
Clifford  Algebras  in  the  Growth  of 
Matter in Vedic Physics
By John Frederic Sweeney

Abstract 

In our combinatorial universe, matter grows in a particular way, according to 
specific steps. The (n + 1) character of this growth lends itself easily to the 
Clifford Algebra and Clifford Spinor spaces which develop in the fashion of 
Mount  Meru  or  Pascal’s  Triangle.  This  style  of  development  leads  to 
Fibonacci  Numbers  and  the  Golden  Section  which  implies  that  these 
concepts are deeply entwined in the formation of matter. This paper gives 
a step by step explanation of the process and a lengthy exposition on 
Clifford Algebras by physicist  Frank “Tony”  Smith from his monumental 
website.
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Introduction 

Vedic  Physics  provides  a  simple  explanation  of  nuclear  physics,  far  less 
convoluted and complicated than western physics. Vedic Physics contains no 
competing  theories,  half  –  baked  or  nine  –  tenths  cooked.  Vedic  Physics 
simply consists of a comparatively simple explanation for the atom. While far 
simpler, Vedic Physics is far more advanced, a remnant of a civilization that 
was  far  superior  to  our  own,  and  which  encompassed  the  people  of  the 
Vedas, ancient Egypt and perhaps a few other ancient civilizations such as 
the Maya or other ancient peoples from Mexico and South America. 

Though more advanced than our own, those civilizations could not escape the 
periodic great floods and pole shifts inherent on our planet, and so much of 
the evidence of  their  existence has been flooded away,  and we have few 
clues  to  their  magnificence.  Yet  the  Sanskrit  language  was  specifically 
devised for  just  such an emergency,  and the Vedas,  starting with  the Rig 
Veda,  were  composed to  secretly contain  the highest  knowledge of  those 
civilizations. A portion of that knowledge is given here, and then blended with  
contemporary mathematical physics so as to provide a stepping stone from 
below, to a higher level of understanding. 

This paper first gives the Vedic explanation of the formation of the atom, and 
then follows this with a lengthy and explicit discussion of the Clifford Algebra 
from  Wikipedia  and  from  physicist  Frank  “Tony”  Smith,  to  illustrate  how 
Clifford Algebras can best  be used to  work with  nuclear physics.  Much of 
Smith’s work is informed by ancient  mathematics,  and so his work comes 
closest to approximating the superior science of 14,000 years ago. 

Ours  is  a  combinatorial  universe,  which  develops one pulse  or  beat  after 
another, and consists of three types of matter: dynamic Rajic (9 x 9), stable 
Satvic (8 x 8) or Thaamic (functional and non – functional Dark Matter). For 
this reason combinatorial methods are best suited to study and understanding 
of phenomena in our universe. 

Clifford  Algebra  connects  easily  to  Bott  Periodicity,  as  well  as  to  Pisano 
(Fibonacci)  Periodicity  and  to  the  Five  Elements  of  Hindu  and  Chinese 
metaphysics. Clifford Algebra connects as well to the series of Exceptional Lie 
Algebras, which form isomorphic relations with another key concept of Vedic 
Nuclear Physics, the Hyper – Circle. Thus the author hopes the present paper 
provides sufficient foundation for further study of Vedic Nuclear Physics for 
western learners. 
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Vedic Explanation of 
(n + 1) Structure

The following  explanation  originates  from a  textbook  called  Vedic  Particle 
Physics by Khem Chand Sharma: 

Euclidean view of the geometries of the regular bodies: When the structure of 
the regular body of n – dimensional space is completely formed by RTA flow 
inside that space, then the domain of that regular body will be An. RTA flow 
remains continuous in every dimensional space. 

When the structure of the regular body of an n – dimensional space having An 
as its domain gets completed by that flow, then the excess RTA flow pushes 
this regular body as a whole into the next (n + 1) dimensional space, and gets 
its spot vacated for the new structure of the same type. This process goes on 
continuously. 

Now this regular body having its domain as An becomes the component of the 
frame part of the next regular body of the (n + 1) dimensional space. So the n  
– dimensional regular body becomes the component of the frame parts of the 
(n + 1) dimensional body. The domain of the previous space becomes the 
frame of the next space. 

