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Abstract

Black hole (BH) quantization may be the key to unlocking a unifying
theory of quantum gravity (QG). Surmounting evidence in the field of
BH research continues to support a horizon (surface) area with a discrete

and uniformly spaced spectrum, but there is still no general agreement on
the level spacing. In this specialized and important BH case study, our
objective is to report and examine the pertinent groundbreaking work of
the strictly thermal and non-strictly thermal spectrum level spacing of the
BH horizon area quantization with included entropy calculations, which
aims to tackle this gigantic problem. In particular, this work exemplifies
a series of imperative corrections that eventually permits a BH’s hori-
zon area spectrum to be generalized from strictly thermal to non-strictly
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thermal with entropy results, thereby capturing multiple preceding devel-
opments by launching an effective unification between them. Moreover,
the identified results are significant because quasi-normal modes (QNM)
and “effective states” characterize the transitions between the established
levels of the non-strictly thermal spectrum.

1 Introduction

BHs are mighty creatures that generate chaos in space-time physics. In general,
the laws of classical and modern physics break down when attempts are made
to rigorously characterize the behavior of BHs and their effects. In order to
advance science, fundamental problems such as the BH information paradox
and event horizon firewalls [1, 2, 3, 4] must be nullified and understood so
the physical laws can be “upgraded” via the scientific method and tested in
laboratory experiments [5].

There is a vast array of modern attacks that aim to tame and conquer the
great BH beasts by establishing a unified field theory with a new set of physical
laws. Among these approaches, numerous mainstream unification candidates
(and variations of those candidates) exist, including, super-string theory [6],
QG, loop quantum gravity (LQG) [7, 8, 9, 10, 11], Chern-Simons theory [12],
Yukawa SO(10) theory [13], E8 theory [14], and others. Frequently, components
and ideas from different theories are combined, adjusted, and “hacked” together
(i.e. copy-and-paste methods) to forge new hybrid theoretical frameworks with
customized capabilities, such as semi-classical physics, which intertwines aspects
of quantum mechanics and classical mechanics. Currently, none of these candi-
dates are accepted to be complete by mainstream science. For example, some
frameworks like super-string theory [6], Yukawa SO(10) theory [13], and E8
theory [14] are incomplete because they require more spatial degrees of freedom
to operate than 4D space-time can offer so they cannot be tested in the lab-
oratory, while other theories are incomplete because they fail to fully describe
paradoxical phenomena like BHs, which remain imposing, elusive, and continue
to violate the modern laws of physics. Hence, the theories must be subjected to
additional stringent scientific research, scrutiny, debate, and experimentation so
they can continue to evolve and achieve improved representational capabilities.

In this review paper, we focus on the surface area and entropy quantization
of BH event horizons, where we identify and examine some key points, issues,
and corrections in a chronological narrative of strictly thermal and non-strictly
thermal results. For this assignment, the pertinent, groundbreaking work of
numerous researchers and teams is investigated. As mentioned above, there is
a diverse landscape of candidate unification theories that may be applied this
particular BH aspect. Thus, from among the said candidates, we’ve selected a
semi-classical platform to launch a probe of BHs that exemplifies the underlying
QG theory. For this work, we prefer this semi-classical, QG-based approach over
existing unification candidates such as super-string theory [6], Yukawa SO(10)
theory [13], and E8 theory [14] because their gravitational treatment adds too
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many spatial degrees of freedom. Now LQG [7, 8, 9, 10, 11] does have 4D space-
time gravity “built-in” by default because it fundamentally operates on the prin-
ciples of general relativity. Moreover, recent emerging LQG-based approaches
do yield promising results with new quantization techniques and connections to
semi-classical Bekenstein-Hawking entropy [7, 8, 9, 10, 11]. However, for the
purpose of this case study, LQG still does not have the requisite gravitational
tools for constructing and/or interpreting the desired BH area and entropy quan-
tization framework. In fact, besides string theory in which gravity should be
modied, in LQG theory general relativity is fundamental but the quantization
process should be adapted. Although LQG is a powerful approach, it is not yet
complete. For example we refer the reader to the holography, the origin of ther-
modynamics, spin-foams (quantum dynamics is not fully under control), many
open question concerning the classical limit and extension of static uncharged
black holes to charged, rotating case is unclear. Therefore, starting with Sec-
tion 2, we review initial incursions that establish preliminary upper and lower
bounds on the horizon area and entropy quantization for non-extremal BHs in
terms of our semi-classical, QG perspective. Next, in Section 3, we proceed to
work that further characterizes a strictly thermal spectrum, where the perturba-
tion field states and transitions are encoded with damped harmonic oscillators
and QNMs. Thereafter, in Section 4, we advance to additional corrections that
lead to a non-strictly thermal spectrum, where effective states are deployed to
encode BH characteristics and initiate the unification of the preceding strictly
thermal quantization results. Finally, we conclude with the brief discussion and
results recapitulation of Section 5.

2 Initiating horizon area quantization boundaries

In the early 1970s, Bekenstein [15, 16] observed that the (non-extremal) BH
horizon area behaves as a classical adiabatic invariant and therefore conjectured
that it should exemplify a discrete eigenvalue spectrum with quantum transi-
tions [17, 18]. To date, a major objective in BH physics research is to determine
the unique spacing between the BH horizon area levels because surmounting sci-
entific evidence seems to indicate that the BH horizon area spectrum is in fact
quantized and uniformly distributed [17, 18]. Thus, our investigation launches
from the particle platform of wave-particle duality.

