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A hypothesis is suggested that the classical electromagnetic and gravitational fields, 

acceleration field, pressure field, dissipation field, strong interaction field and weak 

interaction field, acting in the matter and beyond its limits are the manifestations of a single 

general field. With the help of generalized velocity as the 4-potential of the general field it is 

shown that each of these seven fields contributes linearly to the formation of the total 4-force 

density. However, the stress-energy tensor of the general field includes not only stress-energy 

tensors of these seven fields, but also the cross terms with the products of various field 

strengths. As a result, the energy and momentum of the system with several fields can differ 

from the classical energy and momentum values, not including such cross terms in the 

general field energy. 

Keywords: general field; generalized velocity; acceleration field; pressure field; dissipation 

field. 

 

1. Introduction 

Many scientists believe that there is generality between the fields known in physics which 

is not fully understood so far. So in the “Grand unified theory” in order to describe 

elementary particles in unified quantum-field formalism an attempt is made to combine 

strong, weak and electromagnetic interactions [1]. In the “Theory of everything” gravitational 

interactions are also taken into account. One of the well-known models of unification of 

gravitation and electromagnetism is the Kaluza-Klein theory [2-3]. This theory uses five-

dimensional spacetime and some scalar field, and the theory’s consequences are the equations 

equivalent to Maxwell equations and the equations of general theory of relativity. 

Besides fundamental interactions, there are other fields that influence directly the matter 

particles and transfer energy and momentum. These fields include the acceleration field and 

pressure field [4], as well as the field of energy dissipation due to viscosity [5]. Under the 

influence of these fields almost uniform spatial and temporal distribution of velocities, 

pressure, energy dissipation, potentials and field strengths takes place in bodies, which arises 

from the wave equation of a standard form. Similarity of distribution of physical functions 

indicates a single mechanism of their generation. 
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In connection with this, we introduce a concept of a general force vector field, in which 

we include the electromagnetic and gravitational fields, acceleration field, pressure field, 

dissipation field, strong interaction field, weak interaction field and other vector fields. This 

general field is assumed to be the main source of acting forces, energy and momentum, as 

well as the basis for calculation of the system’s metric from the standpoint of non-quantum 

classical field theory. Including the strong interaction and weak interaction fields in the 

general field is most necessary in those cases, when reactions of radioactive decay or nuclear 

fusion take place in massive bodies, as it happens in stars. 

 

2. The structure of fields 

Table 1 and Table 2 show the notation for the basic functions of each field that we use, 

including potentials, strengths, energy flux densities and field tensors. The last column of 

Table 2 shows the notation for the functions of the general field. In the following sections we 

will provide definitions of each function of the general field, while the definitions of other 

fields were provided in [4] and [5]. 

 

Table 1. Field functions 

Field 
Electromagnetic 

field 

Gravitational 

field 

Acceleration 

field 
Pressure field 

Field function 

4-potential A  D  u     

Scalar potential        

Vector potential A  D  U  Π  

Field strength E  Γ  S  C  

Solenoidal vector B  Ω  N  I  

Field tensor F  Φ  u  f  

Stress-energy tensor W 
 U 

 B   P   

Energy-momentum 

flux vector 
P  H  K  F  

 

Table 2. Field functions 

Field Dissipation Strong interaction Weak interaction General 
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Field function 
field field field field 

4-potential   g  w  s   

Scalar potential         

Vector potential Θ  G  W  Φ  

Field strength X  L  Q  T  

Solenoidal vector Y  μ  π  χ  

Field tensor h  g  w  s  

Stress-energy tensor Q 
 L 

 A 
 T 

 

Energy-momentum 

flux vector 
Z  Σ  V  Ξ  

 

In Table 1 P  is the Poynting vector, H  is the Heaviside vector. The stress-energy tensor 

of the acceleration field B   describes the energy and momentum of directed motion of the 

large-scale substance fluxes, as well as the motion of bodies relative to an arbitrary reference 

frame or rotation of bodies around a fixed pole. The small-scale and random motion of the 

matter particles are described by the stress-energy tensor of the dissipation field Q
 

. We can 

assume that this tensor characterizes the quantity and flux of the heat existing in the system as 

a result of viscosity. Because of viscosity the directed substance fluxes are decelerated by the 

surrounding stationary medium and transfer part of their energy to this medium in the form of 

heat. 

