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Abstract

So far all theoretical models claiming to explain the Fractional Quantum
Hall Effect are macroscopic in nature. In this paper we suggest a truly mi-
croscopic structure of this phenomenon. At the base is how electron charge is
defined in the group SU(N) for arbitrary values of integer N. It is shown how
all discovered charges in the Fractional Quantum Hall Effect are accounted
for in this model. We show how Greenberg Parafermions, obeying parastatis-
tics, are fundamentally required within this picture to explain the Fractional
Quantum Hall Effect. We also show how both the Fractional Quantum Hall
Effect and the Integral Quantum Hall Effect are explained in a common
unified description in this microscopic model.
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Completely unexpected effects in the transport properties of two dimen-
sional electron gas, subjected to low temperatures and strong magnetic fields,
the so called Fractional Quantum Hall Effect (FQHE) and Integral Quan-
tum Hall Effect (IQHE), have brought forth issues related to macroscopic
and microscopic quantum mechanics. All kind of fractional charges with odd
denominators like, 1/2, 2/3, 3/5, 4/5, 2/7, 3/11, 6/23, 2/9, 10/21 plus many
others with even-denominators like 5/2, have been identified experimentally.

Earlier one knew of fractional quark charges of magnitude 2/3 and -
1/3. Now we are being confronted with all kind of new fractional charges
in FQHE. This is certainly one of the most puzzling issues in physics today.
It is popularly felt that FQHE implies existence of quasiparticle collective
states within the broad framework of macroscopic quantum mechanics. For
example in Laughlin’s model [1], FQHE arises within a gedanken experiment
approach to the gauge transformation of wave functions in a magnetic field.
His approach emphasizes a kind of macroscopic quantum phenomenon which
however says nothing about the actual quantization process.

We’d like to refer to Laughlin’s quotation in ref.[2], ”And I see the frac-
tional quantum Hall effect as a deep and important procedure for our guid-
ance. Its fractionally charged excitations are, I believe, related to the frac-
tionally charged quarks of the standard model of particle physics.” Indeed,
below we make this ”guess” into a concrete and specific mathematical struc-
ture which actually relates these so called ”quark” fractional charges to the
fractional charges of the FQHE. An additional feature of our model here, is
that it accounts for all the fractional charges already identified experimen-
tally and makes predictions for many more to be discovered in future. It also
explains the anomalous fractional charge of 5/2 well. It also it unifies the
FQHE with the IQHE as well. Interestingly it is Greenberg parastatistics [3]
which is fundamental for our model.

Let us go back to our paper of 1983, ”What Leptons Really are!” [4].
Here we quote from the Abstract, ”It is shown that leptons in reality are free
quarks in disguise. These quarks acquire zero or unit charges as they leak
out weakly from ’baryons’ and mesons to exist singly as leptons”.

But, first the issue of electric charge quantization in the Standard Model
(SM) of particle physics based on the group structure SU(N)c ⊗ SU(2)L ⊗
U(1)Y with the number of colours Nc=3. It was shown by the author that
the electric charge is actually fully and consistently quantized in the SM with
these given as [5,6]:
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For Nc=3 it gives the correct electric charge of u- and d-quarks. It is
surprising that electric charge has contributions for the colour which arises
from the orthogonal group SU(N)c in the SM group of SU(N)c⊗ SU(2)L⊗
U(1)Y with respect to the electroweak group SU(2)L⊗U(1)Y . QCD does not
know of the electric charge but the electric charge knows of QCD ( actually
through anomaly in SM ). Note that the baryon number in the SM is 1

Nc
.

Now QCD for arbitrary number of colours in the group SU(Nc) is of great
interest for a proper understanding of the hadronic structure [7]. In all such
studies (as for example manifested in the work in ref.[7]), Until our work
[5,6], people always took electric charge of u- and d-quarks to be always 2/3
and -1/3 respectively for any number of colours Nc; that is, these charges are
static and independent of colour. The author showed [5,6] that this was not
correct and that the correct electric charges of u- and d- quarks are colour
dependent as given in the above expression.

Now as a function of Nc the electric charges are not static. These are;
Nc = 2, Q(u)=3/4 and Q(d)=-1/4
Nc = 3, Q(u)=2/3 and Q(d)=-1/3
Nc = 5, Q(u)=3/5 and Q(d)=-2/5
Nc = 7, Q(u)=4/7 and Q(d)=-3/7
Nc = 9, Q(u)=5/9 and Q(d)=-4/9
Nc =∞, Q(u)=1/2 and Q(d)=-1/2
It is intriguing that some of these charges have values which match the

experimental values found in FQHE. But not to forget, that these are for
quarks with colour degree of freedom. Within the same SM picture we also
found that for the electron and the neutrino the charges in the SM were
always -1 and 0 respectively [5,6] ( and of course independent of colour ).

