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Abstract

We give some necessary and sufficient conditions for (global) continuity of the limit of a pointwise convergent net of cone metric space-
valued functions, defined on a Hausdorff topological space, in terms of weak filter exhaustiveness. In this framework, we prove some
Ascoli-type theorems, considering also possibly asymmetric and extended real-valued distance functions.

MSC: Primary: 26E50, 28A12, 28A33, 28B10, 28B15, 40A35, 46G10, 54A20, 54A40.

Secondary: 06F15, 06F20, 06F30, 22A10, 28A05, 40G15, 46G12, 54H11, 54H12.47H10.

Keywords:

lattice group; cone metric space; (free) filter; global continuity; filter convergence; (weak) filter exhaustiveness; Ascoli theorem; Lipschitz metric

1 Introduction

In the literature there have been several studies about cone metric spaces, namely abstract structures endowed with
a distance function taking values in an ordered vector or a normed space, which includes in particular metric semigroups,
whose an example is the set of fuzzy numbers, which is not a group. These structures are closely related with order vector
spaces endowed with abstract convergences satisfying suitable axioms, but in which in general convergence of
subsequences of convergent sequences is not required, like for instance filter convergence. There are several investigations
about abstract convergences, distances with values in normed, solid or Hausdorff topological vector spaces and fixed point
theory, in particular fixed point existence and uniqueness theorems and error estimates for the considered cone distance and
contraction theorems, which have several applications to differential, functional and stochastic equations and reconstruction
of signals. In this setting, there are also some other theorems related with fixed point theory, like for example continuity or
semicontinuity of suitable functions. In this paper we continue the investigation on the extension of classical theorems to the
context of cone metric spaces in connection with filter convergence.

In particular we focus our attention on properties of (global) continuity of the limit of a net of functions, taking
values in cone metric spaces, in terms of weak filter exhaustiveness, and relate filter exhaustiveness with filter uniform
convergence (on compact subsets). Moreover, we give some Ascoli-type theorems for lattice group-valued functions
defined on metric or topological spaces, and consider also asymmetric distances and extended real-valued distances, like
Lipschitz metrics, dealing with functions which are not necessarily contractions and extending earlier results proved for
real-valued or metric space-valued functions. Asymmetric distance has different applications in several branches of
Mathematics and in Physics, for example in gradient flow models, and is related also with the study of several
semicontinuity properties of functions. Observe that extended Lipschitz metrics are complete and extended Lipschitz metric
convergence is, in general, strictly stronger than uniform convergence on bounded sets. Moreover, extended Lipschitz
metrics are equivalent with the supremum metrics when the topological space X in which the involved functions are
defined is bounded and uniformly discrete (in its own metric), and they are also equivalent with the Sherbert and Weaver
metrics in case X is just bounded. Furthermore note that, since in lattice groups the order convergence is in general not
generated by any topology, in our context it is not advisable to deal with concepts like closedness and compactness in terms
of topologies. So we formulate the corresponding notions directly in the setting of convergence and in terms of function



nets, including the classical concepts as particular cases and giving some relations between filter pointwise convergence and
filter uniform convergence on compact sets. In the literature, there have been several recent studies about abstract Ascoli-
type theorems, which extend earlier results, different Ascoli-type theorems are proved, in connection with various kinds of
convergence and exhaustiveness of function nets. Our approach is direct, simple and easy to handle in the context of our
considered structures, that is when it is dealt with nets of functions taking values in cone metric spaces, defined in general
Hausdorff topological spaces and with filter exhaustiveness instead of metric spaces and equicontinuity respectively, and it
allows us to give direct necessary and sufficient conditions. We consider symmetric or asymmetric distances with values in
lattice groups and use the tool of (weak) filter exhaustiveness in connection with (global) continuity of the limit function
and uniform convergence on compact sets. One of the main used methods is to use some kinds of convergence of suitable
subnets of the given net to deduce some compactness properties. This is given in a very abstract context, comparing two
kinds of compactness for function nets, and after a particular case is presented, using compactness of suitable sets,
properties of convergence and boundedness in metric spaces and the Tychonoff theorem. Furthermore we consider
Lipschitz-type metrics using completeness properties an a “total boundedness” argument in terms of subsequence, without
using a topological approach.

