Seven conjectures on a certain way to write primes including two generalizations of the twin primes conjecture

Marius Coman
Bucuresti, Romania
email: mariuscoman13@gmail.com

Abstract. In this paper I make few conjectures about a way to write an odd prime p, id est $p = q - r + 1$, where q and r are also primes; two of these conjectures can be regarded as generalizations of the twin primes conjecture, which states that there exist an infinity of pairs of twin primes.

Conjecture 1
(Which can be regarded as a generalization of the twin primes conjecture)

Any odd prime p can be written in an infinity of distinct ways like $p = q - r + 1$, where q and r are also primes; in other words, there exist an infinity of pairs of primes (q, r) such that $q - r = p - 1$, for any odd prime p (it can be seen that for $p = 3$ the conjecture states the same thing with the twin primes conjecture).

Conjecture 2

Any prime p of the form $p = 6k + 1$, where k is positive integer, can be written in an infinity of distinct ways like $p = q - r + 1$, where q is a prime of the form $q = 6h - 1$ and r is a prime of the form $q = 6i - 1$ and, where h and i are positive integers.

Example: the prime $p = 7$ can be written as $11 - 5 + 1; 17 - 11 + 1; 23 - 17 + 1$ etc.; in fact, for $p = 7$ the conjecture states that there exist an infinity of pairs of sexy primes (q, r), both of the form $6k - 1$ (sexy primes are the primes that differ by each other by six).

Conjecture 3

Any prime p of the form $p = 6k + 1$, where k is positive integer, can be written in an infinity of distinct ways like $p = q - r + 1$, where q is a prime of the form $q = 6h + 1$ and r is a prime of the form $q = 6i + 1$ and, where h and i are positive integers.
Example: the prime $p = 7$ can be written as $13 - 7 + 1; 19 - 13 + 1; 37 - 31 + 1$ etc.; in fact, for $p = 7$ the conjecture states that there exist an infinity of pairs of sexy primes (q, r), both of the form $6k + 1$.

Conjecture 4

Any prime p of the form $p = 6k - 1$, where k is a positive integer, can be written in an infinity of distinct ways like $p = q - r + 1$, where q is a prime of the form $q = 6h - 1$ and r is a prime of the form $q = 6i + 1$ and, where h and i are positive integers.

Conjecture 5

(Which can be regarded as a generalization of the twin primes conjecture)

There exist an infinity of pairs of primes (p, q), where p is of the form $6k - 1$ and q is of the form $6h + 1$, such that $q - p + 1 = 3^n$, for any n non-null positive integer (it can be seen that for $n = 1$ the conjecture states the same thing with the twin primes conjecture).

Example: for $n = 2$ we have the pairs of primes (p, q): $(11, 19); (23, 31)$ etc.; for $n = 3$ we have the pairs of primes $(5, 31); (11, 37)$ etc.

Conjecture 6

Any square of prime p^2, $p \geq 5$, can be written in an infinity of distinct ways like $p^2 = q - r + 1$, where q is a prime of the form $q = 6h + 1$ and r is a prime of the form $q = 6i + 1$.

Example: the number $49 = 7^2$ can be written as $61 - 13 + 1; 67 - 19 + 1; 79 - 31 + 1$ etc.

Conjecture 7

Any square of prime p^2, $p \geq 5$, can be written in an infinity of distinct ways like $p^2 = q - r + 1$, where q is a prime of the form $q = 6h - 1$ and r is a prime of the form $q = 6i - 1$.

Example: the number $49 = 7^2$ can be written as $53 - 5 + 1; 59 - 11 + 1; 71 - 23 + 1$ etc.