The Rig Veda mantra (RG – 1 – 164 – 50) describes this transition process. 
The  construction  of  the  regular  body  is  considered  a  Yajna  of  the  god 
concerned with that space in a particular Loka, operated by RTA flow of Devas 
from one Loka to another. 
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Wikipedia on Clifford Classification

In abstract algebra, in particular in the theory of nondegenerate quadratic forms on vector spaces, 
the  structures  of  finite-dimensional real and  complex Clifford  algebras have been  completely 
classified. In each case, the Clifford algebra is algebra isomorphic to a full matrix ring over R, C, 
or  H (the  quaternions), or to a  direct sum of two such algebras, though not in a  canonical way. 
Below it is shown that distinct Clifford algebras may be algebra isomorphic, as is the case of  
Cℓ2,0(R) and Cℓ1,1(R) which are both isomorphic to the ring of two-by-two matrices over the real  
numbers.

Notation and conventions

The Clifford product is the manifest ring product for the Clifford 

algebra, and all algebra homomorphisms in this article are with 

respect to this ring product. Other products defined within Clifford 

algebras, such as the exterior product, are not used here. This 

article uses the (+) sign convention for Clifford multiplication so 

that

for all vectors v ∈ V, where Q is the quadratic form on the vector 

space V. We will denote the algebra of n×n matrices with entries in 

the division algebra K by Mn(K) or M(n,K). The direct sum of two such 

identical algebras will be denoted by Mn
2(K) = Mn(K) ⊕ Mn(K).
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Bott periodicity
Clifford algebras exhibit a 2-fold periodicity over the complex 

numbers and an 8-fold periodicity over the real numbers, which is 

related to the same periodicities for homotopy groups of the stable 

unitary group and stable orthogonal group, and is called Bott 

periodicity. 

The connection is explained by the geometric model of loop spaces 

approach to Bott periodicity: there 2-fold/8-fold periodic embeddings 

of the classical groups in each other (corresponding to isomorphism 

groups of Clifford algebras), and their successive quotients are 

symmetric spaces which are homotopy equivalent to the loop spaces of 

the unitary/orthogonal group.

Complex case

The complex case is particularly simple: every non - degenerate 

quadratic form on a complex vector space is equivalent to the 

standard diagonal form

where n = dim V, so there is essentially only one Clifford algebra in 

each dimension. We will denote the Clifford algebra on Cn with the 

standard quadratic form by Cℓn(C).

There are two separate cases to consider, according to whether n is 

even or odd. When n is even the algebra Cℓn(C) is central simple and 

so by the Artin-Wedderburn theorem is isomorphic to a matrix algebra 

over C. When n is odd, the center includes not only the scalars but 

the pseudoscalars (degree n elements) as well. We can always find a 

normalized pseudoscalar ω such that ω2 = 1. Define the operators

These two operators form a complete set of orthogonal idempotents, 

and since they are central they give a decomposition of Cℓn(C) into a 

direct sum of two algebras
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where .

The algebras Cℓn
±(C) are just the positive and negative eigenspaces 

of ω and the P± are just the projection operators. Since ω is odd 

these algebras are mixed by α (the linear map on V defined by v ↦ 
−v):

.

and therefore isomorphic (since α is an automorphism). These two 

isomorphic algebras are each central simple and so, again, isomorphic 

to a matrix algebra over C. The sizes of the matrices can be 

determined from the fact that the dimension of Cℓn(C) is 2n. What we 

have then is the following table:

n Cℓn(C)

2m M(2m,C)

2m+1 M(2m,C) ⊕ M(2m,C)

The even subalgebra of Cℓn(C) is (non-canonically) isomorphic to 

Cℓn−1(C). When n is even, the even subalgebra can be identified with 

the block diagonal matrices (when partitioned into 2×2 block 

matrix). When n is odd, the even subalgebra are those elements of 

M(2m,C) ⊕ M(2m,C) for which the two factors are identical. Picking 

either piece then gives an isomorphism with Cℓn−1(C) ≅ M(2m,C).