2 Preliminaries

We begin with some fundamental properties of convergence and continuity in the lattice group context.
A nonempty set A = (A,2) is said to be directed iff > is a reflexive and transitive binary relation on A, such

that for any two elements 4, , A, € A thereis 4 € A with 4, > A, and 4,2 4,.

A cone metric space is a nonempty set R endowed with a function p: RXR —Y , where Y is a Dedekind

complete lattice group, satisfying the following axioms:

« p(1;,1,) 20 and p(1;,1,) =0 ifand only if 1, =7, ;

. p(rl R 1’2) = p(l’2 R rl) (symmetric property);

« p(r, 1) < p(n, 1)+ p(ry, 1) (triangular property), forall r, € R, j=1,2,3 .
Such a function O will be called a distance function. If O satisfies only the first and the third of the above axioms, but not
necessarily the symmetric property, then we say that Q is an asymmetric distance function and that (R, Q) is an
asymmetric cone metric space. Note that any Dedekind complete (£)-group Y is a cone metric space: indeed, it is enough
to take P(y;,¥,) =l y, =¥, 1. ¥, y, €Y (the absolute value).

When R is a semigroup and ¥ =R, we say that R is a metric semigroup. An example of metric semigroup
which is not a group is the set of the fuzzy numbers.

Let R be a cone metric space and ¥ be its associated Dedekind complete () -group. A sequence (0,), in ¥
is called an (Q) -sequence iff it is decreasing and A, = 0. Anet (x;),., in R (that is an indexed system of

elements of R such that the index set A is directed) is forward order convergent or forward (Q) -convergent (resp.

backward order convergent or backward (O) -convergent) to x € R iff there exists an (O) -sequence (0,), in ¥ such
that for every p€ N there is A€ A with p(x,x,)< 0, (resp. p(x,,x) <0 ,) for all e A, {>A, and in this
case we will write (O)limygea X; = X. We say that (X, ),_, order converges or (O) -converges to x € R iff it is both

forward and backward (Q) -convergent to X .

Let F bea (A) -free filter of A and choose ;G R.Anet (5;);., in R is said to be F -forward bounded
(resp. JF -backward bounded) with respect to ; iff there is k, 20, k, €Y such that {A€ A: p(;, s,)<k,}e F
(resp. {A€ A: p(sﬂ&) <k,}e F ). Wesay that (5,); is F -bounded with respect to ; iff it is both JF -forward and

JF -backward bounded with respect to ; ,and that (§,), is bounded (resp. forward bounded, backward bounded) iff it is



F
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-bounded (resp. F
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-forward bounded, F
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-backward bounded).

Let X be a Hausdorff topological space. A function f :X — R is said to be forward (resp. backward)
continuous ata point X€ X iff there exists an (O) -sequence (0,), in ¥ (depending on X ) such that for every p€ N
there is a neighborhood U of x with p(f(x), f(2)) S0, (resp. p(f(2), f(x)) <O, ) whenever z€ U, .

A function f: X — R is globally forward (resp. backward) continuous on X iff there is an (O) -sequence
(0,), in Y suchthat forany p€ N and x€ X there is a neighborhood U, of x with p(f(x), f(2)) S0, (resp.

p(f(2), f(x))<0,) foreach z€U,. We say that f € R™ is (globally) continuous on X iff it is both (globally)

forward and (globally) backward continuous on X .

Let A be any nonempty set, and P(A) be the class of all subsets of A . A family of sets Z < P(A) is called

an ideal of A iff AUB€ Z whenever A, BE 7 and foreach A€ 7 and BC A we get B€ I . A class of sets
F < P(A) isafilterof Aiff ANBe F forall A, Be F andforevery A€ F and B D A wehave Be F .

An ideal Z (resp. a filter JF) of A is said to be non-trivial iff T #< and A¢ Z (resp. F # and
De F).

Let (A,2) be a directed set. A non-trivial ideal Z of A is said to be (A) -admissible ifft A\M ; € L for each
Ae A, where M, :={{eA:{>1}.