When a BH captures or releases a (point) particle with mass, then the BH’s
mass unavoidably increases or decreases, respectively, which directly influences
its horizon area [17, 18]. For the BH uncharged particle absorption process, it
was ascertained [16] from Ehrenfest’s theorem that the particle’s center of mass
must follow a classical trajectory and therefore it was demonstrated that the
BH horizon area increase lower-bound is [17, 18]

∆A = 8πµb, (1)

where ∆A is the BH horizon area change, µ is the particle rest mass, and b is
the particle finite proper radius. In a quantum theory, Heisenberg’s uncertainty
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principle, which excludes a completely reversible process, applies to relativistic
quantized particles [17, 18]—specifically, the radial position for the particle’s
center of mass is subject to an uncertainty of b ≥ ~/µ because it cannot be
localized with a degree of precision that supercedes its own Compton wavelength
[17, 18]. Thus, for the uncharged particle absorption process, the uncertainty
principle is the physical mechanism which defines the uncharged BH horizon
area increase lower-bound as [17, 18]

∆A = 8πl2p, (2)

where lp =
√

G~

c3 is the Planck length in gravitational units G = c = 1. How-

ever, for the BH charged particle absorption process the “uncertainty princi-
ple mechanism” must be supplemented by a secondary physical mechanism—a
Schwinger discharge for the BH vacuum polarization process [17, 18]. Hence,
for the charged particle absorption process, this “vacuum polarization mecha-
nism” lets one bypass the reversible limit constraint and defines the charged BH
horizon area increase lower-bound as [17, 18]

∆A = 4 ln el2p = 4l2p. (3)

Here, the lower-bounds of eqs. (2–3) are fully consistent with the analysis of
[19, 20].

Thus, as soon as one introduces quantum implications into the absorption
process it becomes evident that eqs. (2–3) are in fact universal lower-bounds
because they are independent of the BH parameters [17, 18]; this fundamen-
tal lower-bound’s universality strongly favors a uniformly-spaced quantum BH
horizon area spectrum [17, 18]. Moreover, it is striking that although the results
of eqs. (2–3) emerge from two distinct physical mechanisms, they are clearly of
the same magnitude order [17, 18] and differ by a factor of 2π due to the ex-
istence of charge, which is further realized in [19, 20]. Hence, it was concluded
that the BH horizon area quantization condition is of the form [17, 18]

An = γnl2p ; n = 1, 2, ... (4)

where γ is a dimensionless constant.
In [17, 18], it was recognized that the exact values of eqs. (2–3) can be

challenged because they operate on the assertion that the smallest possible
particle radius is precisely equal to its Compton wavelength and because the
particle size is inherently fuzzy. But it is clear that the γ in both eqs. (2–3)
cases must be of the magnitude order γ = O(4) [17, 18]. Moreover, that “the
small uncertainty in the value of γ is the price we must pay for not giving our
problem a full quantum treatment” [17, 18]. Therefore, the quantum analysis
[17, 18] shifts from discrete particles to continuous waves due to the uncertainty
of γ; this is legal because of nature’s wave-particle duality—one must be able to
infer the wave results from the particle results, and conversely. Consequently,
the QNMs authorize one to explore BH perturbations from the perspective
of such waves [17, 18, 21, 24]. Specifically, QNMs enable one to characterize
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a BH’s free oscillations, where the behavior of the radiated perturbations is
reminiscent to the last pure dying tones of a ringing bell because the QNM
frequencies are representative of the BH itself [17, 18, 21, 24]. The perturbation
field QNM states encode the scattering amplitude’s pole singularities in the BH
background [18]. More specifically, the quantized states of the perturbation
fields outside the BH are encoded with complex numbers for QNMs, where the
BH perturbation fields transition between states in the “BH perturbation field
state space” over “state time”. The BH states of such complex-valued QNMs are
equipped with the standard 2D coordinate-vector components: the amplitude
(“radius” or “modulus”) and phase (“azimuth” or “direction”) for 2D polar vector–
coordinate form, and real and imaginary for 2D Cartesian vector–coordinate
form. In BH physics and thermodynamics, it is imperative to be able to encode
such QNM states and transitions for determining the asymptotic behavior of
BH ringing frequencies—this is a monstrous physical encoding problem that
requires a proper, rigorous quantum treatment in order to further demystify
and generalize the horizon area results of eqs. (1–4).

3 Strictly thermal horizon area and entropy quan-

tization

To attack this massively complex encoding problem in Hawking’s strictly thermal
radiation spectrum, Maggiore [21] went on to demonstrate that the behavior of
the BH perturbation field QNM states is identical to that of damped harmonic
oscillators whose real frequencies are encoded as the 2D polar amplitude

|ω| =
√

ω2
R
+ ω2

I
, (5)

rather than just ωR, such that

ωR =

√

|ω|2 −
(

K

2

)2

and ωI =
K

2
(6)

are the 2D Cartesian real and imaginary components, respectively, where K
is the damping coefficient. In eqs. (5–6), the case |ω| = ωR for ωI ≪ |ω|
corresponds to lowly-excited, very long-lived perturbation states, whereas the
“opposite” limit case |ω| = ωI for ωR ≪ ωI corresponds to highly-excited, very
short-lived perturbation states [21]—so |ω| ≃ ωI rather than |ω| ≃ ωR. The
results of eqs. (5–6) exemplify the three distinct QNM components—|ω|, ωR,
and ωI—that comply with Pythagorean’s theorem of triangles for the precise
determination of physical properties with the well-known elementary trigono-
metric (circular) functions. Thus, it is straightforward to identify the fourth
QNM component as

