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The cubic equation’s relation to the fine structure constant,
the mixing angles, and Weinberg angle
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(Dated: July 25, 2014)

A special case of the cubic equation is shown to possess three unusually economical solutions. A
minimal case associated with these solutions is then shown to yield a congruous set of numbers that
fit the fine structure constant, the sines squared of the quark and lepton mixing angles, as well as
the Weinberg angle. Had Renaissance mathematicians probed the cubic equation’s solutions more
deeply these numbers might have formed a well-known part of algebra from the 16th century.

I. INTRODUCTION

In [1] the author showed how a slightly asymmetric
equation (that is, an equation whose left- and right-hand
sides are very similar) produced the experimental value
of the fine structure constant (approximately 1/137.036)
[2, 3], which elsewhere was tied to the sines squared of the
quark and lepton mixing angles [4, 5]. Here, a special case
of the cubic equation is shown to possess three unusually
economical solutions, where a minimal case associated
with the above solutions produces a set of numbers that
fit the fine structure constant, the sines squared of the
quark and lepton mixing angles, and the Weinberg angle.
This article extends the results of [6].

II. SPECIAL CASE OF THE CUBIC EQUATION

Let

Z =

(
m+ x

n

)3

+ (m+ x)2 , (2.1)

where x is a variable, Z a positive constant, and m and
n are positive integer constants such that

m =
n3

3
. (2.2)

III. FIRST SOLUTION

Then, by defining

W =
(m
n

)3
+ (m)2 (3.1)

u = 2
Z

W
− 1 (3.2)

v =
3

√
u±

√
u2 − 1 (3.3)

w = v +
1

v
− 1 (3.4)
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while choosing Z and n so that Z ≥ W (and therefore
u2 − 1 ≥ 0), we have

x = m (w − 1) , (3.5)

which can be shown to be the first of the three solutions
to be given for Eq. (2.1).

IV. MINIMAL CASE

The smallest positive integers fitting Eq. (2.2)

m = 9 and n = 3

are notable, simply because they are minimal.

V. FINE STRUCTURE CONSTANT

For the above minimal case the solution x = 1 to Eq.
(2.1) requires that

Z =

(
9 + 1

3

)3

+ (9 + 1)2

= 137.037 .

Here, the constant Z is close enough — within one thou-
sandth of one per cent — to the reciprocal of the fine
structure constant 137.036 [2, 3] to suggest that looking
for a connection might turn up interesting mathematics.

In fact it does [7]. Now, if we let

m = 9 n = 3 Z = 137.036 ,

then

W = (m/n)3 + (m)2

= (9/3)
3

+ 92

= 33 + 34

= 108
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u = 2 × Z/W − 1

= 2 × 137.036/108 − 1

≈ 2 × 1.268 851 851 − 1

≈ 1.537 703 703

v =
3

√
u±

√
u2 − 1

≈ 1.393 479 170 916±1

w = v + 1/v − 1

≈ 1.111 107 407 399 .

Therefore,

x = m (w − 1)

≈ 9 × (1.111 107 407 399 − 1)

≈ 0.999 966 666 591

≈ 1 − 1

29 999.932 142 743 338

≈ 1 − 1

3 × 104
. (5.1)

Substituting the values for m, etc. into Eq. (2.1) gives

137.036 =

[(
9 + 1

3

)
− 1

3 × 29 999.932 . . .

]3
+

[
(9 + 1) − 1

29 999.932 . . .

]2
. (5.2)

VI. AN IMPORTANT MINIMUM

Now suppose that Z takes the form

Z =
M3 −M−3

n3
+M2 −M−3 , (6.1)

where

M = m+ 1 .

Then, a surprisingly accurate and simple approximate
solution to Eq. (2.1) follows

x ≈ 1 − 1

3 ×M4
(6.2)

(see Theorem 2 in [7]). ForM = 10 this equation recovers
Eq. (5.1), so it should come as no surprise that, for the
minimal case introduced in Sec. IV, Eq. (6.1) gives

Z =
103 − 10−3

33
+ 102 − 10−3

= 137.036 .

In the previous section for the minimal case we as-
signed 137.036 to Z “by hand”; now in this section we
learn that the value 137.036 would have been assigned
to Z automatically had we combined the minimal case
with Eq. (6.1). It follows that 137.036 is itself an im-
portant minimum for the cubic equation, and hence of
purely mathematical interest (i.e., apart from its role as
an key constant of physics).