The general field is characterized by three three-dimensional vectors and one scalar 

function: the field strength T  and the solenoidal vector χ  are the components of the tensor 

s , and the scalar potential   and the vector potential Φ  are the components of the 4-

potential s  . 

Table 3 shows what field functions and 4-currents are included in these or those 

equations. It is assumed that the mass 4-current J 
 and the charge 4-current j  represent the 

matter properties, and the properties of fields are specified by the corresponding 4-potential. 

The field equations are usually divided into two four-dimensional equations – one of them 

reflects the field’s symmetry and does not contain 4-currents, and the other includes the 

divergences of field tensors and the 4-currents as the sources that generate the fields. 
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Table 3. Connection between equations, field functions and 4-currents 

Field equations and relations Field functions, 4-currents 

Field equations Divergences of field tensors, 4-currents 

Motion equation 
Products of field tensors and 4-currents or 

divergences of fields’ stress-energy tensors  

Energy, Lagrangian, Hamiltonian 4-potentials, field tensors and 4-currents 

Equation for the metric  
The Ricci tensor, scalar curvature, fields’ 

stress-energy tensors 

Gauge of 4-potentials Divergences of 4-potentials 

Continuity equations 
Divergences of 4-currents, field tensors, the 

Ricci tensor 

 

We will note that according to Table 3 the stress-energy tensors of fields are present only 

in the equation for the metric and the equation of the matter motion, but they do not allow us 

to calculate the system’s energy. As it was shown in [6], the volume integral of the sum of 

stress-energy tensors of fields gives the integral 4-vector of the system’s energy-momentum 

equal to zero. Therefore, the system’s energy is calculated in another way – not as an 

invariant of the motion equation, but as an invariant conserved over time in the system, in 

which the Lagrangian does not depend on time [7]. 

The gauge of 4-potentials allows us to simplify the field equations, especially it is 

noticeable in the flat spacetime of the special theory of relativity. The continuity equations 

are obtained as a result of applying the divergence to the field equations with the sources in 

the form of 4-currents. 

 

3. The action function and its variation 

Since we are planning to replace all the fields existing in the matter with one general field, 

the action function will include only the 4-potential of the general field, the tensor of this 

field and the mass 4-current: 

 

1
( 2 ) ,

16

c
S L dt k R s J s s g d

c

 

 


 
        

 
                        (1) 

 

where L  is the Lagrange function or Lagrangian, 
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R  is the scalar curvature, 

  is the cosmological constant, 

0J u   is the 4-vector of mass (gravitational) current, 

0  is the mass density in the reference frame associated with the particle,  

c dx
u

ds


   is the 4-velocity of a point particle, c  is the speed of light, 

,s
c



 
  
 

Φ  is the 4-potential of the general field, described with the scalar potential   

and the vector potential Φ  of this field, 

s  is the general field tensor, 

k  and   are assumed to be constant coefficients. 

 

The 4-potential of the general field is calculated as the sum of 4-potentials of the seven 

fields and at the same time as a generalized 4-velocity: 

 

0

0

q
s A D u g w       


 


       .                                    (2) 

 

Here 0q  is the charge density in the reference frame associated with the particle and we 

assume that the ratio of the charge density to the mass density is constant. From (2) and the 

definition of s  it follows that the scalar   and vector Φ  potentials of the general field are 

the sums of the respective scalar and vector potentials of the fields under consideration. 

The general field tensor is defined as a 4-curl of the 4-potential s :  

 

s s s s s              .                                          (3) 

 

Assuming that 
0

0

q
const




 , we substitute (2) into (3): 
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0 0

0 0

0

0

.

q q

q

s A D u g w A D u g w

F Φ u f h g w

                

      

 
   

 





   
                  

   

      

 

(4) 

 

In (4) the general field tensor is obtained as the sum of the seven field tensors. 

The action function with the terms similar to the terms in (1) was varied in [4]. Using the 

results obtained there, we will make the appropriate conclusions regarding the general field. 