〈ω〉 = arctan 2(ωI, ωR), (7)

which encodes the 2D polar phase of the BH perturbation field’s azimuthal
eigenvalue, namely m.
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With the aim to establish order in the chaos, Bohr’s correspondence principle
of 1923 was deployed, which claims that the “transition frequencies at large
quantum numbers should equal classical oscillation frequencies” [17, 18]. Thus,
the analysis [17, 18] focused on the ringing frequencies asymptotic behavior for
the n → ∞ limit, which are classified as highly-damped BH perturbation field
QNM frequencies that operate under the assertion that such quantum transitions
between states are instantaneous. The transitions do not require time because
it was established that ω = ωR − iωI [17, 18], such that τ ≡ ω−1

I
is the effective

relaxation time which is required for the BH to return to a state of equilibrium,
where τ is arbitrarily small as n → ∞. On one hand, for each value of l, there
exists an infinite number of QNMs for n = 0, 1, 2, ... with decreasing relaxation
times (so the value of ωI increases) [17, 18]. On the other hand, ωR approaches a
constant value as n is increased [17, 18]. Hence, eqs. (5) and (7) are re-written
for large n as the amplitude

|ωn| =
√

ω2
nR

+ ω2
nI
, (8)

and the azimuthal phase is

〈ωn〉 = arctan 2(ωnI
, ωnR

), (9)

respectively. Eqs. (8–9) exhibit a BH energy level structure that is physically
very reasonable, because both the amplitude component |ωn| and the imaginary
component ωnI

increase monotonically with the overtone number n [21]. Thus,
the context of equivalent harmonic oscillators, n = 1 is the least damped state for
the lowest value of |ω|, while |ωn| is the larger state with a shorter lifetime [21].
The asymptotic behavior of the highly-damped states is difficult to determine
because of the effect of exponential divergence of the QNM eigenfunctions at
r∗ → ∞ [17, 18]. However, it is known for the simplest case of a Schwarzschild
BH (SBH) as [17, 18]

Mωn = 0.0437123− i

4
(n+

1

2
) +O[(n+ 1)−1/2], (10)

a characteristic of the BH itself (in the n ≫ 1 limit), which is only dependent
upon M and is independent of l and σ.

Moreover, it was shown in [17, 18] that the numerical limit Re(Mωn) →
0.0437123 (as n → ∞) agrees with the quantity ln 3/(8π) and is thereby sup-
ported by thermodynamic and statistical physics. So when equipped with
∆A = 4 ln 3l2p from A(M) = 16πM2 and dM = E = ~ω, one can identify

γHod(3) = 4 ln 3 (11)

for the quantum SBH horizon area spectrum of eq. (4), which is upgraded to
[17, 18]

An = γHod(3)l
2
p · n. (12)

So the wave analysis is consistent with the particle analysis O(4) [17, 18]—
a result that supports wave-particle duality with an exactitude of mechanics,
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rather than statistics. From the statistical standpoint, eq. (12) is paramount
because it complies with the semi-classical version of Christodoulou’s reversible
process, which is mechanistic in nature, and is independent of the thermody-
namic relation between the BH horizon area An and entropy SBH(n) [17, 18].
The accepted relation between An and SBH(n) is pertinent if ∀n the constraint

γHod(k) = 4 lnk ; k = 2, 3, ... , (13)

is satisfied, such that g(n) ≡ eSBH(n) [17, 18]. Hence, the first independent
derivation of k was established [17, 18], which still requires additional contem-
plation because there is still no general agreement on the spectrum level spacing.
But eq. (13) is still the only expression that is consistent with both the area-
entropy thermodynamic relation, statistical physics, and Bohr’s correspondence
principle [17, 18].

The lower-bound universality of eqs. (2–3) and the entropy universality
suggest that the area spectrum of eq. (12) is valid not only for SBHs, but more
sophisticated physical structures such as Kerr BHs (KBH) and Kerr-Newman
BHs (KNBH) [17, 18]. Moreover, an assumption was proposed regarding the
asymptotic behavior of highly-damped QNMs of generic KNBHs [17, 18]. Upon
considering the first law of BH thermodynamics [17, 18]

dM = Θ(M,a,Q)dA(M) + ΩdJ (14)

for

Θ(M,a,Q) =
r+(M,a,Q)− r−(M,a,Q)

4A(M)
(15)

and

Ω(M,a) =
4πa

A(M)
, (16)

where the KNBH inner and outer horizons are

r+(M,a,Q) = M +
√

M2 − a2 −Q2r−(M,a,Q) = M −
√

M2 − a2 −Q2 (17)

such that a = J/M is the KNBH angular momentum per unit mass, one can
find [17, 18]

ωnR
→ Θ(M,a,Q)γHod(3) + Ω(M,a)m, (18)

where n → ∞, such that m is the perturbation field’s azimuthal eigenvalue that
corresponds to its phase.

