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Abstract

We use the assumptions of knot physics to prove that a collection of interacting neutrinos and

antineutrinos maximize their quantum probability when all neutrinos are of the same helicity and

all antineutrinos are of the opposite helicity. Knot physics demonstrates that the geometry of

gravity spontaneously breaks symmetry. We show here that the geometry of gravity couples the

neutrino linear momentum to its quantum phase. Likewise, the quantum phase of an interacting

neutrino couples to its spin angular momentum. Therefore, the symmetry breaking of gravity

couples the linear momentum of an interacting neutrino to its spin angular momentum, producing

consistent helicity.
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I. INTRODUCTION

This paper will use many of the assumptions from the paper ”Knot physics: Spacetime in

co-dimension 2” [1] (available at www.knotphysics.net), which is necessary background

reading. In particular, we show in that paper that gravity spontaneously breaks symmetry.

We show in this paper how that spontaneous symmetry breaking produces the symmetry

breaking of neutrino helicity.

Neutrinos are R3#(S1 ⇥ P

2). Their angular momentum comes from waves that travel

along the S

1 fiber. In the rest frame of the neutrino, those waves have the same direc-

tion as the S

1 fiber. When the neutrino is in motion, Lorentz transformations change the

shape of the waves relative to another neutrino passing in the opposite direction. When

those neutrinos pass by, the geometry of their waves interacts either constructively or de-

structively. We show that the constructive interaction occurs when neutrino/neutrino and

anti-neutrino/anti-neutrino interactions have the same helicity. We show that the destruc-

tive interaction occurs when the neutrino/anti-neutrino interactions have the same helicity.

Therefore, for a collection of interacting neutrinos and anti-neutrinos there are two stable

states. Either all neutrinos have left-handed helicity and all anti-neutrinos are opposite or

else all neutrinos have right-handed helicity and all anti-neutrinos are opposite.

II. NEUTRINO HELICITY

For a collection of interacting neutrinos and antineutrinos, the quantum probability is

optimized when the neutrinos all have the same helicity and the antineutrinos all have the

opposite helicity. To show this, we first show that gravity couples the neutrino’s linear

momentum to its quantum phase. Then we show that neutrino interactions couple the spin

angular momentum of the neutrino to its quantum phase. Because of those couplings, a fixed

relationship between the neutrino linear momentum and spin angular momentum optimizes

the quantum probability of a collection of interacting neutrinos.

A. Gravity couples linear momentum to quantum phase

Locally, express the points on M as (x0, x1, x2, x3, bsin(y), bcos(y)) for some variables

b and y. We will use y to show the relation between gravitational rotation, spin angular
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momentum, and quantum phase.

Gravity breaks parity. If A

⌫ = x

⌫ then parity is broken by rotation of the form

(x0, x1, x2, x3, bsin(k⌫
x⌫), bcos(k⌫

x⌫)) for a causal vector field k

⌫ . However, A⌫ constrains

the causality of points on M . Therefore, for a general A⌫ field, the gravitational rotation is

(x0, x1, x2, x3, bsin(k⌫
A⌫), bcos(k⌫

A⌫)), which means y = k

⌫
A⌫ where there is no particle.

We describe a S

1 ⇥ P

2 with a mapping:

(r, ✓,�, 0, 0) ! (g(r), ✓,�, h(r)sin(2✓ + !t), h(r)cos(2✓ + !t)) (1)

which means that y = 2✓ + !t close to the particle, ignoring the gravitational background.

The S

1 ⇥ P

2 can also have opposite ✓ orientation:

(r, ✓,�, 0, 0) ! (g(r), ✓,�, h(r)sin(�2✓ + !t), h(r)cos(�2✓ + !t)) (2)

which means that y = �2✓+!t close to the particle, ignoring the gravitational background.

p p

L L

FIG. 1: The diagrams show constant � slices of S1 ⇥ P 2. The red arrows are @µy. The left

diagram shows @µy on a S1 ⇥ P 2, in the +✓ direction. The other two diagrams show a lepton

L becoming a neutrino. The lepton transfers charge to another S1 ⇥ P 2. The transfer of charge

gives L momentum p in the opposite direction. Gravity produces a background rotation, with

@µy = @µ(k⌫A⌫). Because of the charges on each S1 ⇥ P 2, @µ(k⌫A⌫) points either towards L (on

the left) or away from L (on the right). The vector field @µy must be consistent, therefore @µ(k⌫A⌫)

must match the +✓ or �✓ arrows on L. The sign of the charge determines @µ(k⌫A⌫). Therefore

the relation between quantum phase ✓ and the linear momentum p for neutrinos is opposite to that

of antineutrinos. Beginning with a neutrino L and producing a charged lepton would reverse the

direction of p in the diagram.
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Every neutrino is created when a charged lepton L annihilates its charge with the charge

of another particle, see Fig. 1. At creation, y = k⌫A
⌫ must be consistent with y = +2✓+ !t

or y = �2✓ + !t. At the charge annihilation, the A

0,µ field is lightlike, which determines

whether @µ
y = @

µ(k⌫A⌫) points towards the neutrino or away from it. Therefore, the sign of

the charges determines whether the S1⇥P

2 orientation is +✓ or �✓. The linear momentum

of the neutrino is equal and opposite to the momentum of the charge that leaves the neutrino.

