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Abstract 

A parallel construction exists in Vedic Nuclear Physics which appears to be
the Exceptional Lie Algebra E8 and the Hopf Fibration. This paper describes
the key sphere H7 in Vedic Physics and then attempts to draw isomorphic
relationships  between  the  structures.  In  this  way,  this  paper  attempts  to
explain the relationship between E8 and the Hopf Fibration, which is not well
understood generally, in the hope that Vedic Nuclear Physics may provide a
heuristic model. Along the way, this paper describes the life cycle of galaxies,
from birth to final destruction into Dark Matter. 
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Introduction 

In recent years the Exceptional Lie Algebra E8 has taken center stage as
somehow central to a Theory of Everything (TOE), first under Garret Lisi, who
brought  E8  to  international  fame,  and  then  others  who  have  criticized  or
supported Lisi. No one really has a definitive answer, and much of what was
written about E8 is pure conjecture, based on K Theory or M Theory or Super
String or …none of which have much to support them in any event. 

In contrast, Vedic Physics knows precisely what E8 is and what it does, and
what comes after E8 in the sequence of the formation of matter, all included
herein. 

Western  mathematical  physics  knows  comparatively  little,  in  fact,  since  it
develops in linear fashion, moving from point A to point B to point C, etc. No
one knows whether Point C was in fact the proper and correct next step, for it
could lead to a blind alley or cul - de - sac, detaining scientific progress for a
century or more. 

For  example,  we have had Hamiltonians since around 1850,  but  failed to
come up with Bott Periodicity until 1950, because late - Nineteenth Century
mathematicians disregarded quarternions. Having devised Bott Periodicity, no
mathematician considered to link that with Pisano (Fibonacci) Periodicity until
the present author did so in a paper published on Vixra in 2013. In recent
years  Nobel  Laureate  Sir  Roger  Penrose has disdained the  Octonions as
“useless” in terms of physics, yet this criticism fortunately has failed to inhibit
research into this area. 

In fact, ancient science had already fully articulated quarternions, octonions
and beyond, some 15,000 years ago in Egypt, Hindu culture and in China
much later, but western mathematics has such short cultural memory that it
never acknowledged the connections. Worse yet, western mathematics has
taken claim for “discoveries” which originated in these ancient areas, or else
ascribed their authorship to ancient Greece. 

As western mathematics undertakes to re - invent the wheel, progress could
be  enhanced  with  reference  to  the  more  advanced  science  of  extremely
ancient Hindu culture. Hindu or Vedic Science is a fully - articulated, advanced
science from a far more advanced society,  which was intended to survive
natural disasters such as Ice Ages, Pole Shift and sheer human ignorance.
After all,  it  has taken this civilization, if  it  can be called that,  some 13,000
years of evolution to reach the point where, by standing on tiptoe, we can



begin to glimpse the marvels of ancient science - just prior to the next global
debacle. 

The  author  has  noticed  many  parallel  qualities  between  Exceptional  Lie
Algebras and what Vedic Nuclear Physics terms as Hyper Circles, which have
been  described  in  detail  and  given  numerical  quantities.  Moreover,  the
Sanskrit  text  of  the  Rig  Veda  which  describes  Hyper  Circles  specifically
contains the word for “fibre,” which heuristically suggests the Hopf Fibration.
This paper attempts to draw isomorphic relationships between the Exceptional
Lie Algebras and Hyper Circles, as well as the Hopf Fibration in order to shed
light on the proper relationship between these concepts. 

Jorge O’Farrell - Figueroa has done some interesting work in this area, but
has since failed to follow the thread. John Baez re - worked this, but in a
recent  email  admitted  that  he has never  followed up on this  thread since
2008. An email to O’Farrell  - Figueroa awaits response, but it is likely that
most mathematicians don’t like to be reminded about research promises they
have failed to fulfill  over the years. Nevertheless, this is but a small matter
involving the Magic Square of Lie Algebras, and the author has done his best
to ameliorate the lapses in the field. 



Magic Square of 
Exceptional Lie Algebras 

A \ B R C H O

R A1 A2 C3 F4

C A2 A2 × A2 A5 E6

H C3 A5 D6 E7

O F4 E6 E7 E8

In mathematics, the Freudenthal magic square (or Freudenthal–Tits magic
square) is a construction relating severalLie algebras (and their 
associated Lie groups). It is named after Hans Freudenthal and Jacques Tits, 
who developed the idea independently. It associates a Lie algebra to a pair of 
division algebras A, B. The resulting Lie algebras have Dynkin 
diagrams according to the table at right. The "magic" of the Freudenthal magic
square is that the constructed Lie algebra is symmetric in A and B, despite the
original construction not being symmetric, though Vinberg's symmetric 
method gives a symmetric construction; it is not a magic square as 
in recreational mathematics.
The Freudenthal magic square includes all of the exceptional Lie groups apart
from G2, and it provides one possible approach to justify the assertion that 
"the exceptional Lie groups all exist because of the octonions": G2 itself is 
theautomorphism group of the octonions (also, it is in many ways like 
a classical Lie group because it is the stabilizer of a generic 3-form on a 7-
dimensional vector space – see prehomogeneous vector space).

See history for context and motivation. These were originally constructed circa
1958 by Freudenthal and Tits, with more elegant formulations following in later
years.[1]

Tits' approach[edit]

Tits' approach, discovered circa 1958 and published in (Tits 1966), is as 
follows.
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Associated with any normed real division algebra A (i.e., R, C, H or O) there is
a Jordan algebra, J3(A), of 3 × 3 A-Hermitian matrices. For any pair (A, B) of 
such division algebras, one can define a Lie algebra

where der denotes the Lie algebra of derivations of an algebra, and 
the subscript 0 denotes the trace-free part. The Lie 

algebra L has  as a subalgebra, and this acts 

naturally on . The Lie bracket on  (which is 
not a subalgebra) is not obvious, but Tits showed how it could be defined, 
and that it produced the following table of compact Lie algebras.

B R C H O

A der(A/B) 0 0

R 0

C 0

H

O

Note that by construction, the row of the table with A=R gives der(J3(B)), and similarly vice versa.

Vinberg's symmetric method[edit]

The "magic" of the Freudenthal magic square is that the constructed Lie algebra is symmetric in A and B. This is not 

obvious from Tits' construction. Ernest Vinberg gave a construction which is manifestly symmetric, in (Vinberg 1966). 

Instead of using a Jordan algebra, he uses an algebra of skew-hermitian trace-free matrices with entries in A ⊗ B, 

denoted . Vinberg defines a Lie algebra structure on

When A and B have no derivations (i.e., R or C), this is just the Lie (commutator) bracket 

on . In the presence of derivations, these form a subalgebra acting naturally 

on  as in Tits' construction, and the tracefree commutator bracket on  

is modified by an expression with values in .