VII. QUARK AND LEPTON MIXING ANGLES

Moreover, the following four quantities seen in Eq.
(5.2)

10

3

1

3 × 29 999.932 . . .

10
1

29 999.932 . . .

which can be reproduced from the sines squared of the
quark and lepton angles, are also of purely mathematical
interest, independent of their role in physics. Specifically,
values such as 10/3, 10, etc. can be produced from the
quark and lepton mixing angles L12, L13, L23, Q12, Q13,
Q23, as follows

10/3 ≈ 1/sin2 L12

1/3 × 29 999.932 ≈ sin2Q13

10 ≈ sin2 L23 ×1/sin2Q12

1/29 999.932 ≈ sin2Q23 × sin2 L13

 (7.1)

where a mathematical model conforming to the above
relations, and predicting mixing angles (in degrees)
of 33.210 911, 8.034 394, and 45 for leptons — and
12.920 966, 0.190 986, and 2.367 442 for quarks — is de-
tailed in [5]; there, matrix algebra is used to impose three
constraints on mixing, just one of which is independent
of the four constraints imposed by Eq. (7.1). It is this
additional constraint, along with the further constraint
that L23 = 45◦, that allows the four constraints of Eq.
(7.1) to produce the six mixing angles predicted above,
which are all within the limits of experimental error.

VIII. WEINBERG ANGLE

Consider the similarity of Eq. (2.1) to Eq. (3.1): One
cannot help but notice that the constants W and Z
appear on similar footing mathematically. Hence, one
might expect W and Z to appear on similar footing phe-
nomenologically. In this section we show that W/Z can
be used to fit economically the ratio of the W- and Z-
boson masses.

At the outset, the variable names W and Z were cho-
sen in anticipation of their use in a formula reproduc-
ing the ratio of the W- and Z-boson masses — that is,
MW /MZ . That there appears to be some relationship
between W/Z and MW /MZ is shown by

W

Z
≈
(
MW

MZ

)2

≈ cos2 θW , (8.1)

where W = 108 and Z = 137.036, as before, and θW is
the simplest of the Weinberg angle’s definitions [8, 9].

Using the precisely-measured mass MZ = 91.1876 ±
0.0021 GeV, we can calculate the value of MW with the
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aid of Eq. (8.1), giving MW ≈ 80.951 GeV. Experimen-
tally, MW = 80.385 ± 0.015 GeV [10]. This calculated
MW differs from experiment by 1 part in 142 and is out
of range of experiment; but uncertainty over the best def-
inition of θW suggests that a modified, but still valid, Eq.
(8.1) might give a better fit [8, 9].

In summary, the above mathematics fits the fine struc-
ture constant, the Weinberg angle, and (with the aid of
two additional constraints) the six mixing angles L12,
L13, L23, Q12, Q13, Q23. This says something for the
congruity and efficiency of the above “cubic” framework
in modeling fundamental constants. Moreover, as will
be shown in the next two sections, the cubic equation
responsible for all this possesses two unusually compact
alternative solutions.

IX. SECOND SOLUTION

The second solution to Eq. (2.1) requires defining

cos θC =

√
W

Z
, (9.1)

where 0 ≤ θC < π/2, so that

sin θC =

√
1 − W

Z
. (9.2)

It can then be shown that Eq. (3.3) can be restated

v = 3

√
1 + sin θC
1 − sin θC

, (9.3)

so that, for real-valued v, Eq. (3.4) gives

w = 3

√
1 + sin θC
1 − sin θC

+ 3

√
1 − sin θC
1 + sin θC

− 1 . (9.4)

Substituting into Eq. (3.5) gives the second of three so-
lutions to Eq. (2.1)

x = m

(
3

√
1 + sin θC
1 − sin θC

+ 3

√
1 − sin θC
1 + sin θC

)
− 2m .

(9.5)

Now, given the round numbers

x = 1 − 1/30 000

n = 3

}
Key solution

Eq. (2.1) gives

α ≈ 1/Z

θW ≈ θC

}
Key approximations

or, equivalently,

α ≈ 1/137.036 000 002

θW ≈ 27.407 157 329◦

}
Key approximations

so that sin2 θC ≈ 0.211 886. These values are again
surprisingly close to those obtained from experiment.
Moreover, the above θW and θC are similar in multiple
ways: They are not only close numerically, but they are
also similar in how they are defined. Each depends on
∼137.036 for its value in the same way — with ∼137.036
implicitly appearing as a value (in the form of electron
charge) in the Weinberg angle’s definition [8, 9]. In addi-
tion, when one works out the dimensional details of θW ,
Eq. (8.1) emerges naturally.