For the variation of the action function we can write the following: 

 

1 2 3 0S S S S       ,                                                  (5) 

 

1
2

k
S k R R g k g g g d     

  
 

       
 
 , 

 

2

1 1 1
,

2
S s J s J g g J s g d

c c c

     

       
 

      
 
  

 

3

1

4 2

c
S s s T g g d

c

   

     


 
     

 
 , 

 

where R   is the Ricci tensor, 

g   is the metric tensor variation, 

1 2 3g d g cdt dx dx dx     is an invariant 4-volume, expressed in terms of the time 

coordinate differential 
0dx cdt , the product 

1 2 3dx dx dx  of the space coordinate 

differentials, and the square root g  of the determinant g  of the metric tensor, taken with 

a negative sign, 

  is the variation of coordinates, due to which the variation of the mass 4-current J   

takes place,  

s  is the variation of the 4-potential of the general field. 
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The stress-energy tensor of the general field is given by expression: 

 

2 1

4 4

c
T g s s g s s       

 


 
   

 
.                                   (6) 

 

We present some characteristics of the general field in Appendix A. 

 

4. The general field equations 

Substituting 1S , 2S  and 3S  in (5) and summing up the terms with identical variations, 

we obtain the corresponding equations as a consequence of the principle of least action. For 

example, for the variation s  we can write the following: 

 

1
0

4

c
s J s g d

c

  

 


 
    

 
 , 

 

2

4
s J

c

  




            or        

2

4
s J

c

  




   .                             (7) 

 

Since the general field tensor is defined in (3) using a 4-curl, this tensor is antisymmetric 

and the following relations hold for it: 

 

0s s s                   or        0s 

    .                           (8) 

 

Equation (8) is the equation of the general field without sources, and equation (7) is the 

general field equation with the source in the form of mass 4-current. 

If we apply the covariant derivative   to (7) we obtain: 

 

2

4
R s J

c

 

 


  .                                                    (9) 
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In the flat spacetime the Ricci tensor R  becomes zero, the covariant derivative becomes 

the partial derivative, and the continuity equation acquires its standard form in the special 

theory of relativity: 

 

0J 

  .                                                           (10) 

 

The gauge condition of the 4-potential of the general field: 

 

0s s 

    .                                                   (11) 

 

We will substitute (2) into (11): 

 

0

0

0
q

s A D u g w 

       


 



 
         

 
.                       (12) 

 

If we assume, as in [4-8], that all the fields appear and exist independently of each other, 

then the gauges of 4-potentials of the fields could also be independent of each other: 

 

0A A 

    ,                0D D 

    ,              0u u 

    ,          (13) 

 

0 

     ,     0 

     ,     0g g 

    ,     0w w 

    . 

 

Relations (13) are completely consistent with (12), especially if we assume that the ratio 

0

0

q


 is constant. But the opposite statement is false in general, since (13) does not follow 

directly from (12). 

We can express (12) in terms of scalar and vector potentials, which are part of the fields’ 

4-potentials. In the flat spacetime 
  can be used instead of 

 , in which case the result is 

significantly simplified: 
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0 0

2

0 0

0

2

0

1

1
0.

q q

q

A D u g w
c t

s
c t



      





 
       

 

 



   
                

   

  
            

 
A D U Π Θ G W Φ

 

(14) 

 

The gauge of the general field (14) implies a connection between the time derivative of the 

sum of the scalar potentials and the divergence of the sum of the vector potentials of the 

seven fields. 

 

5. The equation of motion 

The term with variation 
  is present only in 2S  in (5): 

 

1
0s J g d

c

 

     . 

 

Since 0  , then in order to conform to the principle of least action the equation must 

hold: 0s J

  . This can be written in more detail, if we take into account (4): 

 

0

0

0
q

F J Φ J u J f J h J g J w J      

      




       .                (15) 

 

The charge 4-current can be defined with the mass 4-current as follows: 
0

0

q
j J 




 , and 

the tensor product u J


 can be expressed in terms of the 4-acceleration a  with the help of 

the operator of proper-time-derivative: 

 

 0 0 0 0 0 0

Du d u
u J u u u u u u u a

D d

     

               
 

            . 
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With this in mind, (15) turns into the four-dimensional equation of motion of viscous 

compressible substance, which was introduced and analyzed in [5], with addition of the 

density of 4-forces, arising due to strong and weak interactions: 

 

0 a F j Φ J f J h J g J w J     

             .                        (16) 

 

Another way to define the equation of motion is to equate the divergence of the stress-

energy tensor of the general field to zero, since the following relation is valid: 

 

0k

ks J T

    .                                                  (17) 

 

From comparison with (15) we see that (16) and (17) are equivalent to each other. If we 

substitute s  from (3) into the left side of (17) , the equation of motion could be expressed 

in terms of the 4-potential s  of the general field: 

 

Ds d s
u s u s s u

D d

    

      
 

      .                               (18) 

 

On the other hand, we have the relation: 

 

u s u s s u   

          . 