Triality[edit]

A more recent construction, due to Pierre Ramond (Ramond 1976) and Bruce Allison (Allison 1978) and 

developed by Chris Barton and Anthony Sudbery, uses triality in the form developed by John Frank Adams; this 

was presented in (Barton & Sudbery 2000), and in streamlined form in (Barton & Sudbery 2003). Whereas 

Vinberg's construction is based on the automorphism groups of a division algebra A (or rather their Lie algebras 
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of derivations), Barton and Sudbery use the group of automorphisms of the corresponding triality. The triality is 

the trilinear map

obtained by taking three copies of the division algebra A, and using the inner product on A to dualize the 

multiplication. The automorphism group is the subgroup of SO(A1) × SO(A2) × SO(A3) preserving this 

trilinear map. It is denoted Tri(A). The following table compares its Lie algebra to the Lie algebra of 

derivations.

A: R C H O

0 0

0

Barton and Sudbery then identify the magic square Lie algebra corresponding to (A,B) with a Lie algebra 

structure on the vector space

The Lie bracket is compatible with a Z2 × Z2 grading, with tri(A) and tri(B) in degree (0,0), and the 

three copies of A ⊗ B in degrees (0,1), (1,0) and (1,1). The bracket preserves tri(A) and tri(B) and 

these act naturally on the three copies of A ⊗ B, as in the other constructions, but the brackets 

between these three copies are more constrained.

For instance when A and B are the octonions, the triality is that of Spin(8), the double cover of SO(8), 

and the Barton-Sudbery description yields

where V, S+ and S- are the three 8 dimensional representations of  (the fundamental 

representation and the two spin representations), and the hatted objects are an isomorphic 

copy.

With respect to one of the Z2 gradings, the first three summands combine to give  and 

the last two together form one of its spin representations Δ+
128 (the superscript denotes the 

dimension). This is a well known symmetric decomposition of E8.

The Barton-Sudbery construction extends this to the other Lie algebras in the magic square. In 

particular, for the exceptional Lie algebras in the last row (or column), the symmetric 

decompositions are:
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Generalizations[edit]

Split composition algebras[edit]

In addition to the normed division algebras, there are other composition algebras over R, namely the split-complex numbers, 

the split-quaternionsand the split-octonions. If one uses these instead of the complex numbers, quaternions, and octonions, 

one obtains the following variant of the magic square (where the split versions of the division algebras are denoted by a 

dash).

A\B R C' H' O'

R

C'

H'

O'

Here all the Lie algebras are the split real form except for so3, but a sign change in the definition of the Lie bracket can be 

used to produce the split form so2,1. In particular, for the exceptional Lie algebras, the maximal compact subalgebras are as 

follows:

Split form

Maximal compact

A non-symmetric version of the magic square can be obtained by combining the split algebras with the usual division 

algebras. According to Barton and Sudbery, the resulting table of Lie algebras is as follows.

A\B R C H O

R

C'

H'

O'
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The real exceptional Lie algebras appearing here can again be described by their maximal compact subalgebras.

Lie algebra

Maximal compact

Arbitrary fields[edit]

The split forms of the composition algebras and Lie algebras can be defined over any field K. This yields the following magic 

square.

There is some ambiguity here if K is not algebraically closed. In the case K = C, this is the complexification of the 

Freudenthal magic squares for R discussed so far.

More general Jordan algebras[edit]

The squares discussed so far are related to the Jordan algebras J3(A), where A is a division algebra. There are also Jordan 

algebras Jn(A), for any positive integer n, as long as A is associative. These yield split forms (over any field K) and compact 

forms (over R) of generalized magic squares.

For n=2, J2(O) is also a Jordan algebra. In the compact case (over R) this yields a magic square of orthogonal Lie algebras.
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A\B R C H O

R

C

H

O

The last row and column here are the orthogonal algebra part of the isotropy algebra in the symmetric decomposition of the 

exceptional Lie algebras mentioned previously.These constructions are closely related to hermitian symmetric spaces – 

cf. prehomogeneous vector spaces.

Symmetric spaces[edit]

Riemannian symmetric spaces, both compact and non-compact, can be classified uniformly using a magic square 

construction, in (Huang & Leung 2011). The irreducible compact symmetric spaces are, up to finite covers, either a compact 

simple Lie group, a Grassmannian, a Lagrangian Grassmannian, or a double Lagrangian Grassmannian of subspaces 

of  for normed division algebras A and B. A similar construction produces the irreducible non-compact 

symmetric spaces.

History[edit]

Rosenfeld projective planes[edit]

Following Ruth Moufang's discovery in 1933 of the Cayley projective plane or "octonionic projective plane" P2(O), whose 

symmetry group is the exceptional Lie group F4, and with the knowledge that G2 is the automorphism group of the octonions, 

it was proposed by Rozenfeld (1956) that the remaining exceptional Lie groups E6, E7, and E8 are isomorphism groups of 

projective planes over certain algebras over the octonions:[1]

 the bioctonions, C ⊗ O,

 the quateroctonions, H ⊗ O,

 the octooctonions, O ⊗ O.

This proposal is appealing, as there are certain exceptional compact Riemannian symmetric spaces with the desired 

symmetry groups and whose dimension agree with that of the putative projective planes (dim(P2(K ⊗ K′)) = 2dim(K)dim(K′)), 

and this would give a uniform construction of the exceptional Lie groups as symmetries of naturally occurring objects (i.e., 

without an a priori knowledge of the exceptional Lie groups). The Riemannian symmetric spaces were classified by Cartan in 

1926 (Cartan's labels are used in sequel); see classification for details, and the relevant spaces are:
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 the octonionic projective plane – FII, dimension 16 = 2 × 8, 

F4 symmetry, Cayley projective plane P2(O),

 the bioctonionic projective plane – EIII, dimension 32 = 2 × 2 

× 8, E6 symmetry, complexified Cayley projective 

plane, P2(C ⊗ O),

 the "quateroctonionic projective plane"[2] – EVI, dimension 

64 = 2 × 4 × 8, E7 symmetry, P2(H ⊗ O),

 the "octooctonionic projective plane"[3] – EVIII, dimension 

128 = 2 × 8 × 8, E8 symmetry, P2(O ⊗ O).

The difficulty with this proposal is that while the octonions are a division algebra, and thus a projective plane is defined over 

them, the bioctonions, quarteroctonions and octooctonions are not division algebras, and thus the usual definition of a 

projective plane does not work. This can be resolved for the bioctonions, with the resulting projective plane being the 

complexified Cayley plane, but the constructions do not work for the quarteroctonions and octooctonions, and the spaces in 

question do not obey the usual axioms of projective planes,[1] hence the quotes on "(putative) projective plane".

