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Abstract. 

This paper proposes a mathematical formalism for describing the machinery of human 
mind creativity. Since some functions of mind support discreteness of cognition, but 
others support its continuity, while time in physics is always continuous, an attempt to 
overcome the continuous/discrete duality of mind performance is implemented via 
utilization of special critical points: terminal attractors and repellers that act as 
autonomous biological clock. In this paper, attention is concentrated upon the discrete 
mode of the mind activity since the continuous mode was introduced and discussed in 
details in our previous publications. The fundamental novelty of the model is in its 
capability to move from disorder to order without external inputs in violation of the 
second law of thermodynamics; that suggests that this kind of dynamics requires 
extension of modern physics to include physics of life. Conceptually the discrete model 
links to its continuous version represented by a hypothetical particle of life that is briefly 
discussed prior to derivation of the discrete model. However the discrete model should be 
considered as the next step in study of mind dynamics since it provides a bridge to 
mathematical origin of self-generated novelties in such brunches as mathematical logic 
and linguistic, i.e. the highest level activities of human mind.  
The proposed model deals with rules of mind activity rather than with its content.  
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1. Introduction. 
This paper continues an effort to model life based upon the first principles, with emphasis 
to capture the mind creativity mystery. The effort is based upon a hypothetical particle of 
life introduced in [1], in which a possible extension of modern physics to include physics 
of Life is discussed. In these work, it has been proven that there exists a fundamentally 
new type of dynamical systems (represented by L-particles) that can evolve from disorder 
to order without external forces thereby violating the second law of thermodynamics. It 
has been demonstrated that these systems belong neither to Newtonian, nor to quantum 
physics. Their departure from Newtonian mechanics is due to a feedback from the 
underlying Liouville equation to the equations of motion that represents an additional 
(internal) information force. Topologically this feedback shifts L-particles towards 
quantum mechanics. However since the information force is different from the quantum 
potential, the L-particles are not quantum, and they can be identified as quantum-classical 
hybrids. Therefore L-particles dwell in an abstract mathematical world rather than in the 
physical world, as we know it. This means that behavior of L-particles can be computed, 
but not simulated. This also means that L-particles, in principle, cannot be composed out 
of physical particles, [1]. The topology of L-particle is demonstrated in Figure 1. 
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Figure 1. Classic Physics, Quantum Physics and Physics of Life. 

This paper proposes a mathematical formalism for describing the machinery of human 
mind creativity based upon the hypothetical model of particle of life. A mind is 
understood as the set of cognitive faculties that   
enables consciousness, perception, thinking, judgment, and memory - a characteristic 
of humans. Adopting terminology of computer science, we will associate brain with a 
computer, and mind – with a set of algorithms implemented by this computer. This 
allows us to distance ourselves from biological aspects of brain and concentrate on 
intrinsic mathematical properties of mind. Similar abstraction – ignorance of metabolism 
and reproduction - made the particle of life an isolated system. Since some functions of 
mind support discreteness of cognition, but others support its continuity, while time in 
physics is always continuous, an attempt to overcome the continuous/discrete duality of 
mind performance is implemented via utilization of special critical points: terminal 
attractors and repellers, [2], that act as autonomous biological clock.    In this paper, 
attention is concentrated upon the discrete mode of the mind activity that is based upon 
the continuous mode mentioned above and represents an extension of this mode. Actually 
the discrete model should be considered as the next step in study of mind dynamics since 
it provides a bridge to mathematical origin of self-generated novelties in such brunches as 
mathematical logic and linguistic, i.e. the highest level activities of human mind.	   	   	   A	  
human	   intelligence	   has	   always	   been	   a	  mystery	   for	   physicists,	   and	   an	   obstacle	   for	  
artificial	   intelligence.	   	   It	   was	   well	   understood	   that	   human	   behavior,	   and	   in	  
particular,	  the	  decision	  making	  process,	  is	  governed	  by	  feedbacks	  from	  the	  external	  
world,	   and	   this	   part	   of	   the	   problem	   was	   successfully	   simulated	   in	   the	   most	  
sophisticated	   way	   by	   control	   systems.	   	   However,	   in	   addition	   to	   that,	   when	   the	  
external	   world	   does	   not	   provide	   sufficient	   information,	   a	   human	   turns	   for	   an	  
“advise”	   to	   his	   experience,	   and	   that	   is	   associated	   with	   a	   common	   sense.	   	   In	   this	  
paper,	   the	   common	   sense	   is	   captured	   via	   spontaneous	   emergence	   of	   new	  
information	  generated	  by	  human	  mind	  without	  external	  interaction.	  
 