 

Combining it with the previous equation, we find an equivalent definition of (18): 

 

d s
u s u s

d

  

   


    . 

 

6. The equation for the metric 

After substituting 1S , 2S  and 3S  in (5) we can distinguish the terms containing the 

metric tensor variation: 
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1 1
0

2 2 2

k
kR R g k g s J g T g g d

c c

          

  
 
         
 
 . 

 

Since 0g   , the equation for the metric is obtained by equating the expression in 

brackets inside the integral to zero : 

 

1 1
0

2 2 2

k
k R R g k g s J g T

c c

          

       .                       (19) 

 

Let's contract equation (19) by multiplying by the metric tensor, given that 0g T

  , 

g R R

  ,  4g g

  : 

 

2
4 0k R k s J

c



    .                                                 (20) 

 

In [4] we assumed the gauge of the cosmological constant  , which according to (2) 

corresponds to the following expression: 

 

0

0

q
ck s J A D u g w J 

       


 



 
           

 
.                   (21) 

  

Gauge (21) means that the cosmological constant is not an arbitrary quantity. For each 

substance unit the value   can be chosen so as to equal the total rest energy of all the 

particles of the substance unit, including the energy of these particles in the potentials of their 

own internal fields and excluding the energy of the particles’ interaction. The latter can be 

achieved only when all the particles are separated and scattered at infinity. 

With gauge (21), it follows from (20): 

 

2kR k  .                                                          (22) 

 

Outside the matter 0J    in (21), then 0  , and the scalar curvature is equal to zero: 

0R  . 
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Let us substitute (21) and (22) into (19): 

 

1 1

4 2
R R g T

ck

        .                                             (23) 

 

We will obtain the same if we multiply (20) by g 
 and divide by 4 and then substitute in 

(19). 

The equation for the metric (23) coincides with the equivalent equation in [4] and [5], 

with the difference that in (23) the stress-energy tensor of the general field T  , due to its 

definition (6) with regard to (4), contains not only the stress-energy tensors of the seven 

fields, but also additional cross terms with the products of strengths and solenoidal vectors of 

these fields. 

If we apply the covariant derivative   to (23), the right side becomes zero, as a 

consequence of the equation of motion in the form of (17). We can apply in the left side of 

(23) the equality 
1

0
2

R R g   



 
   

 
 as the property of the Einstein tensor. We will 

obtain the equality  
1

0
4

R g 

   or the equivalent equality 0R  . If we take into 

account (21-22), this leads to the following equation, which must hold inside the matter: 

 

    0s J A j D J u J J J g J w J       

                    . 

 

The same expression will be obtained in case when the covariant derivative   is applied 

directly to (19). 

 

7. The energy 

The energy of the system, consisting of the matter and the fields, can be calculated by the 

same method as in [4]. If the Lagrangian does not depend on time, the system’s energy will 

be equal to the Hamiltonian of this system. Taking into account the gauge (21-22), for the 

energy we obtain the following: 
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2
0 1 2 3

0
16

c
E s J s s g dx dx dx




 
   

 
 .                               (24) 

 

The energy (24) depends on the time components of the 4-potential of the general field 0s  

and the mass 4-current 
0J , and does not depend on the product 

i

is J , where the index 

1,2,3i   specifies the space components of the 4-vectors. For the 4-momentum of the system 

we obtain: 
2

, ,
E E E

p
c c c

    
    
   

p v , where p  and v  denote the system’s momentum and 

the velocity of the center of mass. 

 

8. Conclusion 

Let us compare our approach to unifying the electromagnetic and gravitational fields, 

acceleration field, pressure field, dissipation field, strong interaction field and weak 

interaction field with another attempt of unifying the electromagnetic, gravitational and other 

arbitrary vector fields, which was undertaken by Науменко [10]. His “Unified theory of 

vector fields” (UTVF) is formulated in the framework of the special theory of relativity. We 

present here a quote from [10]: 

“Let us assume that there are n  fields: 1 2, , , ,nX X X  each of which has its 

corresponding charge: 
1 2, , , nX X Xq q q . 