However, the tangent space at each point of these spaces can be identified with the plane (H ⊗ O)2, or (O ⊗ O)2further 

justifying the intuition that these are a form of generalized projective plane. [2][3] Accordingly, the resulting spaces are 

sometimes called Rosenfeld projective planes and notated as if they were projective planes. More broadly, these compact 

forms are the Rosenfeld elliptic projective planes, while the dual non-compact forms are the Rosenfeld hyperbolic 

projective planes. A more modern presentation of Rosenfeld's ideas is in (Rosenfeld 1997), while a brief note on these 

"planes" is in (Besse 1987, pp. 313–316).[4]

The spaces can be constructed using Tit's theory of buildings, which allows one to construct a geometry with any given 

algebraic group as symmetries, but this requires starting with the Lie groups and constructing a geometry from them, rather 

than constructing a geometry independently of a knowledge of the Lie groups. [1]

Magic square[edit]

While at the level of manifolds and Lie groups, the construction of the projective plane P2(K ⊗ K′) of two normed division 

algebras does not work, the corresponding construction at the level of Lie algebras does work. That is, if one decomposes 

the Lie algebra of infinitesimal isometries of the projective plane P2(K) and applies the same analysis to P2(K ⊗ K′), one can 

use this decomposition, which holds when P2(K ⊗ K′) can actually be defined as a projective plane, as a definition of a 

"magic square Lie algebra" M(K,K′) This definition is purely algebraic, and holds even without assuming the existence of the 

corresponding geometric space. This was done independently circa 1958 in (Tits 1966) and by Freudenthal in a series of 11 

papers, starting with (Freudenthal 1954) and ending with (Freudenthal 1963), though the simplified construction outlined here

is due to (Vinberg 1966).[1]
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Hopf Fibration 

Wikipedia describes the Hopf Fibration in this way:

In the mathematical field of topology, the Hopf fibration (also known as the Hopf bundle or Hopf map) describes a 3-

sphere (a hypersphere in four-dimensional space) in terms of circles and an ordinary sphere. Discovered by Heinz Hopf in 

1931, it is an influential early example of a fiber bundle. Technically, Hopf found a many-to-one continuous function (or "map")

from the 3-sphere onto the 2-sphere such that each distinct point of the 2-sphere comes from a distinct circle of the 3-sphere 

(Hopf 1931). Thus the 3-sphere is composed of fibers, where each fiber is a circle — one for each point of the 2-sphere.

This fiber bundle structure is denoted

meaning that the fiber space S1 (a circle) is embedded in the total space S3 (the 3-sphere), and p : S3 →S2 (Hopf's 

map) projects S3 onto the base space S2 (the ordinary 2-sphere). The Hopf fibration, like any fiber bundle, has the 

important property that it is locally a product space. However it is not a trivialfiber bundle, i.e., S3 is not globally a 

product of S2 and S1 although locally it is indistinguishable from it.

This has many implications: for example the existence of this bundle shows that the higher homotopy groups of 

spheres are not trivial in general. It also provides a basic example of a principal bundle, by identifying the fiber with 

the circle group.

Stereographic projection of the Hopf fibration induces a remarkable structure on R3, in which space is filled with 

nested tori made of linking Villarceau circles. Here each fiber projects to a circle in space (one of which is a line, 

thought of as a "circle through infinity"). Each torus is the stereographic projection of the inverse image of a circle of 

latitude of the 2-sphere. (Topologically, a torus is the product of two circles.) These tori are illustrated in the images at 

right. When R3 is compressed to a ball, some geometric structure is lost although the topological structure is retained 

(see Topology and geometry). The loops are homeomorphic to circles, although they are not geometric circles.

There are numerous generalizations of the Hopf fibration. The unit sphere in complex coordinate space Cn+1fibers 

naturally over the complex projective space CPn with circles as fibers, and there are also real,quaternionic, 

and octonionic versions of these fibrations. In particular, the Hopf fibration belongs to a family of four fiber bundles in 

which the total space, base space, and fiber space are all spheres:

By Adams' theorem such fibrations can occur only in these dimensions.
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Definition and construction[edit]

For any natural number n, an n-dimensional sphere, or n-sphere, can be defined as the set of points in an (n+1)-

dimensional space which are a fixed distance from a central point. For concreteness, the central point can be taken to be 

the origin, and the distance of the points on the sphere from this origin can be assumed to be a unit length. With this 

convention, the n-sphere, Sn, consists of the points (x1, x2, …, xn+1) inRn+1 with x1
2 + x2

2 + ⋯+ xn+1
2 = 1. For example, the 3-

sphere consists of the points (x1, x2, x3, x4) in R4 with x1
2 + x2

2 + x3
2 + x4

2 = 1.

The Hopf fibration p: S3 → S2 of the 3-sphere over the 2-sphere can be defined in several ways.

Direct construction[edit]

Identify R4 with C2 and R3 with C×R (where C denotes the complex numbers) by writing:

(x1, x2, x3, x4) as (z0 = x1 + ix2, z1 = x3 + ix4); and
(x1, x2, x3) as (z = x1 + ix2, x = x3).

Thus S3 is identified with the subset of all (z0, z1) in C2 such that |z0|2 + |z1|2 = 1, and S2 is identified with the subset

of all (z, x) in C×Rsuch that |z|2 + x2 = 1. (Here, for a complex number z = x + iy, |z|2 = z z
∗
 = x2 + y2, where the 

star denotes the complex conjugate.) Then the Hopf fibration p is defined by

p(z0, z1) = (2z0z1

∗
, |z0|2 − |z1|2).

The first component is a complex number, whereas the second component is real. Any point on the 3-

sphere must have the property that |z0|2 + |z1|2 = 1. If that is so, then p(z0, z1) lies on the unit 2-sphere 

in C×R, as may be shown by squaring the complex and real components ofp

Furthermore, if two points on the 3-sphere map to the same point on the 2-sphere, i.e., if  p(z0, z1) = p(w0, w1), then
(w0, w1) must equal (λ z0,λ z1) for some complex number λ with |λ|2 = 1. The converse is also true; any two points
on  the  3-sphere  that  differ  by  a  common  complex  factorλ map  to  the  same  point  on  the  2-sphere.  These

conclusions follow, because the complex factor λ cancels with its complex conjugate λ
∗
 in both parts of p: in the

complex 2z0z1

∗
 component and in the real component |z0|2 − |z1|2.

Since the set of complex numbers λ with |λ|2 = 1 form the unit circle in the complex plane, it follows 

that for each point m in S2, the inverse image p−1(m) is a circle, i.e., p−1m ≅ S1. Thus the 3-sphere is 

realized as a disjoint union of these circular fibers.

Geometric interpretation using the complex projective line[edit]
A geometric interpretation of the fibration may be obtained using the complex projective line, CP1, 

which is defined to be the set of all complex one-dimensional subspaces of C2. Equivalently, CP1 is 

the quotient of C2\{0} by the equivalence relation which identifies (z0, z1) with (λ z0,λ z1) for any 

nonzero complex number λ. On any complex line in C2 there is a circle of unit norm, and so the 

restriction of the quotient map to the points of unit norm is a fibration of S3 over CP1.