Therefore the transfer of charge determines the relationship between the neutrino’s linear

momentum and quantum phase. The charge that produces a neutrino is opposite to that of

an antineutrino, therefore the relationship between linear momentum and quantum phase is

also opposite.

B. Neutrino interaction couples spin angular momentum to quantum phase

Neutrinos have a large S

1 radius (see [1]) of about 10�5
m, are abundant, and travel at

relativistic velocities. The neutrino/neutrino interactions are frequent. Fig. 2 shows a pair

of neutrinos interacting such that one neutrino passes through the center of the other. If

two particles are adjacent to each other such that each P

2 slice of one is adjacent to a P

2

slice of the other, then the quantum phases of the two interact. Describe the quantum phase

of particle a and particle b using a complex number to describe the x4 and x5 coordinates.

Then the particle amplitudes are haexp(iya) and hbexp(iyb) and their interaction produces

(1/2)(haexp(iya)+hbexp(iyb)), which a↵ects the quantum phase amplitude. The derivatives

@

µ
ya and @

µ
yb also a↵ect the quantum phase. Take a spacelike slice of a pair of interact-

ing S

1 ⇥ P

2 and further restrict the slice to constant �. Let ⇧�(x) be the projection of

a vector x onto that slice. If the derivatives satisfy ⇧�(@µ
ya) = �⇧�(@µ

yb) then the sum

(1/2)(haexp(iya)+hbexp(iyb)) collapses the geometry of both P

2 in the slice, which reduces

the probability. For fixed ya and yb, the derivatives that optimize the quantum probability

are the ones such that ⇧�(@µ
ya) = ⇧�(@µ

yb). When one neutrino passes through another,

their quantum phases interact as in Fig. 3. If both are neutrinos or both are antineutrinos

then they have ⇧�(@µ
ya) = ⇧�(@µ

yb). If one is a neutrino and the other is an antineutrino

then they have ⇧�(@µ
ya) = �⇧�(@µ

yb). However, the spin angular momenta can also con-

tribute to @µ
y. The spin angular momentum is random ripples circulating along the S1 fiber.

We represent the random ripples as a random function s(�+ vt).
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(r, ✓,�, 0, 0) ! (g(r), ✓,�, h(r)sin(±2✓+ s(�+vt)+!t), h(r)cos(±2✓+ s(�+vt)+!t)) (3)

Then y = ±2✓ + s(�+ vt) + !t and we will write the gradient @

µ
y as

y

0 = ±2✓̂ + (�̂+ vt̂)s0 + !t̂ where ✓̂, �̂, and t̂ are the unit vectors along those axes

and s

0 is the derivative of the s function. For a relativistic neutrino, the geometry Lorentz

transforms. We can consider the quantum interaction of two neutrinos in the frame where

the neutrinos have equal but opposite velocity. In that frame the rotation rates of their

spin angular momenta are equal. Neutrino a and neutrino b have velocities �a = ��b.

Let ca and cb determine the sign of ✓ where their quantum phases interact, for example

y

0
a = ca2✓̂ + (�̂+ vat̂)s0a + !t̂. There is either ca = cb (if both are neutrinos or antineutrinos)

or ca = �cb (if one is a neutrino and one is an antineutrino). The value of ! is the same

for both because they both couple to the background gravitational rotation. The functions

s

0
a and s

0
b are independent and random. The spin velocities va and vb are constants that

determine the spin direction and have the same magnitude |va| = |vb|. To consider the

interaction of a pair of relativistic neutrinos we use the Lorentz transformation of y0 on the

inner and outer edge of the neutrino, which is where they interact. On those edges, we have

the Lorentz transformations from the vectors t̂r, ✓̂r, and �̂r in the rest frame:

t̂r ! � t̂� ��✓̂ (4)

✓̂r ! ��� t̂+ �✓̂ (5)

�̂r ! �̂ (6)

Therefore in the frame where the neutrinos have velocities �a and �b.

y

0
a = ca2(��a� t̂+ �✓̂) + (�̂+ va� t̂� �ava�✓̂)s

0
a + !� t̂� !�a�✓̂ (7)

y

0
b = cb2(��b� t̂+ �✓̂) + (�̂+ vb� t̂� �bvb�✓̂)s

0
b + !� t̂� !�b�✓̂ (8)

In the interaction frame, the geometry is determined by the spacelike components. Let the

projection Space(x) be the projection such that Space(t̂) = 0. Then

Space(y0a) = �(2ca � !�a)✓̂ + (�̂� �ava�✓̂)s
0
a (9)

Space(y0b) = �(2cb � !�b)✓̂ + (�̂� �bvb�✓̂)s
0
b (10)

5



Consider the interaction of neutrino a and neutrino b halfway between the inner edge of a

and the outer edge of b. Because s0a and s

0
b are random functions, the vectors (�̂� �ava�✓̂)s0a

and (�̂� �bvb�✓̂)s0b have random magnitude. We want to find the spin velocities va and vb

that statistically optimize the interaction of y0a and y

0
b.