Real case

The real case is significantly more complicated, exhibiting a 

periodicity of 8 rather than 2, and there is a 2-parameter family of 

Clifford algebras.

Classification of quadratic form

Firstly, there are non-isomorphic quadratic forms of a given degree, 

classified by signature.

Every non - degenerate quadratic form on a real vector space is 

equivalent to the standard diagonal form:
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where n = p + q is the dimension of the vector space. The pair of 

integers (p, q) is called the signature of the quadratic form. The 

real vector space with this quadratic form is often denoted Rp,q. The 

Clifford algebra on Rp,q is denoted Cℓp,q(R).

A standard orthonormal basis {ei} for Rp,q consists of n = p + q 

mutually orthogonal vectors, p of which have norm +1 and q of which 

have norm −1.

Unit pseudoscalar

See also: Pseudoscalar

The unit pseudoscalar in Cℓp,q(R) is defined as

This is both a Coxeter element of sorts (product of reflections) and 

a longest element of a Coxeter group in the Bruhat order; this is an 

analogy. It corresponds to and generalizes a volume form (in the 

exterior algebra; for the trivial quadratic form, the unit 

pseudoscalar is a volume form), and lifts reflection through the 

origin (meaning that the image of the unit pseudoscalar is reflection 

through the origin, in the orthogonal group).

To compute the square , one can either 

reverse the order of the second group, yielding 

, or apply a perfect shuffle, yielding 

. These both have sign 

, which is 4-periodic (proof), and combined 

with , this shows that the square of ω is given by

Note that, unlike the complex case, it is not always possible to find 

a pseudoscalar which squares to +1.
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Center

If n (equivalently, p − q) is even the algebra Cℓp,q(R) is central 

simple and so isomorphic to a matrix algebra over R or H by the 

Artin–Wedderburn theorem.

If n (equivalently, p − q) is odd then the algebra is no longer 
central simple but rather has a center which includes the 

pseudoscalars as well as the scalars. If n is odd and ω2 = +1 

(equivalently, if p − q ≡ 1 (mod 4)) then, just as in the complex 

case, the algebra Cℓp,q(R) decomposes into a direct sum of isomorphic 

algebras

each of which is central simple and so isomorphic to matrix algebra 

over R or H.

If n is odd and ω2 = −1 (equivalently, if p − q ≡ −1 (mod 4)) then 
the center of Cℓp,q(R) is isomorphic to C and can be considered as a 

complex algebra. As a complex algebra, it is central simple and so 

isomorphic to a matrix algebra over C.

Classification

All told there are three properties which determine the class of the 

algebra Cℓp,q(R):

• signature mod 2: n is even/odd: central simple or not
• signature mod 4: ω2 = ±1: if not central simple, center is 

R⊕R or C

• signature mod 8: the Brauer class of the algebra (n even) or 

even subalgebra (n odd) is R or H

Each of these properties depends only on the signature p − q modulo 
8. The complete classification table is given below. The size of the 

matrices is determined by the requirement that Cℓp,q(R) have dimension 

2p+q.
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p−q mod 8 ω2 Cℓp,q(R)
(n = p+q)

p−q mod 8 ω2 Cℓp,q(R)
(n = p+q)

0 + M(2n/2,R) 1 + M(2(n−1)/2,R)⊕M(2(n−1)/2,R)
2 − M(2n/2,R) 3 − M(2(n−1)/2,C)
4 + M(2(n−2)/2,H) 5 + M(2(n−3)/2,H)⊕M(2(n−3)/2,H)
6 − M(2(n−2)/2,H) 7 − M(2(n−1)/2,C)

It may be seen that of all matrix ring types mentioned, there is only 

one type shared between both complex and real algebras: the type 

C(2m). For example, Cℓ2(C) and Cℓ3,0(R) are both determined to be C(2). 