Along this approach, for large n, the strictly thermal asymptotic behavior
[21] was employed

8πMωn =
ωn

8πM
= ln 3 + 2πi(n+

1

2
) +O[(n+ 1)−1/2], (19)

for the Hawking temperature

TH =
~

8πM
(20)
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to re-write eq. (8) as

~|ωn| =
√

m2
0 + p2n, (21)

for the underlying QNM Pythagorean components

m0 = ωnR
= TH ln 3 and pn = ωnI

= 2πTH

(

n+
1

2

)

(22)

so eq. (9) becomes
〈ωn〉 = arctan 2(pn,m0), (23)

for the trigonometric functions. In the very large n approximation, the lead-
ing term in the imaginary part of the complex frequencies in eq. (19) becomes
dominant and spin independent, while, strictly speaking, eq. (19) works only for
scalar (spin 0) and gravitational (spin 2) perturbations, see [21] for details. In
the pn of eq. (22), recall that the 2π mathematically relates a circular radius to a
circular circumference and is the difference between the uncharged and charged
area quantization lower bounds of eqs. (2–3) that complies with [19, 20]—so
one could hypothesize that this intriguing 2π critical value may suggest a funda-
mental relationship to a circularly-symmetric or spherically-symmetric physical
topology. The formulation of pn [21] is fascinating because it harmonizes a quan-
tized particle with antiperiodic boundary conditions on a circle of circumference
length

L =
~

TH(M)
= 8πM. (24)

At this point, preparations were made to re-examine some aspects of quantum
BH physics by assuming the relevant frequencies are |ωn|, rather than ωnR

[21].
Next, in [21] some important quantized spacing results for the discrete BH

area spectrum were recalled. First, the conjecture of [16] was noted [21], which
proposed that the level spacing is in quantized units of l2p and thereby resulted
in the SBH area quantum ∆A = 8πl2p of eq. (2) so we label γBek = 8π as
Bekenstein’s dimensionless constant. Second, he [21] recognized that the results
of [17, 18] revealed a similar quantization, but utilized the SBH QNM properties
to discover the different numerical coefficient, namely ∆A = γHod(3)l

2
p of eq.

(12).
Although the hypothesis [17, 18] is exciting (primarily due to some possible

connections with LQG), it still exhibits some complications [21]. Additional
analysis on the term γHod(3) with its origin in ωnR

for eq. (19) is in fact not
universal because it does not comply with charged and/or rotating BHs [21].
For example, in the case of a KBH or KNBH with a = J/M , one finds that
the large n limit and the limit a → 0 do not commute because if one first
considers a → 0, then ωnR

does not reduce to ln 3/(8πM) and instead vanishes
as a1/3, which means that the area quantum becomes arbitrarily small if one
gives the BH an infinitesimal rotation [21]. Similarly, in the case of a Reissner-
Nordström BHs (RNBH) or KNBH, one finds that ωnR

changes discontinuously
if the limits Q → 0 and n → ∞ are interchanged [21]. Thereafter, a couple
of additional exploits were pointed out in Hod’s conjecture [17, 18], so it was
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initially concluded that it “does not reflect any intrinsic property of the BH,
and the would-be area quantum vanishes in various instances” and that its “area
quantization holds only for a transition from (or to) a BH in its fundamental
state, while transitions among excited levels do not obey it” [21]. But, after
additional scrutiny and venture [21], it was determined that all of the above
complications are deleted when, in the conjecture of [17, 18], one replaces ωnR

with |ωn|! For large n and the transition n → n − 1, eq. (19) and |ωn| ≃ ωnI

yield the absorbed energy ∆M = ~[|ωn| − |ωn−1|] = ~/(4M), such that [21]

∆A = 32πM∆M = 8πl2p, (25)

which complies with the old results of [16] because γBek = 8π. Thus, given the
equal spacing for |ωn| at large n, all other transitions require a larger energy; i.e.
n → n−2 consumes about twice the energy [21]. Even if one dares to extrapolate
at low n, where semi-classical reasoning may be destroyed, we still realize a non-
vanishing area quantum of eq. (25)’s magnitude order [21]. Therefore, the final
results of [21] concluded that the spacing of eq. (25) indicates a consistent SBH
horizon area quantization, which implies that lp is the minimum magnitude
order length for the existential and generalized uncertainty principle.

Consequently, in terms of BH entropy and micro-states, the work of [21]
determined that for large n, the horizon area quantum is ∆A = γBekl

2
p, such

that γBek = 8π of [16] replaces γHod(3) = 4 ln 3 of [17, 18]. Thus, the total
horizon area must be of the form [21]

A = N∆A = Nγl2p, (26)

where the area quanta number N = A/∆A is an integer but is not the same as
the integer n (which is used to label the BH perturbation field QNM states).
Hence, the BH entropy is defined as [16, 21]

SBH =
A

δ
, (27)

where
δ = 4l2p (28)

agrees with the approach of [19, 20] and additionally the LQG approaches of
[9, 10, 11] to the same order of magnitude. Therefore, at level N(M), it was
expected that the number of possible BH micro-states (or “BH micro-state space
cardinality”) is [21]

g(N) ∝ eA/δ = eN∆A/δ = eγN/4. (29)

Subsequently, upon fixing the constant for N = 1 in eq. (27), there is only one
micro-state in the state space, namely g(N) = 1, which gives [21]

g(N) = e(γ/4)(N−1). (30)

This operates under the required assumption that g(N) is an integer, which
restricts γ to in the form γHod(k) of eq. (13), such that k is an integer [21]; the
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value γHod(3) is in the form of γHod(k) but the value γBek is not—γBek is only
in the form of γHod(k) if k = e2π because

γBek = 8π = 4(2π) = 4(ln k) (31)

holds for the periodicity ln k = 2π but clearly violates the “k must be an integer”
or “k-constraint” assertion—we also note that γHod(e) = 4 ln e takes a similar
form to γHod(k) but also violates the k-constraint.