A non-trivial filter F of A is (A) freeiff M, € F forevery A€ A.

Given an ideal Z of A, we call dual filter of I the family F ={A\I:I€ 7} . In this case we say that Z is
the dual ideal of F and we get Z ={A\F:Fe F}.

When A =N endowed with the usual order, the (IN)-admissible ideals and the (IN)-free filters are called

simply admissible ideals and free filters respectively. The filter JF is the filter of all subsets of N whose complement

cofin

is finite, and its dual ideal Z is the family of all finite subsets of N . The filter J, is the filter of all subsets of N

having asymptotic density 1, while its dual ideal Z  is the family of all subsets of N, having null asymptotic density.

Note that F, isa P -filter, namely a filter F of N such that for every sequence (A ), in F there is another sequence

S

(B,), in F, such that the symmetric difference A, AB, is finite for all n€ N and ﬂw_an e F.

A nonempty family B < P(A) is said to be a filter base of A iff for every A, B€ B there is an element
Ce B with C © AN B . Note that, if B is a filter base of A, then the family F ={A C A: there is B€ B with
B c A} isafilter of A.We call it the filter generated by BB .

If B ={M,:A€ A}, then B is afilter base of A, and the filter F, generated by B isa (A) -free filter of
A.

We now give the fundamental notions of filter convergence and related topics in the cone metric space setting.
A net (x;),., in a cone metric space R (OF) -converges to x€ R (shortly, (OF )lim; X, = x) iff there

exists an (O) -sequence (0,), in ¥ with {Ae A p(x;,x) < o,}e F foreach pe N. Anet (x;),, in R is
(OF) -Cauchy iff there is an (O)-sequence (7,), in Y such that for every pe N there is F€ F with
p(xl,xg) <7, for each A, &€ F,. Note that, since R is Dedekind complete, a net (f;), in R is (OF) -convergent
if and only if it is (OJF ) -Cauchy.

Let Z be any nonempty set. We say that a family {(x,:), :£€e B} in R (OF) -converges to X:€R

uniformly with respect to &€ Z (shortly, (UOJF) -converges to Xg) as A varies in A, iff there is an (Q) -sequence



(v,), in Y with

{Ae Azé\/Hp(xl,g,xg)Svp}e F for every pe N.

A family {(x,,), :£e E} (ROF) -converges to X:€R (as A varies in A) iff there exists an (Q) -sequence
(0,), in Y such that for each p€ N and e E weget {le A: P(xy¢.x:)S 0, 1€ F . By (RO) -convergence

we will denote the (ROF ) -convergence. Observe that, when R =Y =R, (ROJF) -convergence coincides with usual
filter convergence.
Let x€ X .Anet f,: X > R, A€ A, issaid tobe F -exhaustive at x iff there is an (O) -sequence (0,),

such that for any p€ N there exist a neighborhood U of x and aset F € F such that foreach A€ F and z€ U we
have p(f,(2), f(N <0,

Anet f,: X >R, A€ A, is weakly F -exhaustive at X iff there is an (O) -sequence (0,), such that for
each p€ N there is a neighborhood U of x such that for every z€ U thereis F, € F with p(f,(2), f,(x)) <0,
whenever A€ F. .

We say that f,: X — R, A€ A, is (weakly) F -exhaustive on X iff it is (weakly) F -exhaustive at every

x€ X withrespect to a single (Q) -sequence, independent of x€ X .
Similarly as above it is possible to formulate the notions of (ROJF)- and (UOJF) -forward (backward)

convergence and the concepts of (weak) J -forward (backward) exhaustiveness.
Of course the concepts of (weak, forward, backward) filter exhaustiveness can be given also analogously for

sequences of functions, by taking A = N with the usual order.
In general, the notion of weak J -exhaustiveness is strictly weaker than that of J -exhaustiveness, even when

A=Nad R=Y=R.

3 The main results

We now give, in the context of filter convergence and lattice groups, a necessary and sufficient condition under

which the limit of a pointwise convergent net (f;), is (globally) continuous.

