Proof of Beal's Conjecture

Allan Cacdac

Abstract : Using a functional equation and different proofs for its existence, we are able to prove and show that A,B and C will always have a common prime factor.

Introduction:

The Beal Conjecture

Let A, B, C, x, y, and z be positive integers with x, y, z > 2. If $A^x + B^y = C^z$, then A, B, and C have a common factor. ¹

Let A, B, C, x, y, and z be positive integers with x, y, z > 2. Then the equation

$$A^x + B^y = C^z$$

follows

$$A^{x} = p^{n}u = pu$$

$$B^{y} = p^{n}v = pv$$

$$C^{z} = p^{n} (u + v) = p (u + v)$$

Wherein p represents the factor (p^n or just p to clearly represent the prime factor) and u and v are positive integers.

Direct Proof

$$A^{x} + B^{y} = C^{z}$$

$$pu + pv = p (u + v)$$

Simplifying Left Hand Side $C^z = C^z$

$$pu + pv = p (u + v)$$

$$p (u + v) = p (u + v)$$

Simplifying Right Hand Side

$$A^{x} + B^{y} = A^{x} + B^{y}$$

$$pu + pv = p (u + v)$$

$$pu + pv = pu + pv$$

Thus the equality holds.

Proof by Induction

Let
$$p = u = v = 2$$
;
 $pu + pv = p (u + v)$
 $2.2 + 2.2 = 2(2 + 2)$

$$4 + 4 = 4 + 4$$

 $8 = 8$

Thus equality holds.

Let
$$p = p_1 + 1$$
, $u = u_1 + 1$ and $v = v_1 + 1$
$$(p_1 + 1)(u_1 + 1) + (p_1 + 1)(v_1 + 1) = (p_1 + 1)((u_1 + 1) + (v_1 + 1))$$

$$(p_1 u_1 + u_1 + p_1 + 1) + (p_1 v_1 + v_1 + p_1 + 1) = (p_1 + 1)((u_1 + 1) + (v_1 + 1))$$

$$(p_1 u_1 + u_1 + p_1 + 1) + (p_1 v_1 + v_1 + p_1 + 1) = (p_1 u_1 + p_1) + (p_1 v_1 + p_1) + (u_1 + 1) + (v_1 + 1)$$

$$p_1 u_1 + p_1 v_1 + u_1 + v_1 + 2p_1 + 2 = p_1 u_1 + p_1 v_1 + u_1 + v_1 + 2p_1 + 2$$

Thus equality holds.

To visualize our induction with exponents, we raise our prime number p to n power. Let p = u = v = 2; n = 3

$$p^{n}u + p^{n}v = p^{n} (u + v)$$

$$(2^{3} * 2) + (2^{3} * 2) = 2^{3} (2 + 2)$$

$$2^{4} + 2^{4} = 2^{4} + 2^{4}$$

$$2^{5} = 2^{5}$$

Thus equality holds.

Proof by Contradiction and Example

Assume that our equation is wrong and that the equation will not hold further with different bases and exponents.

$$7^{3} + 7^{4} = 14^{3}$$

$$14^{3} = 7^{3} * 2^{3} = 7^{3} * 8 = 7^{3} (1+7) = 7^{3} * 1 + 7^{3} * 7$$

$$14^{3} = 7^{3} + 7^{4}$$

$$7^{3} + 7^{4} = 7^{3} + 7^{4}$$

$$4^{3} = 14^{3}$$

Then our assumption is false and still the equality holds.

Conclusion:

We have clearly shown using the equation in different proofs that the equation holds its equality with a common prime factor. Since A, B and C are positive integers, and have a common prime factor, as stated previously, therefore we can conclude that the conjecture is true.

References:

¹ R. Daniel Muldin, *A Generalization of Fermat's Last Theorem: The Beal Conjecture and Prize Problem*, Notices of the AMS Volume 44 Number 11, 1436.