It is important to note that there is a difference in the classifying 

isomorphisms used. Since the Cℓ2(C) is algebra isomorphic via a C-

linear map (which is necessarily R-linear), and Cℓ3,0(R) is algebra 

isomorphic via an R-linear map, Cℓ2(C) and Cℓ3,0(R) are R-algebra 

isomorphic.

A table of this classification for p + q ≤ 8 follows. Here p + q 

runs vertically and p − q runs horizontally (e.g. the algebra Cℓ1,3(R) 

≅ M2(H) is found in row 4, column −2).

8 7 6 5 4 3 2 1 0 −1 −2 −3 −4 −5 −6 −7 −8
0 R
1 R2 C
2 M2(R) M2(R) H
3 M2(C) M2

2(R) M2(C) H2

4 M2(H) M4(R) M4(R) M2(H) M2(H)
5 M2

2(H) M4(C) M4
2(R) M4(C) M2

2(H) M4(C)
6 M4(H) M4(H) M8(R) M8(R) M4(H) M4(H) M8(R)
7 M8(C) M4

2(H) M8(C) M8
2(R) M8(C) M4

2(H) M8(C) M8
2(R)

8 M16(R) M8(H) M8(H) M16(R) M16(R) M8(H) M8(H) M16(R) M16(R)
 

ω2 + − − + + − − + + − − + + − − + +

Symmetries

There is a tangled web of symmetries and relationships in the above 

table.
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Going over 4 spots in any row yields an identical algebra.

From these Bott periodicity follows:

If the signature satisfies p − q ≡ 1 (mod 4) then

(The table is symmetric about columns with signature 1, 5, −3, −7, 
and so forth.) Thus if the signature satisfies p − q ≡ 1 (mod 4),
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Frank “Tony” Smith on
Clifford Algebras

Why Cliffords 

Well, here is a little table up to n = 8: 
 

C_0  R
C_1  C
C_2  H
C_3  H + H
C_4  H(2) 
C_5  C(4)
C_6  R(8)
C_7  R(8) + R(8)
C_8  R(16)
C_9  R(32)
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What do these entries mean? 
 
Well, R(n) means the n x n matrices with real entries. 
Similarly, C(n) means the n x n complex matrices, 
and H(n) means the n x n quaternionic matrices. 
 
All these become algebras with the usual matrix addition 
and matrix multiplication. 
 
Finally, if A is an algebra, 
A + A means the algebra consisting of pairs of guys in A, 
with the obvious rules for addition and multiplication: 

Chris Tickle, in August 2001, asked me about Clifford algebras: 
"... What would be the first thing you would tell me, 
what would be the first example you would show me, and 
what would be the first application you would show me? ...".

Here is substantially what I said in reply: 

The first thing that I would tell you would be that Clifford algebras
(working over the real numbers and using Euclidean signature)
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have the structure of the binomial triangle,

so that the Clifford algebra Cl(n) has structure like:

n                                           Total
                                          Dimension
 
0                   1                   2^0 =   1= 1x1
1                 1   1                 2^1 =   2= 1+1
2               1   2   1               2^2 =   4= 2x2
3             1   3   3   1             2^3 =   8= 4+4
4           1   4   6   4   1           2^4 =  16= 4x4
5         1   5  10  10   5   1         2^5 =  32= 16+16
6       1   6  15  20  15   6   1       2^6 =  64= 8x8
7     1   7  21  35  35  21   7   1     2^7 = 128= 64+64
8   1   8  28  56  70  56  28   8   1   2^8 = 256= 16x16
9 1   9  36  84  126 126 84  36   9  1  2^9 = 512= 256+256

... etc ...

------------------

The first example that I would show you would be the simplest:

Cl(0) is 1-dimensional and looks like the real numbers.

To me this is important because it means that very big Cl(n) \algebras arise 
naturally from the single element 0. It lets me, build a math model for the 
whole universe from 0,

------------------

The first "application" would be that
Cl(2) is 4-dimensional (it is the quaternions), but its graded structure is 

1  2  1

The first 1 (called grade 0) is the scalars (here I am working with real numbers 
as scalars).