CP1 is diffeomorphic to a 2-sphere: indeed it can be identified with the Riemann sphere C∞ = C ∪ {∞},

which is the one point compactificationof C (obtained by adding a point at infinity). The formula given 

for p above defines an explicit diffeomorphism between the complex projective line and the ordinary 
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2-sphere in 3-dimensional space. Alternatively, the point (z0, z1) can be mapped to the ratio z1/z0 in the

Riemann sphereC∞.

Fiber bundle structure[edit]
The Hopf fibration defines a fiber bundle, with bundle projection p. This means that it has a "local 

product structure", in the sense that every point of the 2-sphere has some neighborhood U whose 

inverse image in the 3-sphere can be identified with the product of U and a circle: p−1(U) ≅ U×S1. 

Such a fibration is said to be locally trivial.

For the Hopf fibration, it is enough to remove a single point m from S2 and the corresponding 

circle p−1(m) from S3; thus one can take U = S2\{m}, and any point in S2 has a neighborhood of this 

form.

Geometric interpretation using rotations[edit]

Another geometric interpretation of the Hopf fibration can be obtained by considering rotations of the 

2-sphere in ordinary 3-dimensional space. The rotation group SO(3) has a double cover, the spin 

group Spin(3), diffeomorphic to the 3-sphere. The spin group acts transitively on S2 by rotations. 

The stabilizer of a point is isomorphic to the circle group. It follows easily that the 3-sphere is 

a principal circle bundle over the 2-sphere, and this is the Hopf fibration.

To make this more explicit, there are two approaches: the group Spin(3) can either be identified with 

the group Sp(1) of unit quaternions, or with the special unitary group SU(2).

In the first approach, a vector (x1, x2, x3, x4) in R4 is interpreted as a quaternion q ∈ H by writing

The 3-sphere is then identified with the quaternions of unit norm, i.e., those q ∈ H for which |q|

2 = 1, where |q|2 = q q
∗
, which is equal to x1

2+ x2
2 + x3

2 + x4
2 for q as above.

On the other hand, a vector (y1, y2, y3) in R3 can be interpreted as an imaginary quaternion

Then, as is well-known since Cayley (1845), the mapping

is a rotation in R3: indeed it is clearly an isometry, since |q p q
∗
|2 = q p q

∗
 q p

∗
 q

∗
 = q p

p
∗
 q

∗
 = |p|2, and it is not hard to check that it preserves orientation.

In fact, this identifies the group of unit quaternions with the group of rotations of R3, 

modulo the fact that the unit quaternions q and −qdetermine the same rotation. As 

noted above, the rotations act transitively on S2, and the set of unit 

quaternions q which fix a given unit imaginary quaternion p have the 

form q = u + v p, where u and v are real numbers with u2 + v2 = 1. This is a circle 

subgroup. For concreteness, one can take p = k, and then the Hopf fibration can be 

defined as the map sending a unit quaternion ω to ω k ω
∗
. All the quaternions ωq, 

where q is one of the circle of unit quaternions that fix k, get mapped to the same 
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thing (which happens to be one of the two 180° rotations rotating k to the same 

place as ω does).

Another way to look at this fibration is that every unit quaternion ω moves the plane 

spanned by {1, k} to a new plane spanned by {ω, ωk}. Any quaternion ωq, 

where q is one of the circle of unit quaternions that fix k, will have the same effect. 

We put all these into one fibre, and the fibres can be mapped one-to-one to the 2-

sphere of 180° rotations which is the range of ωkω*.

This approach is related to the direct construction by identifying a 

quaternion q = x1 + i x2 + j x3 + k x4 with the 2×2 matrix:

This identifies the group of unit quaternions with SU(2), and the imaginary 

quaternions with the skew-hermitian 2×2 matrices (isomorphic toC×R).

Explicit formulae[edit]
The rotation induced by a unit quaternion q = w + i x + j y + k z is given 

explicitly by the orthogonal matrix

Here we find an explicit real formula for the bundle projection. For, the 

fixed unit vector along the z axis, (0,0,1), rotates to another unit vector,

which is a continuous function of (w,x,y,z). That is, the image of q is

where it aims the z axis. The fiber for a given point on S2 consists 

of all those unit quaternions that aim there.

To write an explicit formula for the fiber over a point (a,b,c) in S2, we may proceed as follows. Multiplication of unit 

quaternions produces composition of rotations, and

is a rotation by 2θ around the z axis. As θ varies, this sweeps out a great circle of S3, our prototypical fiber. So long as the 

base point, (a,b,c), is not the antipode, (0,0,−1), the quaternion

will aim there. Thus the fiber of (a,b,c) is given by quaternions of the form q(a,b,c)qθ, which are the S3 points

Since multiplication by q(a,b,c) acts as a rotation of quaternion space, the fiber is not merely a topological circle, it is a 

geometric circle. The final fiber, for (0,0,−1), can be given by using q(0,0,−1) = i, producing

which completes the bundle.
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Thus, a simple way of visualizing the Hopf fibration is as follows. Any point on the 3-sphere is equivalent to a quaternion, 

which in turn is equivalent to a particular rotation of a Cartesian coordinate frame in three dimensions. The set of all possible 

quaternions produces the set of all possible rotations, which moves the tip of one unit vector of such a coordinate frame (say,

the z vector) to all possible points on a unit 2-sphere. However, fixing the tip of the z vector does not specify the rotation fully;

a further rotation is possible about the z-axis. Thus, the 3-sphere is mapped onto the 2-sphere, plus a single rotation.

Fluid Mechanics[edit]

If the Hopf fibration is treated as a vector field in 3 dimensional space then there is a solution to the (compressible, non-

viscous) Navier-Stokes equations of fluid dynamics in which the fluid flows along the circles of the projection of the Hopf 

fibration in 3 dimensional space. The size of the velocities, the density and the pressure can be chosen at each point to 

satisfy the equations. All these quantities fall to zero going away from the centre. If a is the distance to the inner ring, the 

velocities, pressure and density fields are given by:

for arbitrary constants A and B. Similar patterns of fields are found as soliton solutions of magnetohydrodynamics:[1]

Generalizations[edit]

The Hopf construction, viewed as a fiber bundle p: S3 → CP1, admits several generalizations, which are also often known as 

Hopf fibrations. First, one can replace the projective line by an n-dimensional projective space. Second, one can replace the 

complex numbers by any (real)division algebra, including (for n = 1) the octonions.

Real Hopf fibrations[edit]

A real version of the Hopf fibration is obtained by regarding the circle S1 as a subset of R2 in the usual way and by idenitifying

antipodal points. This gives a fiber bundle S1 → RP1 over the real projective line with fiber S0 = {1, -1}. Just as CP1 is 

diffeomorphic to a sphere, RP1is diffeomorphic to a circle.