 It is suggested to consider these fields as manifestations of a single field that conforms 

to the equations: 

 

     YL L

L

div   Y ,          YL L YL

L L

д
rot

дt
     

L
Y j ,                   (25) 

 

where Y  , L  take values from a set of symbols 1 2, , , ,nX X X  

 ( ) is a matrix of “elrctric constants”, 

 ( ) is a matrix of “magnetic constants”, 

 ( ) is a matrix of “electrodynamical” constants, 

    denotes charge densities, 

  j  denotes current densities.” 
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To these equations Науменко adds the conditions of charge conservation for each field: 

0Y
Ydiv

t


 


j . As we can see, the equations of UTVF represent extended Maxwell 

equations. In these equations any field (for example, the electric or magnetic field) can 

influence the divergence or curl of another field (for example, the gravitational field, torsion 

field or gravitomagnetic field) or even influence this field’s own divergence or curl. 

Науменко also introduces a vector of this unified field: Y YL

L

 Ф L  or 

L YL

Y

 Ф Y , consisting of the sum of strengths and solenoidal vectors of all the fields 

with the corresponding coefficients. Multiplying equations (25) by the coefficients YL  and 

summing over the index Y , he obtains additional equations: 

 

 L YL YL L YL L

Y L L

div             Ф .                              (26) 

  2 2

1 1 Y
L YL L

L

rot
c c t




     



Ф

Ф j .                                     (27) 

 

In (26) the source of the unified field LФ  is the sum of products of the fields’ charge 

densities and some coefficients. In (27) the sum of the products of currents and some 

coefficients gives the curl and the time derivative of the unified field strength LФ . It turns 

out that the unified field’s divergence is formed of a multitude of available charge densities, 

and the currents define the curl of the unified field. 

The analysis of (25-27) shows that as the basis of the unified field equations of UTVF the 

idea is taken about the full symmetry of Maxwell-like equations relative to the contribution of 

charges and currents in the unified field, which is conceived as linear combination of 

strengths and solenoidal vectors of a set of vector fields. 

Our approach differs by the fact that as a basis the 4-potential of the general field s   is 

taken, consisting of the sum of 4-potentials of the seven vector fields. With the help of s  , by 

means of antisymmetric covariant differentiation we define the general field tensor s  and 

its invariant s s
. These quantities are substituted into the Lagrangian, and the subsequent 

use of the principle of least action allows us to derive the necessary equations, including the 

general field equations, the equation of matter motion in the general field, the equation for 
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calculation of the metric, the stress-energy tensor of the general field. The source of the 

general field is the mass 4-current J 
, and the contribution of the charge 4-current j  in the 

motion equation or in the energy is revealed when the general field tensor s  or the 4-

potential s   is multiplied by J 
. 

According to the method of construction of the 4-potential and the general field tensor, 

the scalar (vector) potential of the general field consists of the sum of the scalar (vector) 

potentials of the seven fields. The same can be said about the strength and solenoidal vector 

of the general field – according to (A12) they consist of the sums of the corresponding 

vectors of the seven fields. 

As we can see in (24), the energy of the system of matter and seven fields in our approach 

appears to be dependent not only on the stress-energy tensors of these seven fields, but also 

on the sum of the cross terms with the products of different strengths and solenoidal vectors 

of the fields. 

We remind that the Lorentz-invariant equations of the gravitational field, coinciding by 

their form with Maxwell equations for the electromagnetic field, first appeared in the works 

by Heaviside [11]. Subsequently, these equations were derived in a covariant form and 

became the basis of the covariant theory of gravitation [12]. Later, based on the principle of 

least action the covariant equations of the acceleration field, pressure field [4] and energy 

dissipation field [5] were derived. All these equations in the weak field limit have the form of 

Maxwell equations. According to [6-7], the potentials and strengths of these fields have the 

same dependence on the coordinates and time, obeying the wave equation. Thus, there is 

every reason to acknowledge the existence of a single general field, for which the above 

mentioned seven fields are the particular forms. 