X. THIRD SOLUTION

The third solution to Eq. (2.1) is the most obvious.
One merely rewrites Eq. (2.1) in the form of the gen-
eral cubic equation, and then solves it using the general
cubic’s classical solution. The classical solution to

ax3 + bx2 + cx+ d = 0 (10.1)

is

x =
3

√
q

2
+

√
q2

4
+
p3

27
+

3

√
q

2
−
√
q2

4
+
p3

27
− r ,

(10.2)

where

p =
c

a
− b2

3a3

q = − 2b3

27a3
+

bc

3a2
− d

a

r =
b

3a
.


(10.3)

Though complicated, tellingly, these complexities largely
vanish when a, b, c, and d derive from Eq. (2.1). So, when
Eq. (2.1) is expanded into the general cubic equation we
get these coefficients

a = 1 b = 6m

c = 9m2 d = m(4m2 − 3Z)

}
(10.4)

in terms of m and Z. Substituting the coefficients of Eq.
(10.4) into Eq. (10.3) allows simplifying Eq. (10.2) to get

x =
3

√
t+

√
t2 −m6 +

3

√
t−
√
t2 −m6 − 2m , (10.5)

where

t = m3 − d

2

= m
(
1.5Z −m2

)
. (10.6)

This is the third of the three solutions given for Eq. (2.1),
a solution that is notably economical.
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XI. SOLUTION ECONOMY

The complexity of the above three solutions can be
objectively assessed by comparing them against the
exceptionally-simple classical solution to the depressed
cubic, a natural off-the-shelf benchmark. This will help
clarify just how “basic” Eq. (2.1) really is. The depressed
cubic is merely the general cubic equation without its
quadratic term (i.e., b = 0). Below, the solution to the
depressed cubic will depend on just two constants: c and
d— just as earlier the solution to Eq. (2.1) depended on
just two constants: n and Z.

Assume the coefficient of the depressed cubic’s leading
term to equal one (i.e., a = 1); then for the depressed
cubic we have

x3 + cx+ d = 0 . (11.1)

Substituting the depressed cubic’s coefficients into Eq.
(10.3) gives

p = c

q = −d
r = 0

 (11.2)

so that Eq. (10.2) gives this compact solution to Eq.
(11.1)

x =
3

√
−d
2

+

√
d2

4
+
c3

27
+

3

√
−d
2

−
√
d2

4
+
c3

27
,

(11.3)

which dates back to Cardano’s Renaissance masterwork
Ars Magna.

This solution is roughly as complicated as the second
and third solutions to Eq. (2.1), showing that Eq. (2.1)
and its solutions are sufficiently fundamental to be of
interest to mathematicians. But perhaps Eq. (2.1) should
also engage the interest of physicists, given its apparent
connections to physical quantities?

XII. SUMMARY AND CONCLUSION

To help shed light on this, consider that it was the
proximity of α to 1/137.037 that earlier suggested that
Eq. (2.1) might produce interesting mathematics for the
minimal case — as it does in Secs. V and VI. In the same
way, θW helped the author find the second solution to
Eq. (2.1) — the one using θC — with θW providing the
primary clue that such a solution existed. The precise
way that α and (MW /MZ)2 mapped over to the “cu-
bic” constants 1/137.036 and 108/137.036 appeared to
require that θW have a correlate among the cubic equa-
tion’s solutions — as it does in the second solution. But
why should this second solution to the cubic equation
relate to empirical constants such as α and θW ?

Yet another way to consider the above solutions is in
their historical context: In the 16th century the Ital-
ian mathematicians Scipione del Ferro, Niccolò Tartaglia,
and Gerolamo Cardano did pioneering work on the solu-
tion to the cubic equation. Had they probed more deeply,
a congruous set of numbers fitting

• the fine structure constant

• the Weinberg angle

• 1/sin2 L12

• sin2Q13

• sin2 L23 × 1/sin2Q12

• sin2Q23 × sin2 L13

might have formed an integral part of their work from
the outset, with these numbers waiting several centuries
till their eventual re-discovery as part of 20th century
physics.
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