More generally, the n-sphere Sn fibers over real projective space RPn with fiber S0.

Complex Hopf fibrations[edit]

The Hopf construction gives circle bundles p : S2n+1 → CPn over complex projective space. This is actually the restriction of 

the tautological line bundle over CPn to the unit sphere in Cn+1.

Quaternionic Hopf fibrations[edit]

Similarly, one can regard S4n+3 as lying in Hn+1 (quaternionic n-space) and factor out by unit quaternion (= S3) multiplication to 

get HPn. In particular, since S4 = HP1, there is a bundle S7 → S4 with fiber S3.

Octonionic Hopf fibrations[edit]

A similar construction with the octonions yields a bundle S15 → S8 with fiber S7. But the sphere S31 does not fiber over S16 with

fiber S15. One can regard S8 as the octonionic projective line OP1. Although one can also define an octonionic projective 

plane OP2, the sphere S23 does not fiber over OP2 with fiber S7.[2][3]
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Fibrations between spheres

Sometimes the term "Hopf fibration" is restricted to the fibrations between 
spheres obtained above, which are

S1 → S1 with fiber S0

S3 → S2 with fiber S1

S7 → S4 with fiber S3

S15 → S8 with fiber S7

As a consequence of Adams' theorem, fiber bundles with spheres as total 
space, base space, and fiber can occur only in these dimensions. Fiber 
bundles with similar properties, but different from the Hopf fibrations, were 
used by John Milnor to construct exotic spheres.

The Hopf fibration has many implications, some purely attractive, others deeper. For example, stereographic 

projection S3 → R3 induces a remarkable structure in R3, which in turn illuminates the topology of the bundle (Lyons 2003). 

Stereographic projection preserves circles and maps the Hopf fibers to geometrically perfect circles in R3 which fill space. 

Here there is one exception: the Hopf circle containing the projection point maps to a straight line in R3 — a "circle through 

infinity".

The fibers over a circle of latitude on S2 form a torus in S3 (topologically, a torus is the product of two circles) and these 

project to nested toruses in R3 which also fill space. The individual fibers map to linkingVillarceau circles on these tori, with 

the exception of the circle through the projection point and the one through its opposite point: the former maps to a straight 

line, the latter to a unit circle perpendicular to, and centered on, this line, which may be viewed as a degenerate torus whose 

radius has shrunken to zero. Every other fiber image encircles the line as well, and so, by symmetry, each circle is linked 

through every circle, both in R3 and in S3. Two such linking circles form a Hopf link in R3

Hopf proved that the Hopf map has Hopf invariant 1, and therefore is not null-homotopic. In fact it generates the homotopy 

group π3(S2) and has infinite order.

In quantum mechanics, the Riemann sphere is known as the Bloch sphere, and the Hopf fibration describes the topological 

structure of a quantum mechanical two-level system or qubit. Similarly, the topology of a pair of entangled two-level systems 

is given by the Hopf fibration

(Mosseri & Dandoloff 2001).
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Exceptional Lie Algebra E8

Wikipedia describes the Exceptional Lie Algebra E8 in this way:

In mathematics, E8 is any of several closely related exceptional simple Lie 
groups, linear algebraic groupsor Lie algebras of dimension 248; the same 
notation is used for the corresponding root lattice, which hasrank 8. The 
designation E8 comes from the Cartan–Killing classification of the 
complex simple Lie algebras, which fall into four infinite series labeled An, Bn, 
Cn, Dn, and five exceptional cases labeled E6, E7, E8,F4, and G2. The 
E8 algebra is the largest and most complicated of these exceptional cases.

Wilhelm Killing (1888a, 1888b, 1889, 1890) discovered the complex Lie 
algebra E8 during his classification of simple compact Lie algebras, though he 
did not prove its existence, which was first shown by Élie Cartan. Cartan 
determined that a complex simple Lie algebra of type E8 admits three real 
forms. Each of them gives rise to a simple Lie group of dimension 248, exactly
one of which is compact. Chevalley (1955) introducedalgebraic groups and 
Lie algebras of type E8 over other fields: for example, in the case of finite 
fieldsthey lead to an infinite family of finite simple groups of Lie type.

The Lie group E8 has dimension 248. Its rank, which is the dimension of its 
maximal torus, is 8. Therefore the vectors of the root system are in eight-
dimensional Euclidean space: they are described explicitly later in this article. 
The Weyl group of E8, which is the group of symmetries of the maximal torus 
which are induced byconjugations in the whole group, has order 214 3 5 5 2 7 = 
696729600.

The compact group E8 is unique among simple compact Lie groups in that its 
non-trivial representation of smallest dimension is the adjoint 
representation (of dimension 248) acting on the Lie algebra E8 itself; it is also 
the unique one which has the following four properties: trivial center, compact,
simply connected, and simply laced (all roots have the same length).

There is a Lie algebra En for every integer n ≥ 3, which is infinite dimensional 
if n is greater than 8.

Real and complex forms[edit]

There is a unique complex Lie algebra of type E8, corresponding to a complex
group of complex dimension 248. The complex Lie group E8 of complex 
dimension 248 can be considered as a simple real Lie group of real dimension
496. This is simply connected, has maximal compact subgroup the compact 
form (see below) of E8, and has an outer automorphism group of order 2 
generated by complex conjugation.

As well as the complex Lie group of type E8, there are three real forms of the 
Lie algebra, three real forms of the group with trivial center (two of which have
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non-algebraic double covers, giving two further real forms), all of real 
dimension 248, as follows:

 The compact form (which is usually the one meant if no other 
information is given), which is simply connected and has trivial outer 
automorphism group.
 The split form, EVIII (or E8(8)), which has maximal compact subgroup 
Spin(16)/(Z/2Z), fundamental group of order 2 (implying that it has adouble
cover, which is a simply connected Lie real group but is not algebraic, 
see below) and has trivial outer automorphism group.
 EIX (or E8(-24)), which has maximal compact subgroup E7×SU(2)/
(−1,−1), fundamental group of order 2 (again implying a double cover, 
which is not algebraic) and has trivial outer automorphism group.

For a complete list of real forms of simple Lie algebras, see the list of simple 
Lie groups.

E8 as an algebraic group[edit]

By means of a Chevalley basis for the Lie algebra, one can define E8 as a 
linear algebraic group over the integers and, consequently, over any 
commutative ring and in particular over any field: this defines the so-called 
split (sometimes also known as “untwisted”) form of E8. Over an algebraically 
closed field, this is the only form; however, over other fields, there are often 
many other forms, or “twists” of E8, which are classified in the 
general framework of Galois cohomology (over a perfect field k) by the set 
H1(k,Aut(E8)) which, because the Dynkin diagram of E8(see below) has no 
automorphisms, coincides with H1(k,E8).[1]

Over R, the real connected component of the identity of these algebraically 
twisted forms of E8 coincide with the three real Lie groups mentionedabove, 
but with a subtlety concerning the fundamental group: all forms of E8 are 
simply connected in the sense of algebraic geometry, meaning that they admit
no non-trivial algebraic coverings; the non-compact and simply connected real
Lie group forms of E8 are therefore not algebraic and admit no faithful finite-
dimensional representations.