The quantum probability of each neutrino can be determined by taking the amplitude

of constant �+ vt slices through the particle in the rest frame. In the interaction frame,

these are the slices perpendicular to �̂� �v�✓̂. Call the projections of vectors onto those

slices ⇧a(x) and ⇧b(x) such that ⇧a(�̂� �ava�✓̂) = 0 and ⇧b(�̂� �ava�✓̂) = 0, each slice

eliminates the random contributions from the spin angular momentum of one neutrino. The

slices ⇧a and ⇧b are the same slice if va�a = vb�b, in which case the random contributions

from both neutrinos are zero in that slice.

If ca = cb then both Space(y0a) and Space(y0b) share a common term 2�✓̂. We can optimize

the probability by removing the random spin angular momentum terms in ⇧a(y0b) and ⇧b(y0a).

(The quantum probability is of the form P = exp(
R 2⇡

0 ln(r(�)2)d�) and ln is a convex

function, therefore random contributions to r(�) reduce the expected value of the integral).

To remove the random spin terms from ⇧a(y0b) and ⇧b(y0a) we choose va�a = vb�b which

implies va = �vb. Therefore the spin directions are opposite in the interaction frame and

the helicities of the neutrinos are the same.

If ca = �cb then �(2ca � !�a)✓̂ = ��(2cb � !�b)✓̂, the non-random terms are exactly op-

posite. We therefore optimize the probability by reducing the chance that the random terms

are also exactly opposite, (�̂� �ava�✓̂)s0a = �(�̂� �bvb�✓̂)s0b. If the random components are

parallel then they are opposite if s0a = �sb. If they are not parallel then they are opposite

only if s0a = s

0
b = 0. We therefore conclude that the random components optimize proba-

bility if they are not parallel. This implies that va�a = �vb�b, which implies that va = vb.

Therefore their spin directions are the same in the interaction frame and their helicities are

opposite.

To summarize, for neutrino/neutrino and antineutrino/antineutrino interactions we

have ca = cb and probability is optimized when the helicities are the same. For neu-

trino/antineutrino interactions we have ca = �cb and probability is optimized when helicities

are opposite, see Fig. 4.

6



L L

L

FIG. 2: The left diagram shows a constant � slice of a neutrino L passing through another neutrino

with each P 2 slice of L passing through a P 2 slice. Topologically, this is allowed. However,

it reverses the ✓ orientation of L. The quantum branches such that L reverses its ✓ orientation

recombine with the branches where L does not reverse ✓ orientation. The recombination has

geometry that collapses the S1 ⇥P 2 and has zero probability. Therefore this type of pass-through

is not allowed. The middle diagram shows a constant � slice of an allowed pass-through. The

right diagram shows the same pass-through in a constant ✓ slice. Because of the large S1 radius of

neutrinos (see [1]) and the abundance of neutrinos, these pass-throughs are common.

FIG. 3: The diagrams show constant � slices of one neutrino passing through another neutrino.

The red arrows are @µy. As above, they indicate the ✓ orientation of the P 2. The quantum phase

amplitude is maximized when the red arrows point in the same direction at the point where the

P 2 slices are closest. From the previous section, we know that happens when both are neutrinos

or both are antineutrinos.
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FIG. 4: The diagrams show constant � slices of one neutrino passing through another neutrino with

vectors indicating their spin angular momenta. The red arrows are @µy. The spin angular momenta

are those which make the red arrows @µy as consistent as possible after Lorentz transformation.

On the left is a neutrino/antineutrino interaction; the spin angular momenta reduce the opposition

of the @µy. On the right is a neutrino/neutrino interaction; the spin angular momenta preserve

the alignment of the @µy after Lorentz transformation. The helicity for neutrinos is consistent.

The helicity for antineutrinos is consistent. The helicity of neutrinos is opposite to the helicity of

antineutrinos.

C. Baryon asymmetry

The distinction between neutrinos and antineutrinos is the consequence of two sponta-

neously broken symmetries. The first symmetry is the parity breaking of the gravitational

background rotation. The second symmetry is the spin angular momenta of neutrinos and

antineutrinos. If these symmetries were previously unbroken then the production of neutri-

nos and antineutrinos would have had random quantum phase and spin angular momenta.

After symmetry breaking, there would be some number of neutrinos and antineutrinos but

no reason to assume that those numbers would be exactly equal. It is reasonable to expect

that one type would have a slight excess that would lead to excess matter in the universe.
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