.e., 〈γ|γ′〉 is a purely imaginary
number.

From B), the norm |γ〉+λ|γ′〉 is calculate to be 〈γ|γ〉+
|λ|2〈γ′|γ′〉+2Reλ〈γ|γ′〉 = 2Reλ〈γ|γ′〉 = 0 then λ〈γ|γ′〉 =
iµ′, where µ′ is a real number. Because 〈γ|γ′〉 is a purely
imaginary number, then λ ∈ F (field of scalars) must be
a real number. Therefore, V0 is a real vector space.

In contrast, a complex vector space Hphys which is pos-
itive semidefinite space, has been studied as the physical
states in traditional quantum theory.

However we should study the vectors formed by the
direct sum Vphys = Hphys ⊕ V0 as the real physical
states whose norms are positive semidefinite.

For example, the norm of

|ϕ〉(∈ Vphys) = |f〉(∈ Hphys) + |γ〉(∈ H0) (12)

is calculated to be

〈ϕ|ϕ〉 = 〈f |f〉+ 〈γ|f〉+ 〈f |γ〉+ 〈γ|γ〉
= 〈f |f〉+ 〈γ|f〉+ 〈f |γ〉 (13)

Therefore 〈γ|f〉 should be 〈f |f〉2 eiθ because of the positive

semidefinite norm 〈ϕ|ϕ〉 = 2〈f |f〉
{

1
2 + 1

2 cos θ
}
≥ 0.

V. CONCLUSION

Traditional quantum theory has been studied by us-
ing |ϕ〉T⊕P. However we should study |ϕ〉T⊕P⊕L, i. e.,
|ϕ〉T⊕P⊕L ≡ |ϕ〉T⊕P + |ψ〉T⊕P⊕L, as the physical states
instead of |ϕ〉T⊕P. In order to justify the discussion in
this letter, we must establish the (11).

VI. APPENDIX - CORRECTION UTILIZING
INDEFINITE METRIC

In the above context, indefinite metric vector is ex-
pressed in consideration of the point of light-cone coor-
dinates and Dirac’s delta function. Unfortunately (11)
could not be satisfied with definite metric which suggest
requirement of a special number such as imaginary num-
ber without complex conjugate. This kind of number
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corresponds to indefinite metric. When we directly in-
troduce indefinite metric γ2 = −1, the above discussion
will be dramatically simplified as follows.

ψ(x) =
1

2
γeiφ/2g(x)− 1

2
γe−iφ/2g(x) (14)

Then

〈ψ|ψ〉 =

∫
−1

4
g(x)∗g(x)− 1

4
g(x)∗g(x)

+
1

4
eiφg(x)∗g(x) +

1

4
e−iφg(x)∗g(x)dx

= −1

4
〈g|g〉 − 1

4
〈g|g〉+

1

4
〈g|g〉eiφ +

1

4
〈g|g〉e−iφ

= −1

2
〈g|g〉+

1

2
〈g|g〉 cosφ (15)

When φ = ±Nπ (N : even number), 〈ψ|ψ〉 = 0. Because
φ will be correspond to a phase of the unobservable po-
tentials. Then φ = 0 and φ 6= 0 will correspond to P⊕ L

and T respectively, which means φ can act as a switch-
ing parameter of the point of light-cone coordinates. By
introducing γ, (2) is naturally satisfied.

We can easily calculate self interaction as described the
above using this expression replacing g(x) with f(x) as
follows.

ϕ(x) ≡ f(x) +
1

2
γeiφ/2f(x)− 1

2
γe−iφ/2f(x)

〈ϕ|ϕ〉 = 〈f |f〉 − 1

2
〈f |f〉+

1

2
〈f |f〉 cosφ

=
1

2
〈f |f〉+

1

2
〈f |f〉 cosφ

= 〈f |f〉
{

1

2
+

1

2
cos θ

}
(16)

As can be seen from the simplified discussion, we
should introduce indefinite metric from the beginning.
Then we can leave intricate discussion using considera-
tion of the point of light-cone coordinates and Dirac’s
delta function.
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