Over finite fields, the Lang–Steinberg theorem implies that H1(k,E8)=0, 
meaning that E8 has no twisted forms: see below.

Representation theory[edit]

The characters of finite dimensional representations of the real and complex 
Lie algebras and Lie groups are all given by the Weyl character formula. The 
dimensions of the smallest irreducible representations are 
(sequence A121732 in OEIS):

1,  248,  3875,  27000,  30380,  147250,  779247,  1763125,  2450240,
4096000,  4881384,  6696000,  26411008,  70680000,  76271625,
79143000,  146325270,  203205000,  281545875,  301694976,
344452500,  820260000,  1094951000,  2172667860,  2275896000,
2642777280,  2903770000,  3929713760,  4076399250,  4825673125,
6899079264, 8634368000 (twice), 12692520960…
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The 248-dimensional representation is the adjoint representation. There 
are two non-isomorphic irreducible representations of dimension 
8634368000 (it is not unique; however, the next integer with this property 
is 175898504162692612600853299200000 
(sequence A181746 in OEIS)). The fundamental representations are 
those with dimensions 3875, 6696000, 6899079264, 146325270, 
2450240, 30380, 248 and 147250 (corresponding to the eight nodes in 
the Dynkin diagram in the order chosen for the Cartan matrix below, i.e., 
the nodes are read in the seven-node chain first, with the last node being 
connected to the third).

The coefficients of the character formulas for infinite dimensional 
irreducible representations of E8 depend on some large square matrices 
consisting of polynomials, the Lusztig–Vogan polynomials, an analogue 
of Kazhdan–Lusztig polynomials introduced for reductive groups in 
general by George Lusztig and David Kazhdan (1983). The values at 1 of 
the Lusztig–Vogan polynomials give the coefficients of the matrices 
relating the standard representations (whose characters are easy to 
describe) with the irreducible representations.

These matrices were computed after four years of collaboration by 
a group of 18 mathematicians and computer scientists, led by Jeffrey 
Adams, with much of the programming done by Fokko du Cloux. The most
difficult case (for exceptional groups) is the split real form of E8 (see 
above), where the largest matrix is of size 453060×453060. The Lusztig–
Vogan polynomials for all other exceptional simple groups have been 
known for some time; the calculation for the split form of E8 is far longer 
than any other case. The announcement of the result in March 2007 
received extraordinary attention from the media (see the external links), to 
the surprise of the mathematicians working on it.

The representations of the E8 groups over finite fields are given 
by Deligne–Lusztig theory.

Constructions[edit]

One can construct the (compact form of the) E8 group as 
the automorphism group of the corresponding e8 Lie algebra. This algebra 
has a 120-dimensional subalgebra so(16) generated by Jij as well as 128 
new generators Qa that transform as a Weyl–Majorana spinor of spin(16). 
These statements determine the commutators

as well as

while the remaining commutator (not anticommutator!) is defined 
as
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It is then possible to check that the Jacobi identity is satisfied.

Geometry[edit]

The compact real form of E8 is the isometry group of the 128-
dimensional exceptional compact Riemannian symmetric 
space EVIII (in Cartan'sclassification). It is known informally as 
the "octooctonionic projective plane" because it can be built 
using an algebra that is the tensor product of the octonions with
themselves, and is also known as a Rosenfeld projective plane,
though it does not obey the usual axioms of a projective plane. 
This can be seen systematically using a construction known as 
the magic square, due to Hans Freudenthal and Jacques 
Tits(Landsberg & Manivel 2001).
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H7 Hyper Circle in Vedic Physics 

Vedic Nuclear Physics contains the concept of Hyper Circles, which describe
the atomic nucleus, one layer or ring, upon another. The hyper circles exist or
live within a series of spaces known as Lokas, or the dimensional spaces of
regular bodies. The fourteen spaces are known as Bhuvanas - the places of
the regular bodies which are developed in their respective multi - dimensional
spaces of the Lokas. In 

The full Sanskrit term is “Sapta Nava - Asva   (p. 117 top) 

The regular body of the Sapta Nava - Asva is made by Hyper Circle 7 of the
RTA in the 7 - dimensional space of Dyou. The structure of this regular body
begins from the one - dimensional space of Bhuhu - Loka when the content of
the central seat of the nuclear affined space (God Vishnu) starts inhaling the
Svadha, or the Brahma content from the surrounding area, which creates its
own gravitational force. 

A different writer on Vedic Physics states that gravity forms when one larger
body passes near another. It may be the case here that the content of the
central  seat  of  the nuclear affined space is proportionately larger than the
Svadha,  or  becomes so as the seat  inhales the Svadha.  In  this  case the
statement  of  one  writer  on  Vedic  Physics  would  support  that  of  another,
reflecting no contradiction between the views of the two distinct writers, both
independently arriving at similar conclusions after analyzing different sources.

This then becomes H1 in Bhuhu Loka, then H2 in Bhuhava Loka, etc. until it
reaches the seven - dimensional space of Satya Loka where it forms H7. This
is  the  place  where  it  gets  the  name  of  Sapta  Nava  -  Asva.  During  the
exhalation process, this stuff reverses and gets pushed back into the lesser
Lokas,  where  the  Prayatithi  is  exhaled  from the  Paraha  state  of  the  god
Vishnu, to the Avaraha state of Brahma, which becomes the Retaha of god
Vishnu. 

This process may best be envisioned by examining photos of rotating galaxies
in space. The central condensed part inhales the ground state Dark Matter
content through three white channels of flow from a finite three - dimensional
space. The inhaled surplus content of the functioning Dark Matter is ejected
through  three  holes  in  three  -  dimensional  space.  The  ejected  content
contains the will of desire to create the universe, which is why the ejected part
contains a spotted structure in the flow of its channels. 

The flow channels of Dark Matter are called Isani of god Rudra. The word
Rudra is formed from the root Rudhra, meaning resistance and a hole. This
meaning is expressed through the erection of the Adi Deva structure, told in
the  Na  Particle.  The  content  of  the  functioning  state  of  Brahma  meets



resistance in the Paraha state, in the central part of the affined space of Na. 

When this resisted part exhales the surplus inhaled content of the Brahma
through breathing, then the central condensed part ejects very fine units of
Brahma into the Avaraha state by making a very fine hole in the confined
space of the Paraha state for the ejection process. Rudra thus contains the
concept of making a hole. The clear figure can be observed in the structure of
a rotating galaxy in space. The condensed state of the resisted content of the
functioning state of Dark Matter can be clearly seen as white in the central
part of a rotating galaxy. 