It should be emphasized that the proposed model of mind as a part of the hypothetical 
particle of life is based only upon one assumption: the ability to move from disorder to 
order without external sources, i.e. in violation of the second law of thermodynamics. 
Starting with that postulate, mathematical formalism takes over and leads to a quantum-
inspired model of mind. 
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2. Hypothetical particle of life. 
In this Section we briefly discuss a hypothetical model of L-particle introduced in [1]. 
The model is based upon departure from Newtonian dynamics as a result of a feedback 
from the Liouville equation to the equation of motion, Fig.1. 
We will start with derivation of a one-dimensional case that illuminates departure from 
Newtonian dynamics. For mathematical clarity, we will consider here a motion of a unit 
mass under action of a force f depending upon the velocity v and time t and present it in a 
dimensionless form 
v = f (v,t)                     (1) 

referring all the variables to their representative values v0 ,t0 ,etc.  
If initial conditions are not deterministic, and their probability density is given in the 
form 

ρ0 =ρ0 (V ), where ρ ≥ 0, and ρdV
−∞

∞

∫ =1    (2) 

 while ρ  is a single- valued function, then the evolution of this density is expressed by 
the corresponding Liouville equation 
∂ρ
∂t
+
∂
∂V
(ρf ) = 0                              (3)       

The solution of this equation subject to initial conditions and normalization constraints 
(2) determines probability density as a function of V and t: 
 ρ =ρ(V ,t)                                   (4) 
  Remark. Here and below we make distinction between the random variable v(t) and its values V in 
probability space. 
 In order to deal with the constraint (2), let us integrate Eq. (3) over the whole space 
assuming that ρ→ 0  at |V |→∞  and | f |<∞ . Then 

∂
∂t

ρdV = 0, ρdV = const,
−∞

∞

∫
−∞

∞

∫                                             (5) 

Hence, the constraint (2) is satisfied for t > 0  if it is satisfied for t = 0.  
      Let us now specify the force f  as a feedback from the Liouville equation 
 f (v,t) = φ[ρ(v,t)]                                               (6) 
and analyze the motion after substituting the force (6) into Eq.(2)  
v = φ[ρ(v,t)],                           (7) 

 This is a fundamental step in our approach. Although the theory of ODE does not impose 
any restrictions upon the force as a function of space coordinates, the Newtonian physics 
does: equations of motion are never coupled with the corresponding Liouville equation. 
Nevertheless such a Liouville feedback does not lead to any physical inconsistence.  
Substituting the force f from Eq. (6) into Eq. (3), one arrives at the nonlinear equation 
of evolution of the probability density  
∂ρ
∂t
+
∂
∂V
{ρφ[ρ(V ,t)]}= 0      (8)                                                         
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In order to illustrate mathematical aspects of the concepts of Liouville feedback in 
systems under consideration as well as associated with its instability and randomness, let 
us take the feedback (3) in the form  

f = ξρ−σ2 ∂
∂v
lnρ, ξ,σ = const.      (9) 

and therefore, Eqs. (7) and (8) form the following system 

v = ξρ−σ2 ∂
∂v
lnρ,      (10) 

∂ρ
∂t
+ ξ

∂
∂V
(ρ2 ) = σ2 ∂

2ρ

∂V 2
       (11) 

 
We will start analysis of this system with the simple case when  
ξ = 0, σ = const ≠ 0        (12)  
                                                 
to obtain the following equation of motion  

v = −σ2 ∂
∂v
lnρ,      (13)                                                 

This equation should be complemented by the corresponding Liouville equation (in this 
particular case, the Liouville equation takes the form of the Fokker-Planck equation) 

∂ρ
∂t
= σ2

∂2ρ

∂V 2
                            (14)                      

Here v stands for a particle velocity, and σ2 is the diffusion coefficient. 
Since 

σ2 = const. ,                 (15)  
    
the solution of Eq. (14) subject to the sharp initial condition  

ρ =
1

2σ πt
exp(− V

2

4σ2t
)                  (16)                                          

describes diffusion of the probability density.  
Substituting this solution into Eq. (13) at V = v, one arrives at the differential equation 
with respect to v (t) 

v = v
2t

                          (17) 

and therefore, 

v =C t                               (18) 