In our opinion, this situation is closely connected with the theorem of equipartition of 

energy. Usually this theorem is interpreted as follows: when the system is in equilibrium, the 

kinetic energy is distributed between all those degrees of freedom that appear in the energy as 

quadratic functions. Apparently, this definition should be expanded so that the energy of the 

general field tends to be distributed also among the degrees of freedom in the form of 

strengths and solenoidal vectors of individual fields. Indeed, these field degrees of freedom 

are included in the expressions for the field energy as quadratic functions. 

In turn, division of the general field into separate fields occurs because new degrees of 

freedom are released by means of physical analysis, which are characterized by their own 

fields. We can also say that the 4-potential of the general field can be divided to the 4-
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potentials of separate fields, and therefore it consists of them. The tendency to distributing the 

energy of interactions between the fields and substance is a consequence of the energy 

exchange between the fields and matter particles, and the difference between the fields arises 

due to different types of interaction. 

As it is shown in [13], the gravitational 4-potential of an arbitrary small particle can be 

presented as the product of the particle’s 4-velocity and the gravitational potential of this 

particle in its rest system, divided by the square of the speed of light. In this case, the 

gravitational field of a system of moving particles can be precisely calculated taking into 

account the superposition principle of potentials and field strengths of a multitude of 

particles, taking into account the propagation delay of the gravitational effect by using the 

method of retarded potentials and Lorentz transformations. Although the vector potential of a 

single particle can be considered proportional to the scalar potential, it is not so for a system 

of particles, which is the consequence of different rules of summation of scalars and vectors. 

The scalar and vector potentials of a system of particles become independent of each other. 

Exactly the same applies to the electromagnetic field of a system of charged particles. The 

acceleration field, pressure field and dissipation field were introduced by multiplying the 4-

velocity of an arbitrary system’s particle by the potential of the corresponding field at the 

location of the particle, divided by the square of the speed of light [14]. This approach is 

suitable for describing the strong interaction field and weak interaction field. In this case the 

scalar potentials of these fields are proportional to the density of the energy, accumulated by 

the matter during the reactions of strong and weak interactions per unit mass of the matter. 

This is why the 4-potential of the general field s  is the sum of the 4-potentials of 

constituent fields and at the same time it can characterize the interaction of all the fields with 

the matter. This interaction is described by the product s J 


 in the action function (1), while 

J 
 denotes the mass 4-current. 

The universal character of the equations of such fundamental fields as electromagnetic 

and gravitational fields, is most naturally explained in the Fatio-Le Sage’s theory of 

gravitation. This theory provides a clear physical mechanism of the gravitational force 

origination [15], [16], as a consequence of the influence of ubiquitous fluxes of gravitons in 

the form of tiny particles like neutrinos or photons on the bodies. This mechanism also allows 

us to explain the electromagnetic interaction [12], if we assume the presence of tiny charged 

particles in graviton fluxes. These graviton fluxes penetrate all bodies and perform 

electromagnetic and gravitational interaction by means of the field even between distant 
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particles. The particles can also exert direct mechanical action on each other, which can be 

represented by the pressure field. An inevitable consequence of the action of these fields is 

deceleration of fast particles in the surrounding medium, which is described by the 

dissipation field. Finally, the acceleration field is introduced for kinematical description of 

the motion of particles, the forces acting on them, the energy and momentum. As a result, the 

general field can be represented as a field, in which neutral and charged particles in the fluxes 

of neutral and charged gravitons exchange energy and momentum with each other and with 

gravitons. The energy and momentum of the general field can be associated with the energy 

and momentum, acquired by the fluxes of gravitons during interaction with the matter; and in 

order to take into account the system’s energy and momentum we need to add the matter’s 

energy and momentum from its interaction with gravitons. 

We should add to the above-mentioned, that the strong interaction in our opinion can be 

reduced to strong gravitation, acting at the level of atoms and elementary particles [12], [17-

18], with replacement of the gravitational constant by the strong gravitational constant. As for 

the weak interaction, from the standpoint of the theory of infinite nesting of matter, it is 

reduced to the processes of matter transformation under the action of fundamental fields, 

taking into account the action of strong gravitation. Similarly, the pressure field and 

dissipation field could be reduced to fundamental fields, if we would know all the details of 

interatomic and intermolecular interactions. Due to the difficulties with such detailed 

information, we assume the existence of own 4-potentials in the pressure field, energy 

dissipation field, strong interaction field and weak interaction field, and approximate the 

action of these fields in the matter using these 4-potentials. 