The mature state of galactic structure can be clearly seen since the solid
structures  of  the  bodies  made  by  the  outgoing  flow  of  the  channels  of
functional Brahma. The immature state of galactic structure proves invisible
since it is incapable of erecting the solid white structures of the bodies of the
outgoing flow of the functioning state of Brahma through its flow channels.
The  immature  state  of  galactic  structure  is  what  western  contemporary
science terms “Black Holes,” the Dyou space.

All new stars are formed by immature galaxies. When some mature galaxy
ages beyond a certain point, then it receives a comparatively smaller amount
of energy supply delivered to the solid structures. In this way, solid bodies
disintegrate  and  dissolve  into  the  functioning  state  of  Dark  Matter.  These
paragraphs thus describe the life cycle of galaxies in the universe, and so
Rudra is known as the god of evolution and dissolution. 

The  matured  state  of  galactic  structure  is  called  Akasha  Ganga  in  Vedic
Science because the flow of the functioning state of Dark Matter is named by
the word Ganga. The flow of divine Ganga goes first into the head of the god
Rudra  through  pure  white  channels  of  Brahma,  then  comes  back  to  the
regular spotted bodies of the universe to nourish them. All of this a product of
the will of god Vishnu sitting at the center. 

Vishnu At Center 

At the initial stage, there was complete darkness inside the Ground State of
Dark Matter,  in  the state of  stasis  with  no function,  before the process of
evolution began in the universe. When the whole of the space filled with the
ground state of Dark Matter began to flow within the confined space of an
enlarged A (Aha), Dark Matter transformed into a fluid state to cover all of the
dimensional spaces of the Lokas. 

A small quantity of functional Brahma covered the seat of the enlarged A form
(Abhu), which erected the structure of the seven - dimensional space Satya
Loka. 



Dimension Name Alternate Name Hyper
1
2
3
4 Abhu
5
6 Tapaha Loka Savita H6
7 Satya Loka H7
8 Abhu
9 Hiranya Garbha Center = 8

Abhu Spirit 4 dimensions
Brahma Tattva Clay lamp 
Atma Tattva Na Particles ejected Ajam (born)

Five Elements 

Akasha Aether
Vayu Wind
Agni Fire
Apaha Water
Prithivi Earth

Rig Veda (1 - 189 - 6)  pp. 36, 88 - 89, 



Leyman Series

In physics and chemistry,  the Lyman series is  the  series  of  transitions  and
resulting ultraviolet emission  lines of  the hydrogen atom as an  electron goes
from n ≥  2  to n =  1  (where n is  the principal  quantum  number)  the  lowest
energy level of the electron. The transitions are named sequentially by Greek
letters: from n = 2 to n = 1 is called Lyman-alpha, 3 to 1 is Lyman-beta, 4 to 1
is  Lyman-gamma,  etc.  The  series  is  named after  its  discoverer, Theodore
Lyman.  The  greater  the  difference in  the principal  quantum  numbers,  the
higher the energy of the electromagnetic emission.

The Lyman series[edit]

The version of the Rydberg formula that generated the Lyman series was:[2]

Where n is a natural number greater than or equal to 2 (i.e. n = 2,3,4,...).

Therefore, the lines seen in the image above are the wavelengths 
corresponding to n=2 on the right, to  on the left (there are 
infinitely many spectral lines, but they become very dense as they 
approach to  (Lyman limit), so only some of the first lines and 
the last one appear).

The wavelengths (nm) in the Lyman series are all ultraviolet:

2 3 4 5 6 7 8 9 10 11

Wavelength
(nm)

121.6 102.6 97.3 95.0 93.8 93.1 92.6 92.3 92.1 91.9
91.18
(Lyman
limit)

http://en.wikipedia.org/wiki/Lyman_limit
http://en.wikipedia.org/wiki/Lyman_limit
http://en.wikipedia.org/wiki/Lyman_limit
http://en.wikipedia.org/wiki/Rydberg_formula
http://en.wikipedia.org/w/index.php?title=Lyman_series&action=edit&section=2
http://en.wikipedia.org/wiki/Theodore_Lyman
http://en.wikipedia.org/wiki/Theodore_Lyman
http://en.wikipedia.org/wiki/Lyman-alpha_line
http://en.wikipedia.org/wiki/Principal_quantum_number
http://en.wikipedia.org/wiki/Electron
http://en.wikipedia.org/wiki/Atom
http://en.wikipedia.org/wiki/Hydrogen
http://en.wikipedia.org/wiki/Emission_line
http://en.wikipedia.org/wiki/Ultraviolet
http://en.wikipedia.org/wiki/Chemistry
http://en.wikipedia.org/wiki/Physics


Spheres 
A fibre and a sphere connect to create a Hopf Bundle or Sphere in decreasing volume
and heat in terms of joules per second. 

Fibrations between spheres

Sometimes the term "Hopf fibration" is restricted to the fibrations between 
spheres obtained above, which are

 S1 → S1 with fiber S0

 S3 → S2 with fiber S1

 S7 → S4 with fiber S3

 S15 → S8 with fiber S7

As a consequence of Adams' theorem, fiber bundles with spheres as total 
space, base space, and fiber can occur only in these dimensions. Fiber 
bundles with similar properties, but different from the Hopf fibrations, were 
used by John Milnor to construct exotic spheres.

The author believes that Hopf Fibrations should be strictly limited to those
described  above  -  mathematicians  and  physicists  play  too  loosely  with
language, especially when discussion the Hopf Fibration. It is important here
to distinguish clearly between the Hopf Fibrations and spheres, whether exotic
or not. The Hopf Fibrations should refer only to those which match the RCHO
projective planes. 

The measurement of hyper - circles continues to grow up to E8 and beyond,
reaching its maximum between H7 and H8 but never attaining the complete
size of H8. Measurement decreases after maxima to approach zero in the
sense of calculus. Two sequences comprise the magnitude of the Asva body,
one increasing, one decreasing. The Asva body organs, to shorten the Asva
body, decrease the body magnitude in the decreasing function. 

The point from where the structure of the regular body of any hyper - circle
starts to be erected in its dimensional space and the structure of the hyper -
circle of the previous dimensional space ends: that point is the proper point of
the joint between two distinct hyper - circles, where the cutting knife should
enter to cut the organs of the Asva to increasingly shorten the magnitude. The
number  of  hyper  circles  in  Hn  is  greater  than  seven,  is  always  a  natural
number  such  as  8,9,10…when  its  sequence  of  function  continues  to
decrease. 