The 2 (called grade 1) is a 2-dimensional vector space (which I take to be the 
complex plane). This illustrates that the grade-1 elements of Clifford algebras 
form vector spaces, and can be called vectors.
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The second 1 (called grade 2) is the Lie algebra of the rotation group of the 
plane, the 1-dimensional U(1) circle rotation group. This illustrates that the 
grade-2 elements of Clifford algebras form the Lie algebra of rotations in the 
space of vectors, and the grade-2 elements can be called bivectors.

  (As a remark, note that I skipped Cl1), with structure 1+1,    which is the 
complex numbers. In a real lecture I might mention that I skipped Cl(1) to get 
to Cl(2).)

===========================================================

Cl(3) has structure 1 3 3 1, with 3-dim vectors and 3-dim bivectors, 
representing the 3-dim Lie algebra of rotations in 3-dim space;

Cl(4) has structure 1 4 6 4 1, with 4-dim vectors and 6-dim bivectors, 
representing the 6-dim Lie algebra of rotations in 4-dim space (if you go to 
Minkowski signature, the 6-dim Lie algebra gives you 3-dim spatial rotations 
plus 3-dim Lorentz boosts); and

If you go up to large n (large with respect to 8), the structure of Cl(n) can be 
understood by using a factorization theorem, the Periodicity Theorem:

Cl(n) = Cl(8) x Cl(n-8)      (where x denotes tensor product).

Therefore, ALL Clifford algebras can be understood in terms of Cl(8) and the 
Cl(k) for k less than 8, so, in a sense, Cl(8) is the fundamental building block 
of ALL big Clifford algebras, because they can be embedded in a Cl(8n) = 
Cl(8) x ...(n times)... x Cl(8)

which is just a tensor product of a lot of Cl(8) algebras. That is why Cl(8) is the 
basic building block of my physics model.
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Spinor Space 

Vedic Nuclear Physics posits an atomic shell of 14 spaces or Lokas, 7 positive 
and 7 negative, almost like the Franklin Magic Circle above, which contains 8 
levels. 
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For dimensions up to 8, here are the dimensions of spinors (with real 
structure) of the Clifford algebras: 

n                                           Total            Spinor
                                          Dimension        Dimension 
 
0                   1                   2^0 =   1= 1x1         1
1                 1   1                 2^1 =   2= 1+1         1
2               1   2   1               2^2 =   4= 2x2       2 = 1+1
3             1   3   3   1             2^3 =   8= 4+4         2
4           1   4   6   4   1           2^4 =  16= 4x4       4 = 2+2
5         1   5  10  10   5   1         2^5 =  32=16+16        4
6       1   6  15  20  15   6   1       2^6 =  64= 8x8       8 = 4+4
7     1   7  21  35  35  21   7   1     2^7 = 128=64+64        8
8   1   8  28  56  70  56  28   8   1   2^8 = 256=16x16     16 = 8+8 

To see why the restriction to real structure is important, consider, for example, 

Cl(1,3) = M(2,Q) and Cl(3,1) = M(4,R)

Both are 16-dim Clifford algebras of 4-dimensional vector spaces, 
although of different signatures -+++ and +---, but the full spinor space of real 

Cl(3,1) is 4x1 = 4-dimensional, 

while the full spinor space of quaternionic 

Cl(1,3) is 2x4 = 8-dimensional. 

As can be seen from the Clifford CheckerBoard Table, for any N there is 
always a signature (p,q) with p+q = N such that Cl(pq) has real structure.  

Now, look at the Yang Hui triangle. The left-side border line is all 1's since 
there is only 1 dimension of scalars. 
 
The next line is 
                    1
                2
              3
            4
          5
        6
      7
    8 
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 the dimension of the vector space V(p,q) of the Clifford algebra Cl(p,q). 
 
The next line is 
                 1                 1
               3
             6
          10
        15
      21
    28 
 
the dimension of the bivector subspace of the Clifford algebra.  

The bivector subspace closes under the commutator 
[a,b] = a.b - b.a  operation, which defines the Lie algebra 
of the Lie group Spin(p,q) of the Clifford algebra Cl(p,q).  
 