These attempts to restrict γ raise a number of objections [21]. First, even
in the trusted semi-classical framework, N is gigantic, therefore g(N) is the ex-
ponential of a colossal number [21]. Even if the number of micro-states must be
an integer, there is no hope that a semi-classical (or even a classical and statis-
tical) calculation can identify this quantity with a precision of order one, which
is requisite to distinguishing between an integer and non-integer result [21].
Moreover, the above g(N) expression assumes that the horizon area quantum
∆A is legal from large N down to N = 1, where this semi-classical approxi-
mation is unwarranted [21]. So although we see that eqs. (21–22) determine
equally spaced levels in the limit of highly-excited states, the level spacing for
lowly-excited states are not equally spaced [21].

Thus, when the value γBek [16] was employed in SBH(M) = γBekN(M)/4,
the result [21]

SBH = 2πN +O(1) (32)

was discovered, such that g(N) ∝ e2πN(M), for the leading order in the large
N limit. Basically, eq. (32) gives a discrete spectrum which indicates that
the entropy is an adiabatic invariant in accordance to Bohr’s correspondance
principle [21]. All of this replicates the BH behavior and perturbation field states
in terms of highly-damped harmonic oscillators whose real frequencies are the
amplitude-modulus |ωn| (instead of ωnR

) for the area quantization ∆A = γBekl
2
p

(instead of ∆A = γHod(3)l
2
p). At this point, we also note that ∆A = γBekl

2
p was

also obtained in the alternative approach of [22] without the use of QNMs—
another remarkable result that supports this development.

4 Non-strictly thermal horizon area and entropy

quantization with effective states

The striking work of Parikh and Wilczek [23] demonstrated that Hawking’s
radiation spectrum cannot be strictly thermal, where such a non-strictly thermal
character implies that the BH spectrum is also non-strictly continuous [24, 25]:
this generates a natural correspondence between Hawking radiation and the
BH perturbation field QNM states, which supports the idea that BHs result
in highly-excited states in an underlying unitary quantum gravity theory [24,
25]. Moreover, the strictly thermal spectrum deviation results of [5] strongly
suggested that single particle quantum mechanical approaches may be essential
for finding potential solutions to the BH information puzzle.
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Thus, after a careful and extensive examination of the non-strictly thermal
and non-strictly continuous BH energy spectrum and the spherically-symmetric
particle tunneling results of [23] in [24, 25] with G = c = kB = ~ = 1

4πǫ0
= 1

(Planck units), the conventional Hawking temperature TH(M) of eq. (20) was
replaced by defining the SBH’s effective temperature in eq. (3) of [24] as

TESBH
(M,−ω) = 2M

2M+(−ω)TH = 1
4π(2M+(−ω))

= 1
8πME(M,−ω) = 1

2πRESBH
(M,−ω) = 1

βESBH
(M,−ω)

(33)
for the emission of an uncharged particle with energy-frequency ω so the SBH
contracts, where M is the SBH’s initial mass before the emission, M − ω is the
SBH’s final mass after the emission, ME is the SBH’s effective mass defined in
eq. (5) of [24] as

ME(M,−ω) = M +
−ω

2
= M − ω

2
, (34)

RESBH
is the SBH’s effective horizon defined in eq. (5) of [24] as

RESBH
(M,−ω) = 2ME(M,−ω), (35)

and βE is the SBH’s effective Botzmann factor defined in eq. (12) of [25]. The
new effective quantities TESBH

, ME , RESBH
, and βESBH

are average quanti-
ties which characterize the effective state of a discrete process rather than a
continuous process [24, 25]. Thus, for example, eqs. (33–35) indicate that the
circular antiperiodic boundary conditions of eq. (24) can be replaced with with
the effective horizon circumference

LESBH
(M,−ω) = 1

TESBH
(M,−ω) = 8πME(M,−ω) = βESBH

(M,−ω),

= 4πRESBH
(M,−ω) = 2π

κESBH
(M,−ω)

(36)
which is simply the geometric equivalence of Boltzmann’s effective physical
quantity βESBH

, such that the fundamentally related κESBH
is the SBH’s effec-

tive surface gravity. Subsequently, the results of eqs. (33–35) were instrumental
in the establishment of two additional effective quantities [25]: the SBH’s effec-
tive line element from eq. (14) of [25]

ds2ESBH
= −

(

1− RESBH
(M,−ω)

r

)

dt2+
dr2

1− RESBH
(M,−ω)

r

+r2(sin2 ϕdφ2+dϕ2),

(37)
which encompasses the dynamical geometry of the SBH during the emission
or absorption of the particle. Through a rigorous examination of Hawking’s
arguments [36, 29], the Euclidean form of eq. (18) in [25] was successfully
presented as

ds2ESBH
= x2

[

dτ

4M
(

1− ω
2M

)

]2

+

(

r

RE(M,−ω)

)2

dx2 + r2(sin2 ϕdφ2 + dϕ2),

(38)

11



which is regular at x = 0 and r = RE(M,−ω) and permits to rigorously obtain
eq. (37). In [36, 29] it was shown that τ serves as an angular variable with
the periodicity of βESBH