Theorem 3.1 Under the same above notations and assumptions, let J be a () -free filter of A, fix xe X ,
and suppose that f/l :X >R, Ae A, (ROF) -converges to f:X = R on X with respect to a single (O) -
sequence (G; )p in Y . Then the following are equivalent:

(@) (f;), isweakly F -exhaustive at X ;

(ii) f is continuous at X .

Theorem 3.2 Under the same notations and assumptions as in Theorem 3.1, suppose that f/l :X >R, Ae A,

(ROF) -convergesto f :X — R on X with respect to a single (O) -sequence (G; )p in Y . Then the following are

equivalent:

(@) (f;), isweakly F -exhaustive on X ;
(ii) f is globally continuous on X .

Proposition 3.3 Let F, X, R be as in Theorem 3.2, f/l : X >R, Ae A, be a function net, JF -exhaustive



on X and (R0.7:) -convergent to fG RX on X .
Then f is globally continuous on X , and the net (f/l)ﬂ (UOF) -converges on every compact subset C < X

with respect to a single (O) -sequence, independent of C .

Proposition 3.4 Let ', X, R beasabove. If f,: X — R, A€ A, is a net of functions, globally continuous
with respect to a single (O) -sequence independent of A and (UOF) -convergentto f € R* on X , then f is

globally continuous and (f/l)ﬂ is J -exhaustive on X .

Remark 3.5 Proceeding analogously as above, it is possible to see that Theorems 3.1, 3.2 and Propositions 3.3,
3.4 hold even when the distance function 0 does not satisfy necessarily symmetric property, and (ROF) - (UOF) -)
convergence, (weak) J -exhaustiveness and continuity are replaced by (ROF) - (UOJF) -) forward (backward)
convergence, (weak) JF -forward (backward) exhaustiveness and forward (backward) continuity respectively, under the
hypothesis that the forward and backward convergences are equivalent.

We now give some versions of Ascoli-type theorems in the context of lattice groups and filter exhaustive nets.
Note that in our context, since we deal with abstract structures which are not necessarily by a topology, it will be advisable
to deal with suitable notions of “filter closedness” and “filter compactness” in relation with convergences, which are not

necessarily generated by a Hausdorff topology. For example, note that in the space L’([0,1],X,V) of all measurable

functions on [0,1] with respect to the O -algebra X of all Borel subsets of [0,1] and the Lebesgue measure V', with

identification up to V -null sets, order convergence coincides with almost everywhere convergence, which does not have a
topological nature. Moreover there exist Dedekind complete vector lattices which do not have any Hausdorff compatible
vector topology, for which every bounded monotone increasing sequence converges to its supremum.

Given a directed set A, a (A) -free filter F of A, a topological space X , a cone metric space R and a
nonempty set @ € R, we say that ® is (ROF) -compact (resp. (¢F) -compact) iff every net (f1) e in @ admits
a subnet (f/lx) wen» (ROF) -convergent to an element f € @ (resp. (UOF) -convergent to an element f € ® on
every compact subset C C X with respect to a single (O) -sequence independent of C). We say that @ is (ROF) -
closed iff f € ® whenever (f;), isanetin ®, (ROF) -convergent to f € R* . The (ROF) -closure of ® is the
set of the functions f € R* , having a net (f)), in @, (ROF) -convergent to f . Analogously as above, it is possible

to formulate the notions of (¢F') -closedness and of (cF) -closure. Note that @ is (ROJF) -closed (resp. (¢F) -
closed) if and only if it coincides with its (ROJF) -closure (resp. (¢F) -closure).

We now are in position to give the following abstract Ascoli-type theorem.

Theorem 3.6 Under the same notations and hypotheses as above, if ® ¥ < R | where ® is (¢F) -closed
and ¥ is (ROF) -compact, and

H) . every (ROJF) -convergent net (h/l)ﬂe/\ in ® has a subnet (hﬂg )561\, (ROF) -convergent (in RX)

and F -exhaustive,
then ® is (cF) -compact.