On the other hand, Abdus Salam, Sheldon Glashow and Steven Weinberg have combined 

with one formalism the weak and electromagnetic interactions in the quantum field theory. 

This implies that such combination is also possible in the classical description of fields and 

their action in massive bodies, and we make it based on the same procedure that was used in 

[4-5], [14]. As for the reactions of strong and weak interactions, we should take into account 

that they change the energy of massive objects in the macroscopic gravitational and 

electromagnetic fields. These reactions take place due to emission or absorption of the energy 

of strong microscopic fields, acting on the atomic level, lead to thermonuclear reactions and 

are the main source of stellar radiation. 

The existence of additional thermonuclear energy sources inside the stars shifts 

significantly the standard spatial distribution of physical quantities. For example, the estimate 

of the temperature in the center of the Sun in [6] in general corresponds to the formula of 
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temperature decrease proportionally to the square of the radius, as it follows from the wave 

equation for the potential of the acceleration field. However, the pressure in the center of the 

Sun is 58 times less than in the standard Sun model. This deviation occurred because we did 

not take into account the pressure effect from the energy and momentum acquired by the 

particles in nuclear reactions due to strong and weak interactions. 

If we assume that each of the seven fields under consideration is a special manifestation 

of the general field, then in case of equilibrium and steady distribution of parameters for the 

fields of strong and weak interactions we can expect the field equations, similar in the form to 

the equations for other fields. These equations can be obtained from (7-8) and from equations 

(A1-A11) in Appendix A, with replacement of the potentials and strengths of the general 

field by similar quantities from Table 2 for the strong interaction field and weak interaction 

field, respectively. In this case the coefficient   in (6), in formulas (A4) and further on must 

be replaced by other constant coefficients to be determined for each field. In particular, for 

the scalar potential of the strong interaction field in the framework of the special theory of 

relativity we expect the wave equation similar to equation (A10): 

 

2

02 2

1
4

c t


   


  


,                                              (28) 

 

where   is a certain coefficient. 

 

In stationary case, the potential does not depend on time, and the solution, that follows 

from (28), is similar to the solution for the pressure field in [6] for a spherical massive body: 

 

2 3 2

0
0

0

2
sin 4

34

c c c
c c

c c rr

cr

    
    

   

   
     

 
,                 (29) 

 

where c  is the scalar potential of the strong interaction field in the center of the body, 

2 2

1

1
c

cv c
 


 is the Lorentz factor for the particles in the center,   is the coefficient of the 

acceleration field. 
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We can express the scalar potential by a formula 
0

sp



 , where sp  denotes the volume 

energy density or the pressure, arising from reactions in the matter including strong 

interaction. Nuclear reactions occur mainly in the stellar core, on the core surface the rate of 

reactions is low, and at cr R  we can assume that 0  . Then, from (29) we can estimate 

sp  in the center of the stellar core: 

 

2 2 2
0

0 4

2 3

3 8

c c c
s

c

R M
p

R

  



 
  . 

 

Assuming for simplicity that the solar energy is produced mainly in reactions involving 

strong interaction, equating 0sp  to the pressure in the center of the Sun equal to 
162.3 10 Pa 

in the standard model [19], and substituting the core mass cM  equal to 0.34 Solar masses and 

the core radius cR  equal to 0.2 Solar radii, we obtain the estimate of the constant: 

101.6 10  m
3
/(kg·s

2
). For comparison, in the formula for the scalar potential of the 

pressure field, the same as in (29), a similar coefficient in the absence of the strong 

interaction field equals 
103 2 10G    m

3
/(kg·s

2
). According to [6], for the acceleration 

field the corresponding coefficient also equals 3G  , where G  is the gravitational constant. 
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0 0 0

1
i i i is s s T

c
    ,                 i j i j j i ks s s      ,                    (A1) 

 

where the indices , ,i j k  form triplets of non-recurrent numbers of the form 1,2,3, or 3,1,2, 

or 2,3,1; the 3-vectors T  and χ  can be written by components: 

1 2 3( , , ) ( , , )i x y zT T T T T T T  T ;   1 2 3( , , ) ( , , )i x y z        χ . 