Spin(p,q) is the simply connected (except for n=0,1,2) 
2-1 covering group of the rotation group SO(p,q) of 
the vector space V(p,q) underlying Cl(p,q).
 
EVERY REPRESENTATION OF Spin(p,q) CAN BE CONSTRUCTED FROM
 
the scalar graded subspace of Cl(p,q), 
the vector graded subspace of Cl(p,q), and 
the spinors (or two half-spinors, for even p+q) 
 
BY USING THE OPERATIONS OF EXTERIOR /\ PRODUCT, 
TENSOR PRODUCT, OR SUM or DIFFERENCE.
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Exceptional Lie Algebra D5 
Representation

An alternative, but equally valid, way to build a 
representation is to represent D5, not by nested hexagons, 
but by the following triangle:  
 
 
                   1                       Spin(2)=U(1)
                 2   3                     Spin(3)=SU(2)=Sp(1)=S3
               4   5   6                   Spin(4)=Spin(3)xSpin(3)
             7   8   9  10                 Spin(5) = Sp(2)
          11  12  13  14  15               Spin(6) = SU(4)
        16  17  18  19  20  21             Spin(7)
      Ks  Kw  Kc  Kp  Qs  Qw  Qc        Spin(8)  = D4
    Qp  ks  kw  kc  kp  js  jw  jc          Spin(9)
  jp 10s 10w 10c   0 10p  9s  9w  9c        Spin(10) = D5

 
Since E6 as used in the D4-D5-E6-E7 physics model 
represents the two half-spinor representations of Spin(8), 

 For Spin(n) up to n = 8, 
here is their Clifford algebra structure 
as shown by the Yang Hui (Pascal) triangle 
and the dimensions of their spinor representations 
 

n                                           Total            Spinor 
                                          Dimension        Dimension

0                   1                                          2^0 =   1= 1x1         1    
1                 1   1                                       2^1 =   2= 1+1         1    
2               1   2   1                                    2^2 =   4= 2x2       2 = 1+1
3             1   3   3   1                                 2^3 =   8= 4+4         2    
4           1   4   6   4   1                              2^4 =  16= 4x4      4 = 2+2
5         1   5  10  10   5   1                         2^5 =  32=16+16        4    
6       1   6  15  20  15   6   1                     2^6 =  64= 8x8      8 = 4+4
7     1   7  21  35  35  21   7   1                 2^7 = 128=64+64        8    
8   1   8  28  56  70  56  28   8   1             2^8 = 256=16x16    16 = 8+8
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Since each row of the Yang Hui (Pascal) triangle 
corresponds to the graded structure of an exterior algebra 
with a wedge product, call each row a wedge string.  
 
In this pattern, the 28 and the 8 for n = 8 correspond 
to the 28 gauge bosons of the D4 Lie algebra 
and to the 8 spacetime (4 physical and 4 internal symmetry) 
dimensions that are added when you go to the D5 Lie algebra. 
 
The 8+8 = 16 fermions that are added when you go to E6, 
corresponding to spinors, do not correspond to any single 
grade of the n = 8 Clifford algebra with graded structure 
1   8  28  56  70  56  28   8   1 
but correspond to the entire Clifford algebra as a whole. 
 
The total dimension of the Clifford algebra 
is given by the Yang Hui (Pascal) triangle 
pattern of binary expansion (1 + 1)^n, 
which 
corresponds to the number of vertices of 
a hypercube of dimension n.  
 
The spinors of the Clifford algebra of dimension n 
are derived from the total matrix algebra of dimension 2^n 
with pattern  

n                    
 
0                   1
1                 2  
2               4    
3             8      
4          16        
5        32          
6      64            
7   128              
8 256                
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This can be expanded to a pattern 

 
n                                    
 
0                   1                
1                 2   1              
2               4   2   1            
3             8   4   2   1          
4          16   8   4   2   1        
5        32  16   8   4   2   1      
6      64  32  16   8   4   2   1    
7   128  64  32  16   8   4   2   1  
8 256 128  64  32  16   8   4   2   1
 
 
in the same form as the Yang Hui (Pascal) triangle.  
 