= LESBH
in eq. (36) with the underlying antiperiodic

boundary conditions.
Henceforth, the procedure of [28] authorized the acquisition of the corrected

physical states for bosons and fermions from eq. (15) of [25] as

|Ψ〉boson = (1− exp( −ωn
TE(M,−ω))

1
2Σn exp(−ω4πnME(M,−ω)|nLeft

out 〉 ⊗ |nRight
out 〉

|Ψ〉fermion = (1 + exp( −ωn
TE(M,−ω))

− 1
2Σn exp(−ω4πnME(M,−ω)|nLeft

out 〉 ⊗ |nRight
out 〉

(39)
which respectively correspond to the encoding of the emission probability dis-
tributions from eq. (16) of [25], which are

〈n〉boson = 1
exp( −ωn

TE(M,−ω)
)−1

〈n〉fermion = 1
exp( −ωn

TE(M,−ω)
)+1

.
(40)

At this point, we note that in order to compute the SBH effective parameters
for the absorption of an uncharged particle with energy-frequency ω, the −ω
argument of eqs. (33–38) may be quickly replaced with +ω—if we wish to
reference both emission and absorption simultaneously in such formulas, it is
straightforward to specify ±ω.

Next, the work of [24] deployed eq. (33) to re-write eq. (22) in the corrected
form

mn = TE(M,−|ωn|) ln 3 and pn = TE(M,−|ωn|)2πi
(

n+
1

2

)

, (41)

which takes into account the non-strictly thermal behavior of the SBH, where

ωn = mn + pn +O(n− 1
2 ). (42)

We stress that, although eqs. (41) and (42) have been derived in [24] only
intuitively, they have been rigorously derived in the appendix of [35]. In that
paper it has been also shown that in the very large n approximation, the leading
term in the imaginary part of the complex frequencies in eq. (42) becomes
dominant and spin independent, while, strictly speaking, eq. (42) works only
for scalar and gravitational perturbations, see [35] for details. Then, considering
the leading term in the imaginary part of the complex frequencies, eq. (24) of
[24] gives

|ωn| = M −
√

M2 − 1

2
(n+

1

2
) (43)

for emission. In eq. (43) it was observed that the emission n → n− 1 gives the
energy variation of eq. (29) in [24] as

∆Mn = |ωn−1| − |ωn| = −f(M,n) (44)

12



for the spacing of eq. (25) as

∆ASBH(M,∆Mn) = 32πM∆Mn = −32πM × f(M,n) ≈ −γBek (45)

in the very large n limit, which is the same order of magnitude as the original
area quantization result [16]—the f(M,n) of eqs. (44–45) was constructed in
eq. (30) of [24]. We recall that the SBH’s horizon area ASBH is related to its
mass M via the relation ASBH = 16πM2 [16]. From this, one gets that if ASBH

is quantized as |∆A| = γBek [16, 21] and |∆A| = γHod(3) [17, 18], then the
SBH’s total horizon area must be [24]

ASBH(M,n) = NSBH(M,n)|∆ASBH(M,n)| = 16πM2 = 4πR2
SBH , (46)

for the SBH’s event horizon RSBH = 2M , such that eq. (33) of [24] is

NSBH(M,n) =
ASBH(M,n)

|∆ASBH(M,n)| =
16πM2

32πM∆Mn
=

M

2f(M,n)
, (47)

where the well-known SBH’s Bekenstein-Hawking entropy [15, 16, 27] was re-
written as [24]

SSBH(M,n) = ASBH(M,n)
4

= 8πNSBH(M,n)M |∆Mn|
= 8πNSBH(M,n)M × f(M,n),

(48)

which indicates the crucial result that SSBH is a function of the quantum over-
tone number n [24].

On the other hand, it is a common and general belief that there is no rea-
son to expect that Bekenstein-Hawking entropy will be the whole answer for a
correct unitary theory of quantum gravity [37]. For a better understanding of
black hole’s entropy one needs to go beyond Bekenstein-Hawking entropy and
identify the sub-leading corrections [37]. The quantum tunnelling approach can
be used to obtain the sub-leading corrections to the second order approxima-
tion [38]. One gets that the black hole’s entropy contains three parts: the usual
Bekenstein-Hawking entropy, the logarithmic term and the inverse area term
[38]

Stotal = SBH − lnSBH +
3

2A
. (49)

In fact, if one wants to satisfy the unitary quantum gravity theory the loga-
rithmic and inverse area terms are requested [38]. Apart from a coefficient, this
correction to the black hole’s entropy is consistent with the one of loop quantum
gravity [38], where the coefficient of the logarithmic term has been rigorously
fixed at 1

2 [38, 39]. The expression (48) for Bekenstein-Hawking entropy permits
to re-write eq. (49) as [24]

Stotal(SBH) = 8πNM ·f(M,n)−ln [8πNM · f(M,n)]+
3

64πNM · f(M,n)
. (50)
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In the top line of eq. (48), observe that denominator 4, which divides the
numerator ASBH to compute the resulting SSBH , is reminiscent of the δ from
[16, 19] in eqs. (27–28). Additionally, note that the results of eqs. (45) and (48)
indicate the SBH’s Bekenstein-Hawking entropy change is

∆SSBH(M,n) =
∆ASBH(M,n)

4
, (51)

where clearly a change of negative entropy (∆SSBH < 0) recurs for absorption
transitions because energy is conserved in 4D space-time.