 

Using these notations the tensor s  can be represented as follows: 
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.                                         (A2) 

 

The same tensor with contravariant indices equals: s g g s   

 . In Minkowski space 

the metric tensor does not depend on the coordinates, and in this case for the general tensor 

field we have the following: 
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The general field equation (7) can be expressed in Minkowski space in terms of the 

vectors T  and χ  using the 4-vector of mass current:  0 0 ,J u c      v , where 
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2 2

1

1 v c
 


. Substituting in (7) the covariant derivatives   with the partial derivatives 

 , we find: 

 

04  T ,     0

2 2

41

c t c
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vT
χ ,     0 χ ,     

t
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

χ
T .        (A4) 

 

If we multiply scalarly the second equation in (A4) by T , and multiply scalarly the fourth 

equation by χ  and sum up the results, we will obtain the following: 
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Equation (A5) contains the Poynting theorem applied to the general field, it is written in a 

covariant form as the time component of equation (17): 

 

0 0 0T s J 

    . 

 

If we substitute (A2) in (17), we can obtain one scalar and one vector relation: 
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The first relation in (A6) is the time component of the motion equation (16) and the 

second relation is the space component of (16). 

The vector T  has the dimension of an ordinary 3-acceleration, and the dimension of the 

vector χ  is the same as that of the frequency. 

Let us substitute the 4-potential of the general field ,s
c



 
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 

Φ  in the definition (A1): 
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The vector T  is the general field strength and it is expressed in terms of scalar and vector 

potentials of the seven fields. The vector χ  is the solenoidal vector of the general field, 

depending on the vector potentials of fields. 

We can substitute the tensors (A2) and (A3) in (6) and express the stress-energy tensor of 

the general field T    in terms of the vectors T  and χ . Let us write here the expressions for 

the tensor invariant s s  and the time components of the tensor T   : 
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The component 00T  defines the energy density of the general field in the given volume, 

and the vector 
2

0 [ ]
4

i c
cT


  Ξ T χ  defines the energy flux density of the general field. 

If we substitute T  from (A7) in the first equation in (A4), and take into account the gauge 

of the 4-potential (14) as follows: 
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we will obtain the wave equation for the scalar potential: 

 

2

02 2

1
4

c t


   


 


.                                           (A10) 

 

From (A7), (A9) and the second equation in (A4) the wave equation follows for the vector 

potential of the general field: 
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Let us now substitute in (A7) the general field potentials   and Φ , expressed in terms of 

the potentials of the seven fields, according to (14), provided 
0

0

q
const




 : 
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q q 

 

 
              

 
χ A D U Π Θ G W B Ω N I Y μ π .         (A12) 

 

In (A12) we used definitions of the field strengths, such as 
t




  


A
E , B A  for 

the electromagnetic field, and similar definitions for other fields. According to (A12), the 

strength T  and the solenoidal vector χ  of the general field are expressed in terms of the 

sums of the corresponding strengths and solenoidal vectors of the seven fields. 

If we substitute (A12) in (A2), we will obtain the relation, which coincides with (4) for the 

general field tensor: 

 

0

0

q
s F Φ u f h g w       




       . 

 

The vectors T  and χ  in (A12) are represented as the sums of the corresponding vectors 

of the seven fields. Therefore, after substituting (A12) in the general field equations (A4), 

these equations could be divided into seven sets with four equations in each set, separately for 

each field. As a result, we could assume that the fields and the equations for these fields are 

relatively independent of each other. But in general case, such division of the general field 

equations to separate equations for each field is not always possible. Probably division of 

equations and independence of fields can take place when energy and momenta distribution 

between all the fields is completed in the system. 

As we can see from (A8), the stress-energy tensor of the general field T    includes the 

vectors products of the vectors T  and χ , as well as the squares of these vectors. If we take 

into account (A12), then we can see that in the tensor T    cross terms appear, containing the 

products of strengths and solenoidal vectors of all the seven fields. This means that the fields 

tend to interact with each other, introducing additional cross terms into the energy and 
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momentum of the general field. This does not apply to the force action of the fields on the 

matter, since there are no cross terms in the equation of motion, according to (16) and (A6). 