Call each row a spinor string.    
 
For a given row in the binary (1+1)^n Yang Hui (Pascal) triangle 
the string product of a spinor string and a wedge string 
 
(2^N, 2^(N-1),  2^(N-2), ... , 2^(N-J), ... ,    4,     2, 1)       
(1 ,   N   , N(N-1)/2,...,N^k J^(N-k)/(k!(N-k)!)J),...,N(N-1)/2,N,1)
 
gives the rows of the ternary (1+2)^n power of 3 triangle
 
n                                                           
 
0                     1                          3^0 =     1
1                   2    1                       3^1 =     3
2                4    4    1                     3^2 =     9
3              8    12   6    1                  3^3 =    27
4           16   32   24    8    1               3^4 =    81
5         32   80   80   40   10    1            3^5 =   243
6       64  192  240  160   60   12    1        3^6 =   729
7    128  448  672  560  280   84   14    1     3^7 =  2,187
8  256 1024 1792 1792 1120  448  112   16    1   3^8 =   6,561
 
 
Just as the binary (1+1)^n triangle corresponds to the I Ching, 
the ternary (1+2)^n triangle corresponds to the Tai Xuan Jing. 
The ternary triangle describes the sub-hypercube structure of a hypercube.   
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The ternary power of 3 triangle is not only 
used in representations of the spinors in the D4-D5-E6-E7 model, 
it was used by Plato in describing cosmogony and music.  

(this is so because atoms produce music in a Pythagorean scale which 
corresponds to the Octonions, and the maxim, “As above, so below.” In other 
words, atomic structure matches galactic structure. 

The octonion algebra is an Alternative algebra, 
but since it is non-associative the imaginary octonions 
do not form a Lie algebra because J(a,b,c) = 6[a,b,c] =/= 0 
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Conclusion 

This paper has introduced the formation of matter in Vedic Nuclear Physics, 
then linked this schema to Clifford Algebras and combinatorial math, as well 
as  Mount  Meru  (Hui  Triangle,  Pascal’s  Triangle)  which  in  turn  relate  to 
Fibonacci Numbers and to the Golden Section. Ultimately these relate to the 
Platonic  Solids  and  combinations  of  such  into  icosahedrons  and  other 
advanced forms. 

Clifford Algebras “dwell” in specific spaces we call Spinors, and Frank “Tony” 
Smith describes these and their specific relations to Clifford Algebras, here as 
well as on his website, and in numerous papers he has published on the Vixra  
and X Archiv sites. 

Our combinatorial (n + 1) universe contains properties specific to that type of 
mathematics: the Golden Section, and its related geometry and the Mount 
Meru Pyramid. The author hypothesizes that the Golden Section mediates or  
provides a transition zone between dynamic Rajic (9 x 9) and stable Satvic (8 
x 8), the two visible or detectable forms of matter in the universe. Given the 
different  dynamics of each form, substances cannot simply jump from one 
state to the other, but perhaps must pass through a transition zone. 

The  Fibonacci  Numbers  inherently  relate  to  the  growth  of  matter  in  the 
universe,  and  the  author  hypothesizes  that  Fibonacci  Numbers  work  with 
Fibonacci  Periodicity  and  the  Five  Elements  in  the  formation  of  matter. 
Moreover, Time is not a constant, as assumed in the west, but instead has a 
geography of  its  own,  founded upon Base 60 Mathematics.  This  helps  to 
account for the great variety in the universe, which contains a periodicity as 
well. 

Researchers would do well to exploit these areas in favor of others. For this 
reason, this paper has marked out the nature of the atom, and provided the 
tools  with  which  to  explore.  It  remains  to  be  seen  what  more  can  be 
discovered about this amazing science of our ancestors. 
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Contact 
The author may be contacted at jaq2013 at outlook dot com 

Some men see things as they are and say why? I dream things that 
never were and say why not?

Let's dedicate ourselves to what the Greeks wrote so many years ago: 

to tame the savageness of man and make gentle the life of this world.

Robert Francis Kennedy
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