Therefore, in order to incorporate the emerging SBH effective state frame-
work, eqs. (46–48) become

AESBH
(M,∆Mn) = NESBH

(M,∆Mn)|∆AESBH
(M,∆Mn)|

= 16πM2
E(M,∆Mn) = 4πR2

ESBH
(M,∆Mn),

(52)

NESBH
(M,∆Mn) =

AESBH
(M,∆Mn)

|∆AESBH
(M,∆Mn)|

=
16πM2

E(M,∆Mn)
32πME(M,∆Mn)n×f(M,n)

= ME(M,∆Mn)
2f(M,n) ,

(53)

and

SESBH
(M,∆Mn) =

AESBH
(M,∆Mn)

4 = πR2
ESBH

(M,∆Mn)
= 8πNESBH

(M,∆Mn)ME(M,∆Mn)|∆M |

= 8πNESBH
(M,∆Mn)ME(M,∆Mn)× f(M,n)

= f(M,n)
TE(M,∆Mn)

.

(54)

One also obtains the total effective entropy as

S(total)ESBH
(f(M,∆Mn)) =

f(M,n)

TE(M,∆Mn)
−ln

[

f(M,n)

TE(M,∆Mn)
)

]

+
3TE(M,∆Mn)

8f(M,n)
.

(55)
Hence, the effective state quantities of eqs. (52–55) recognize the seemingly
pertinent, disjoint aspects of the candidate horizon area theories of Bekenstein
[15, 16], Hod [17, 18], and Maggiore [21] by replacing Hawking’s strictly thermal
TH [27, 29] with the non-strictly thermal TE [24] to establish a preliminary
generalization and unification.

Thereafter, subsequent work initiated an effective state framework general-
ization from SBHs [24] to KBHs [26], which was largely inspired by the discover-
ies of [30, 31, 32, 33]. It is known that the quantifiable difference between a SBH
and a KBH is the angular momentum components [26]. Hence, for this the the
KBH’s effective angular momentum as JE(M,∆Mn) = ME(M,∆Mn)αE(M,∆Mn)
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[26], where the KBH’s effective specific angular momentum from eq. (3.13) in
[26] is expressed as

αE(M,∆Mn) =
JE(M,∆Mn)

ME(M,∆Mn)
(56)

for the additional KBH’s effective angular momentum components

∆E(M,∆Mn) = r2 − 2ME(M,∆Mn)r + α2
E(M,∆Mn) (57)

and
ΣE(M,∆Mn) = r2 + α2

E(M,∆Mn) cos
2 ϕ (58)

from eqs. (3.14–3.15) in [26] that authorized the identification of the KBH’s
effective outer and inner horizons

R+EKBH
(M,∆Mn) = ME(M,∆Mn) +

√

M2
E(M,∆Mn)− α2

E(M,∆Mn)

R−EKBH
M,∆Mn) = ME(M,∆Mn)−

√

M2
E(M,∆Mn)− α2

E(M,∆Mn),
(59)

and the corresponding KBH’s effective line element

ds2EKBH
= −

(

1− 2ME(M,∆Mn)r
ΣE(M,∆Mn)

)

dt2 − 4ME(M,∆Mn)αE(M,∆Mn)r sin2 ϕ
ΣE(M,∆Mn)

dtdφ

+ ΣE(M,∆Mn)
△E(M,∆Mn)

dr2 +ΣE(M,∆Mn)dϕ
2

+
(

r2 + α2
E(M,∆Mn) + 2ME(M,∆Mn)α

2
E(M,∆Mn)r sin

2 ϕ
)

sin2 ϕdφ2

(60)
respectively, which takes into due account the KBH’s dynamical geometry as it
emits or absorbs particles [26]. From there, eqs. (56–59) permitted the definition
of the KBH’s effective (outer) horizon area of eq. (3.19) in [26] as

A+EKBH
(M,∆Mn) = 4π

(

R2
+EKBH

(M,∆Mn) + α2
E(M,∆Mn)

)

= 8π
(

M2
E(M,∆Mn) +

√

M4
E(M,∆Mn)− J2

E(M,∆Mn)
)

,

(61)
the KBH’s effective temperature of eq. (3.20) in [26] as

T+EKBH
(M,∆Mn) =

R+EKBH
(M,∆Mn)−R

−EKBH
(M,∆Mn)

A+E(M,∆Mn)

=

√
M4

E
(M,∆Mn)−J2

E
(M,∆Mn)

4πME(M,∆Mn)
(

M2
E
(M,∆Mn)+

√
M4

E
(M,∆Mn)−J2

E
(M,∆Mn)

) ,

(62)
and the KBH’s effective area quanta of eq. (3.22) in [26] as

∆A+EKBH
(M,∆Mn) = 16πME(M,∆Mn)

[

1 +

(

1− J2
E(M,∆Mn)

M4
E(M,∆Mn)

)− 1
2

]

∆Mn

(63)
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for the KBH’s effective area quanta number of eq. (3.23) in [26] as

N+EKBH
(M,∆Mn) =

A+EKBH
(M,∆Mn)

|∆A+EKBH
(M,∆Mn)|

=
ME(M,∆Mn)

2f(M,n)
, (64)

which enabled the KBH’s effective Bekenstein-Hawking entropy of eq. (3.24) in
[26] to be identified as

S+EKBH
(M,∆Mn) =

A+EKBH
(M,∆Mn)

4

= 8πN+EKBH
(M,∆Mn)ME(M,∆Mn)× f(M,n).