Note that the SM SU(3)c⊗SU(2)L⊗U(1)Y charges are exactly the same
as those found as per the well known Gell-Nishijima expression for the group
SUF (3) for the three flavour quark models [8];

Q = T3 +
Y

2
= T3 +

(B + S)

2
(2)
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Note that here the quark charges are defined in terms of the two diagonal
generators of the flavour group SU(3)F . This is completely different from the
above SM definition of the electric charge. There (in the SM), the baryon
number was arising from the colour degree of freedom, while here (in the
group SUF (3) the baryon number as B=1/3 for S=0, is defined by the second
diagonal generator of the SU(3) group.

We know that there is another flavour of quark, the c-quark which requires
that the above group be expanded to a bigger flavour group SU(4)F . Now this
group has three diagonal generators [8]. The third new diagonal generator,
now defines the new C quantum number and does nothing to the already
defined baryon number for the three flavours. So the revised Gell-Mann-
Nishijima expression of electric charge for 4-flavours is different in nature with
respect to the original definition. We now know of six flavours of quarks, and
then the Gell-Mann-Nishijima definition for the electric charge is generalized
for the group SU(6)F as

Q = T3 +
(B + S + C + b+ t)

2
(3)

where the quantum numbers S,C,b,t are -1, 1, -1, and 1 for the strange,charm,
beauty and top quarks respectively. As for the case of the charm quark, every
time, the new diagonal generator arising in the larger flavour group, defines
the corresponding new quantum number as above. Note, once again, as to
how the SU(3)F is distinct from the other flavour groups due to the reason
of it defining the baryon number and the strangeness S at the same time,
which the other higher flavours groups do not do. The full significance of
this asymmetry between SUF (3) and flavour group for 4,5 and 6 flavours is
not fully understood yet.

The next question is that we have a general expression of electric charge
for 2,3,4,5,6 flavours which matches the experimental value of 2/3 and -1/3.
IN contrast We got a unique value of the electric charges for different colours
in the SM for arbitrary number of colours in the group SU(N)c ⊗ SU(2)L ⊗
U(1)Y and which matches with the above only for Nc=3.

Is the above expression of electric charge eqn. (3) for six flavours, the
most general and intrinsic definition within the group structure SU(6)F ?
The answer right away is in the negative, as we already saw that the second
diagonal generator of SU(3)F defined both the baryon number and the new
quark quantum number (Strangeness) while in the higher flavour groups the
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new generator only defined the quantum number associated with the new
flavour quarks coming in. Thus the 3-flavour group is distinct from the 4-,5-,
and 6-flavour groups.

So what is the most general intrinsic group theoretical definition of the
electric charge for the group SU(N)F for an arbitrary number of flavours NF

? This is what was done by the author in 1983 in ref.[4]
Let us see what the group theoretically consistent definition of the electric

charge is for the flavour group SU(N)F for arbitrary number of flavours NF .
First let us rewrite the Gell-Mann-Nishijima definition of electric charge for
the group SU(3)F as

Q3 = T3 +
Y3
2

= T3 +
(B3 + S3)

2
(4)

where Q3=Q, Y3=Y, B3=B and S3=S as per the standard notation in
eqn. (2). The subscript 3 here is used to indicate that it holds for the group
SU(3)F . Here the electric charge is defined in terms of the two diagonal
generators of the group SU(3)F . We take this as a fundamental property,
which defines the electric charge consistently within the particular group
under consideration, and use it to define electric charge for any arbitrary
value of NF for the group SU(N)F . It is that, we should be able to define
electric charge in terms (NF -1) diagonal generators of the group SU(N)F .
So for the group SU(4)F we define:

Q4 = T3 +
Y3
2

+
Y4
3

(5)

where Y4 is to SU(4)F what Y3 (or hypercharge) is to SU(3)F . Its values
for the quarks u-, d-, s- and c- are 1/4, 1/4, 1/4, -3/4 respectively ( see Table
1). Note that in ref.[9] Y4 is referred to as supercharge (Z). In fact such an
expression had been suggested for the quark charge in ref.[10], though their
interest was more in generalizing the triality concept of SU(3) to the group
SU(N). Here we will go beyond this and generalize the concept to the other
quantum numbers for any group [4]. For example note that Y3 = B3 + S3

where B3 (=B) is the SU(3) baryon number and S3 (=S) is a new quantum
number (strangeness) which distinguished it from the other two, u- and d-
quarks. Similarly in SU(4)F let us define Y4 = B4 +S4 where we identify B4

with SU(4)F baryon number and S4 with a new quantum number which will
distinguish the fourth quark from the others. This, in the standard notation
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is the charm quantum number C. So it is S4 (=-C)=-1 for the c-quark and
zero for the others. So Y4 = B4 + S4 looks like this:


1/4

1/4
1/4

−3/4

 =


1/4

1/4
1/4

1/4

 +


0

0
0
−1


(6)

That is, the baryon number B4 is 1/4 for all the quarks u,d,s,c. Using
eqn (5), the electric charge Q4 for the same quarks is 3/4, -1/4,-1/4,-1/4
respectively. These are displayed in Table 1.