Each distinct Hyper - circle should be given its own name. 

http://en.wikipedia.org/wiki/Exotic_sphere
http://en.wikipedia.org/wiki/John_Milnor
http://en.wikipedia.org/wiki/Sphere
http://en.wikipedia.org/wiki/Adams'_theorem


The Asva Sukta mantra of the Rig Veda (RG - 1 - 162) describes the 8 - hyper
circle, where the process of decreasing function starts changing its sequence
from increasing  to  decreasing  function  after  attaining  the  maxima.  At  the
maxima,  the  cutting  knife  begins  to  reduce  the  magnitude  of  the  hyper  -
circles. 

(RG - 1 - 189 - 6)

Two vertices keep the interval of the magnitude of the RTA energy quantum of
the Asva H8. The H8 vector called the Asva of the Tvasta Rsi remains under
the command of the centre, which keeps the eight radii stretched in the Dyou
space. The Tvasta Rishi is the force of the RTA energy quantum which erects
the regular body of H8. The driving force continues to move in the Dyou space
which is filled with RTA. 

The one point of maxima lies between two vertices of the regular body H8,
and changes the function from increase to decrease. This point then becomes
the cutter that cuts the Asva organs in a particular way, the H8 Asva of the
Tvasta Rishi. These are the well  -  defined functions. The Rishi makes the
special  effort  of  the  Yajna  to  decrease  the  energy  of  the  Asva  body  by
sacrificing those units of organs of bonding units of RTA energy of the total
quantum of the full body of the Asva into the Agni. 

Agni is born from RTA  (RG - 1 - 189 - 6), which is why it is called Rtvija Agni.
When the magnitude of the RTA body energy quantum of the body of Asva
decreases by cutting energy units of the bonding organs, then the RTA energy
units  are sacrificed into  the Agni  made of  RTA so that  it  may absorb that
released functioning energy into its more condensed state of matter. 

Energy  is  absorbed  by  those  mass  -  containing  bodies  which  are  more
condense than the energy - releasing unit. This is the general rule defined by
the Tettry Upanishad,  which states that the mass of  the body of matter is
created by RTA energy making itself gradually condensed. Then Agni absorbs
the RTA energy because Agni was created by RTA first. 

In 1937, Neils Bohr calculated the liquid Drop Model of the nucleus to find the
inter - nucleon distance  at 6 x 10 ^-15 meter. The difference between H7 and
H8 is0.603665 units, which appears to be a multiple of the Bohr number. 

The measurement of H15 is 5.7216492 units and this approaches the Stan
Boltzmann Constant of 5.668 x 10^ - 8 watt/m2K4. This number seems to be
a multiple of 5.7216492 with some other factor of minute variance such as the
temperature of K4. 
When H7 tries to convert its formation into the regular body of H8, it inhales
some RTA to reach the maxima, and then increases its  size to  reach the
maxima. After reaching maxima it exhales and releases the RTA content into
space. Volume is decreased by releasing RTA until it reaches the size of H7
(E8). 



The regular body of H7 functions with the breathing process by inhaling and
exhaling RTA content while maintaining its structure in a non - decaying state.
Then it palpitates and vibrates at very high frequency while it sucks up RTA
from one side and ejects it from the other, like a jet engine, flying in the Dyou
space with wave motion. It is said to make the sound of the wings of a flying
hawk and the feet of deer. H7 acquires the force necessary to fly in the Dyou
space by wave transmission, through the inhalation and exhalation of RTA. 



Exceptional  Lie  Algebras,  Fibres,  Spheres,  Bundles,
Projective Spaces and Hyper Circles

If H2 + H2 = G2

S7 + S8 = S15, and these = B4, F4 and E8, then 

Fibre Sphere Bundle Hyper
Circle

Value Difference Projective
Space

H8 32.469697
33.1323046 0.6623076 Planck

Const

S7 + S8 = S15 33.073362 0.589426 OP1

B4 F4 E
8

H7

S3 S4 S7 31.006277 2.067085 HP1

B3 D4 E
7

H6

S1 S2 S3 26.318945 4.687332 CPn

D4 G2 E
6

H5 19.739209 6.579736

S0 S1 S1 12.566371 7.172838 RP1

H2 G2 D
4

H4

6.2831853 6.2831857 Circle

H2 H2 G
2

H3

3.1415927 3.141593 Radius
H1 H1 H

2
H2



Spheres 
These spheres may simply refer to spheres or to the Exotic Milner Spheres. 

Fibre Sphere Bundle Hyper
Circle

Value Difference Projective
Space

H8 32.469697
Max 33.1323046
H9 29.68658

H10 25.50164

H11 20.725143

H12 16.023153

H13 11.838174

H14 8.3897034

H15 5.7216492

H16 3.765290

H17 2.3966788

H18 1.478626

H19 0.44290823

H20 0.258

The author has consulted a number of professional mathematicians, none of
whom recognizes this series of numbers except as n - spheres. The author
suspects a deeper  connection to  Taylor  Series and Bernoulli  numbers but
lacks the computer skills to run these through programs. This bit of research
shall need to wait for future papers. 



Exceptional Lie Algebras and 
Platonic Solids 

S.M.  Phillips  gives  the  following  chart  to  indicate  the  close  relationships
between Exceptional Lie Algebras and Platonic Solids.



Conclusion

This  is  what  happens  after  E8.  There  is  no  more,  just  this.  The  author
sincerely  hopes  you  weren’t  disappointed.  If  this  amounts  to  a  Theory of
Everything, then the author surely feels delighted. Send in the dancing girls,
please.

But this is not the end, only a choice highlight of the middle. There is much
more to Vedic Particle Physics, and the author will try to reveal these aspects.
The original upon which this paper is based was poorly written, where the
original author tends to repeat every statement at least four times, uses the
passive  tense  and  uses  a  style  of  English  that  belongs  to  the  early  20 th

Century. Most readers would perhaps throw their hands in the air and give up,
since the author is guilty of “burying the lead” in describing Vedic Physics.
Astounding statements appear from nowhere in the text. 

The author, a professional writer, has tried to modernize this language for the
benefit  of  the reader  and science at  large,  which  should  not  pass up the
secrets of Vedic Science over poorly written books. 

There it is, an end to all that speculation, provided that H7 proves isomorphic
to  E8.  Remaining  work  includes  identifying  the  logarithms  and  numerical
series which tie this group of fibres and spheres into an entire series. It would
be  good  if  a  professional  mathematician  could  complete  the  work  that
O’Farrell - Figueroa began six years ago. Yet six years have passed, nothing
has been done, so the gap is now filled. What appears here constitutes the
best - guess of the author, a non - specialist word man, and corrections are
welcome. 
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Contact 
The author may be contacted at jaq2013 at outlook dot com 

 'Some men see things as they are and say, why? I dream things that never
were and say, why not?'

So let us dedicate ourselves to what the Greeks wrote so long ago: to tame
the savageness of man and make gentle the life of this world. 

Robert Francis Kennedy 
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