(65)
Thus, for JE ≪ M2

E, it was confirmed that eqs. (61–65) reduce to the SBH case
of eqs. (46–54) [24].

Consequently, following the QNM KBH effective state framework [26], the
constructions were generalized to a non-extremal RNBH version [34]. For this
implementation, a new definition of ∆Mn for RNBH QNMs was formulated to
construct the new RNBH effective quantities [34]. Starting from eq. (40) in [34]
the RNBH’s effective charge was defined for small Q as

QE(Q, q) =
Q+ (Q± q)

2
, (66)

where Q is the RNBH’s initial charge before the transition and Q ± q is the
RNBH’s final charge after the transition. The BH’s ME of eq. (34) and the
RNBH’s QE of eq. (66) can be used to identify the RNBH’s effective line element
as

ds2ERNBH
=

(

1− 2ME(M,∆M)
r +

Q2
E(Q,q)
r2

)

dt2 − dr2

1−
2ME(M,∆M)

r
+

Q2
E

(Q,q)

r2

−r2dθ2 − r2 sin2 θdφ2.
(67)

Next, for a quantum transition between the levels n and n−1, the RNBH QNM
definition of ∆Mn in [34] and the QE of eq. (66) were deployed to define the
RNBH’s effective outer and inner horizons from eq. (60) in [34] as

R+ERNBH
(M,∆Mn, Q, q) = ME(M,∆Mn) +

√

M2
E(M,∆Mn)−Q2

E(Q, q)

R−ERNBH
(M,∆Mn, Q, q) = ME(M,∆Mn)−

√

M2
E(M,∆Mn)−Q2

E(Q, q),
(68)

the RNBH’s effective (outer) horizon area from eq. (61) in [34] as

A+ERNBH
(M,∆Mn, Q, q) = 4πR2

+ERNBH
(M,∆Mn, Q, q)

= 4π
(

ME(M,∆Mn) +
√

M2
E(M,∆Mn)−Q2

E(Q, q)
)2

,

(69)
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the RNBH’s effective horizon area change from eq. (67) in [34] as

∆A+ERNBH
(M,∆Mn, Q, q) =

2∆Mnq + πQ3

(M2 −Q2)3/2
, (70)

the RNBH’s effective Bekenstein-Hawking entropy from eq. (62) in [34] as

S+ERNBH
(M,∆Mn, Q, q) =

A+ERNBH
(M,∆Mn, Q, q)

4
, (71)

the RNBH’s effective Bekenstein-Hawking entropy change from eq. (66) in [34]
as

∆S+ERNBH
(M,∆Mn, Q, q) =

∆A+ERNBH
(M,∆Mn, Q, q)

4
, (72)

and the RNBH’s effective quantum area number from eq. (68) in [34] as

N+ERNBH
(M,∆Mn, Q, q) =

A+ERNBH
(M,∆Mn, Q, q)

|∆A+ERNBH
(M,∆Mn, Q, q)| . (73)

Thus, for Q2
E ≪ M2

E, it was confirmed that eqs. (69), (71), and (73) reduce to
the corresponding effective quantities of the SBH case for eqs. (52–54) [34].

5 Conclusion

In this work, we reported and examined the pertinent groundbreaking work of
the strictly thermal and non-strictly thermal spectrum level spacing of the BH
horizon area and entropy quantization from a semi-classical approach. For this,
we chronologically reviewed a series of imperative corrections that eventually
permits a BH’s horizon area and entropy spectrum to be generalized from strictly
thermal to non-strictly thermal with QNMs and effective states [24, 25, 26, 34].
The reported strictly thermal results are significant because they ultimately
build up to the new, emerging BH effective state framework that exemplifies
the underlying QG theory [24, 25, 26, 34]. Moreover, these outcomes launch
an effective unification that begins to merge and generalize an array of strictly
thermal quantization approaches to a single, consolidated non-strictly thermal
approach [24, 25, 26, 34]. In general, all of this research is important to physics
and science because the characteristic physical laws of BHs must be understood
in order to resolve, for example, the puzzles imposed by the BH information
paradox and firewalls [1, 2, 3, 4, 5] in nature.

First, we discussed attack approaches that initiated universal upper and
lower bounds on the area quanta for non-extremal BHs that emit or absorb
particles, which may or may not be charged. We reviewed the mechanisms and
predicted quanta for both uncharged and charged particles, along with the rele-
vant aspects of wave-particle duality. Therefore, we conveyed the importance of
linking the discrete particles to continuous waves with perturbation field QNMs
that encode the BH’s asymptotic behavior of spectral states and transitions.
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Subsequently, we identified a series of damped harmonic oscillator QNM con-
figurations and strictly thermal corrections that were systematically deployed
to encode a BH’s behavior and quantization of area and entropy. Next, we
shifted to the strictly thermal spectrum deviation corrections [23] that permit-
ted the generalized non-strictly thermal spectrum with cutting-edge effective
states [24, 25] for encoding the area and entropy quantization of SBHs, KBHs
[26], and non-extremal RNBHs [34].

In our opinion, the BH quantization work that we chronologically reviewed
in this paper highlights a series of striking scientific results that are beneficial
for tackling the gigantic problems imposed by BHs in the domain of space-time
physics. In the future, such findings should be subjected to additional rigorous
analysis, debate, experimentation, and hard work via the scientific method. In
particular, we suggest that future work should focus on applying the non-strictly
thermal spectrum and effective state framework [24, 25, 26, 34] to additional
classes of BHs and alternative unification approaches.
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