We extend this approach to SU(5) right away.

Q5 = T3 +
Y3
2

+
Y4
3

+
Y5
4

(7)

Here Y5 is to SU(5)F what Y4 and Y3 are to SU(4)F and SU(3)F re-
spectively. Also Y5 = B5 + S5 where B5 is the baryon number and S5 is
the quantum number which distinguishes b-quark from all the others. Now
the charges for u,d,s,c,b quarks in SU(5)F are 4/5, -1/5, -1/5, -1/5, -1/5
respectively (see Table 1).

These arguments are generalized to any SU(N)F for arbitrary flavours.

Clearly therein the charge QNF
of the u-quark would be (NF−1)

NF
and that of

all the others - 1
NF

. Clearly same holds for two flavours also (see Table 1).
Note that as the experimental quark charges are always 2/3 or -1/3, and

this holds only for 3-flavours group and not for a general flavour group. Then
the question arises, as to what are all these above charges given in Tble 1?
Although these are not experimental quarks, we continue to use the generic
name ”quarks” for them, in as much as these are fractionally charged.

As such, let us continue as we did in ref. [4]. In SU(N)F the charge QNF

for the u-quark is (NF−1)
NF

and that of the d-quark is - 1
NF

and the baryon num-

ber BNF
for both is 1

NF
. Let us go down in the sequence NF → (NF − 1)→

NF − 2→ ... In Table 1, we may go right up to NF = 2. Let us extrapolate
to NF = 1 and then we find that baryon number goes to 1 and the u-quark
and the d- quark charges go over to 0 and -1 respectively. Note the uncanny
similarity to the leptons, wherein the lepton number is identified with the
baryon number 1 above and the charges 0 and -1 with the neutrino and the
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electron charges respectively. And this led to the earlier conclusion, that
actually the ”leptons are quarks in disguise” [4]. One may assume here some
kind of a tumbling mechanism through the above flavours, to achieve this
correspondence.

Now let us assume that the above SU(N)F model charge arises in an
independent model structure for what we now call ”general-leptons”. So waht
we are saying is that the structure of these ”general-leptons” is determined
by the above group, which we now relabel as SU(N)lep.

Then this ”general-electron”, is having a lepton number 1
NF

and an elec-

tric charge - 1
NF

. Hence, for example, for NF=5, as given in Table 1, the
general-electron has a lepton number 1/5 and an electric charge -1/5. We
therefore have unique correspondence with the charges in the FQHE. Hence
the FQHE of charge 4/5 ( as quoted in FQHE literature ), would require to
put four of these general-electrons together as a composite whole. Also the
FQHE of 5/2 is simple composite of five charge 1/2 general-electrons of the
group SU(2)lep. Note that for NF=4, two charges 1/4+1/4=1/2 and hence,
as all the charges should be independent, this is disallowed. Note that this
picture is general enough to account for any observed fractional charges. And
of course, this model predicts many more to be discovered in the future.

Now remember that the Gell-Mann-Nishijima charge for SU(3)F quark
model works for a symmetric state with the three quark flavours, two spins
and the orbital degrees of freedom. This was a crisis, as to the fermionic
character of the quarks [8].

In 1964, Greenberg suggested [3] that to resolve the above issue of the
symmetry of the quarks, one can assume that quarks are parafermions of
order three. This corresponds to a three-valued hidden colour degree of
freedom, which was introduced by Han and Nambu in 1965.

Thus for SU(3)F quarks, the proper understanding of the symmetry puz-
zle was the introduction of a three valued colour degree of freedom. Now here
we see that a general-electron too, as per Table 1, has a charge of 1/3 for an
independent group SU(3)lep. What is the difference between the quarks of
the group SU(3)F and the general-electrons of the group SU(3)lep?

Here we suggest that both of the above correspond to being Greenberg
parafermions of order three. Then what distinguishes them?