Moreover, if ® is (cF) -compact, then @ satisfies condition H)
Theorem 3.7 Let (X, dX ) and (R, dR) be asymmetric metric spaces, such that dX and dR are real-valued
distance functions, y be a fixed element of R, and JF be any free filter of N . Suppose that each subset of R, F -

forward closed and F -forward bounded with respect to 'y , is J -forward compact, and that forward and backward

convergence in R are equivalent. Let & C R” be such that



3.7.1) every sequence (fn)n in ®, pointwise forward convergent in R hasa fcoﬁn -exhaustive subsequence
in ®;
3.7.2) every sequence (fn)n in ® has a subsequence (fn )r, F -pointwise forward bounded in R with
r

respectto y .
Then every sequence (f,), in ® admits a subsequence, uniformly convergent on every compact subset C < X

in the usual sense.

Corollary 3.8 Under the same hypotheses and notations as in Theorem 3.8, let F be a P -filter of N . Let

® c R” satisfy 3.7.2) and be such that
3.8.1) every sequence (fn)n in ®, pointwise forward convergent in R”, has a F -exhaustive subsequence in

P.

Then (f,), has a subsequence, uniformly convergent on X in the usual sense.
We now give some versions of abstract Ascoli-type theorems with respect to Lipschitz-type metrics.

Let (X,d) be a metric space endowed with a real-valued distance function, R be a Dedekind complete lattice

group, ¥ = R endowed with the absolute value, and let us add to R an extra element + oo, satisfying the properties
analogous to those of the element + oo of the extended real line. We say that f : X — R is Lipschitz iff there is a positive

element M € R with | f(x,)— f(x,)I€d(x;,x,)M whenever x,, x, € X , and in this case we set

L f(x)—f(x)]
II(f):=v ACNACSY X, %€ X 1x £ X, ®)
d(x,x,)
If f:X — R is not Lipschitz, then we put I1( f') :=4co. Note that, even if X is a compact metric space, R =R and
f:X — R is continuous, it may happen that II( f) = oo : indeed, it is enough to take f(x) = x"*, xe€ [0,1].
We now fix a point X, € X and consider the following extended metric:

d, (fi: o) = f1o) = L) IVITCS, = o), fiof, : X = R. ©

Given a directed set (A,>) and a (A) -free filter F of A, we say that

(Flimd, (f;,/)=0 or (Fd)lim [, = f

iff there is an (O) -sequence (O'p ), » with
{Ae A:d (f;,f)<o,}e F for every pe N.
In this case, we say that the net (f,), (Fd,)-convergesto f .Thenet (f,), is (Fd,)-Cauchy iff there is an (O) -
sequence (0,), with the property that for every p€ N thereis F € F with d, (f;, f;) < O, whenever £, leF.
Proposition 3.9 Let f,: X = R, A€ A, be a function net, (Fd, ) -convergentto f , and x, be related with
d, . Then, for every k >0, (f;), (UOF) -convergesto f ontheset S(x,,k):={xe X :d(x,x,) <k}.

As a consequence of Proposition 3.10, we state the following completeness result.
Proposition 3.10 Under the same above notations and hypotheses, let f,: X — R, A€ A, bean (Fd,)-

Cauchy net of functions, globally continuous with respect to a single (O) -sequence. Then (f;), (Fd,)-convergestoa

globally continuous function f : X — R.
The next step is to give an Ascoli-type theorem involving d .- We say that a net fﬂ X >R, AeA.is F-

finitely d 1, -bounded iff there exists a finite number g of globally continuous functions hl,...,hq e R” , of elements

Bs--os1, € R, of sets Ey,..., E_ with A=Uj=lEj,andaset F e F such that dL(fA,hj)Srj forevery je[l,q]



and whenever Ae FNE Iz

Theorem 3.11 Let X be a metric space. If ® ¥ < R* , where ® is (cF) -closed and ¥ is (ROF) -
compact, and if we assume that

3.11.1) every (ROJF) -convergent netin ® is JF -finitely dL -bounded,
then ® is (¢F) -compact.
Theorem 3.12 Let F be any free filter of N, X be a separable metric space, ® C R* be (C.7:COﬁn ) -closed,

and such that every sequence fn X >R, neN,in ® is F -finitely dL -bounded. Then P is (C:FC ) -compact.
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