Note that in the Han-Nambu picture of the quark model, one can build
a gauge theory of Quantum Chromodynamics. In contrast, the Greenberg
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parafermion formalism is not directly amenable to gauging. This is true, as
the parastatistics of H. S. Green cannot be gauged. This is because, the com-
mutation rules for the Green components with equal index, are not the same
as the Green components with unequal Green number values commutator
rules. Greenberg and Macrae showed [11] how to modify the Green parame-
ters so that it can be gauged by reformulating parastatistics with Grassmann
numbers.

Observable quantities are intimately connected with the gauge symmetry
of the theory. Within the framework of parastatistics if only currents such
as

[Ψ(x), γµΨ(x)] (8)

are observed then the gauge symmetry is SU(3). However if the observ-
ables are given by the current

[Ψ(x), γµΨ(x)] (9)

then the gauge symmetry would be SO(3).
For quarks we know that currents of baryon number zero are relevant,

and hence the currents in eqn. (8) are needed and hence the gauge group is
SU(3) and around which the successful QCD gauge theory is built upon.

The current of eqn.(9) have non-zero baryon number. This is not true
of quarks. But it seems to be appplcable to the FQHE. That is that in this
form, the parafermions would reproduce FQHE structure. Hence the current
in eqn. (9) should be useful to the general-electrons of the group SU(3)lep.
Hence we suggest that the Greenberg fermions hold for the general-leptons
arisisng from the group structure SU(3)lep and leading to a SO(3) gauge
structure.

Hence the Greenberg parafermions hold both for the quarks with SU(3)c
colour symmetry classification group and a SU(3)c gauge group for QCD; and
for the general-electrons with SU(3)lep as the classifcation group (and giving
its quantum numbers) and requiring an SO(3) gauge group to account for the
FQHE and IQHE. For arbitrary N with Grassmann numbers for Greenberg
fermions, we generalize the same to SU(N)lep as classification scheme for
these and requiring an SO(N) gauge group struture for the same to model
the FQHE and the IQHE, in an unified manner
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Below, we give few Young Diagrams of the representations of Greenberg
parafermions of order three. Similarly we obtain what the representations of
Greenberg parafermions of order NF would appear as bosons and fermions,
along with mixed symmetric states.

For Greenberg parafermions of order 3, the Young Diagrams displaying
the symmetry e.g. are as given here (note: we quote charge in units of
electronic charge - to conform to the standard FQHE literature) :

boson ; charge 1/3 ; lepton number 1/3

boson ; charge 2/3 ; lepton number 2/3

fermion ; charge 1 ; lepton number 1

mixed ; charge 4/3 ; lepton number 4/3

And with Greenberg parafermions of order 7, we have e.g.

boson ; charge 4/7 ; lepton number 4/7

fermion ; charge 1 ; lepton number 1

In summary, we know that in SU(3)F , we have quark charges, and for a
proper understanding of hadron requires an independent three valued colour
degree of freedom. In hadrons the three of colour, is sacred in as much as
only three quark-kind are needed to make baryons with any kind, out of the
six known flavours. We have shown that for SU(N), the group theoretically
consistent definition of electric charge for any N are unique, and different from
the corresponding charges of the quarks. These SU(N) charges for N flavours
are actually the proper variable charges for leptons and as per the requirement
of the Greenberg prastistics, reproduce an SO(N) gauge theoretical structure.
Thus all the fractional charges of the FQHE are explained with these entities
as being Greenberg parafermions. IQHE charges are also explained within
the same structure. The whole picture is truly microscopic.
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Table 1
Read it as if the SU(5) Table below is patched to the right of the main

Table above it.

| I2 B2 S2 Q2 | Y3 B3 S3 Q3 | Y4 B4 S4 Q4 |
| − − − − | − − − − | − − − − |

u | 1/2 1/2 0 1/2 | 1/3 1/3 0 2/3 | 1/4 1/4 0 3/4 |
d | −1/2 1/2 −1 −1/2 | 1/3 1/3 0 −1/3 | 1/4 1/4 0 −1/4 |
| − − − − | | |

s | 0 0 0 0 −2/3 1/3 −1 −1/3 | 1/4 1/4 0 −1/4 |
| − − − − − − − − − | |

c | 0 0 0 0 0 0 0 0 −3/4 1/4 −1 −1/4 |
| − − − − − − − − − − − − − − |

b | 0 0 0 0 0 0 0 0 0 0 0 0 |
| − − − − − − − − − − − − − − |

| Y5 B5 S5 Q5 |
| − − − − |

u | 1/5 1/5 0 4/5 |
| − − − − |

d | 1/5 1/5 0 −1/5 |
| − − − − |

s | 1/5 1/5 0 −1/5 |
| − − − − |

c | 1/5 1/5 0 −1/5 |
| − − − − |

b | −4/5 1/5 −1 −1/5 |
| − − − − |
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