	  

	  

5	  

5	  

where C is an arbitrary constant. Since v = 0 at t = 0 for any value of C, the solution (18) 
is consistent with the sharp initial condition for the solution (16) of the corresponding 
Liouvile equation (14). The solution (18) describes the simplest irreversible motion: it is 
characterized by the “beginning of time” where all the trajectories intersect (that results 
follows from the violation of Lipchitz condition at t =0, Fig.2), while the backward 
motion obtained by replacement of t with (-t) leads to imaginary values of velocities. One 
can notice that the probability density (18) possesses the same properties.  
It is easily verifiable that the solution (18) has the same structure as the solution of the 
Madelung equation,[1], although the dynamical system (13), (14) is not quantum! The 
explanation of such a “coincidence” is very simple: the system (13), (14) has the same 
dynamical topology as that of the Madelung equation where the equation of conservation 
of the probability is coupled with the equation of conservation of the momentum, (see 
Fig.1) As will be shown below, the system (13), (14) neither quantum nor Newtonian, 
and we will call such systems quantum-inspired, or self-supervised. 

  
 

 
Figure 2. Stochastic process and probability density. 
 
Further analysis of the solution (18) demonstrates that this solution is unstable since 

 
d v
dv

=
1
2t
> 0                  (19) 

and therefore, an initial error  always grows generating randomness. Initially, at t=0, this 
growth is of infinite rate since the Lipchitz condition at this point is violated  

 
∂ v
∂v

→∞ at t→ 0                                       (20) 

This type of instability has been introduced and analyzed in [6]. The unstable equilibrium 
point (v = 0 ) has been called a terminal repeller, and the instability triggered by the 
violation of the Lipchitz condition – non-Lipchitz, or terminal instability. The basic 
property of the non- Lipchitz instability is the following: if the initial condition is 
infinitely close to the repeller, the transient solution will escape the repeller during a 
bounded time while for a regular repeller the time would be unbounded. Indeed, an 
escape from the simplest regular repeller can be described by the exponentv = v0e

t . 
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Obviously v→ 0  if v0 → 0 , unless the time period is unbounded. On the contrary, the 
period of escape from the terminal repeller (18) is bounded (and even infinitesimal) if the 
initial condition is infinitely small, (see Eq. (20)).  

Considering first Eq. (18) at fixed C as a sample of the underlying stochastic 
process (16), and then varying C, one arrives at the whole ensemble characterizing that 
process, (see Fig. 2). The curves that envelope the cross-sectional blue areas at 
t* = const present the probability density distribution at constant times.   One can verify 
that, as follows from Eq. (16), [7], the expectation and the variance of this process are, 
respectively 

v = 0, v = 2σ2t                                   (21) 
 The same results follow from the ensemble (18) at−∞≤C ≤∞ . Indeed, the first 

equality in (21) results from symmetry of the ensemble with respect to v = 0; the second 
one follows from the fact that 

v∝ v2 ∝ t                                       (22) 
It is interesting to notice that the stochastic process (16) is an alternative to the 

following Langevin equation, [3]   
v = Γ(t), Γ = 0, Γ = σ                           (23) 

that corresponds to the same Fokker-Planck equation (14). Here Γ(t) is the Langevin 
(random) force with zero mean and constant varianceσ .  
Thus, the emergence of self-generated stochasticity is the first basic non-Newtonian 
property of the dynamics with the Liouville feedback.  
We will continue with another extreme case of the feedback (9) assuming that 

σ = 0, ξ = const ≠ 0 ,       (24) 

obtaining         

f = ξρ,         (25)  
and therefore, the equation of motion and the Liouville equation are 
v = ξρ                                                                                                             (26)                                                                                                                                         

∂ρ
∂t
+ ξ

∂
∂V
(ρ2 ) = 0, ,       (27)      

                                                                                                                   
The solution of Eq. (27) subject to the initial conditions ρ0 (V )  and the normalization 
constraint (2) is given in the following implicit form, [4],  
ρ(V ,t) =ρ0 (V − ξρt), ρ0 =ρt=0          (28)                                                                             
This solution subject to the initial conditions and the normalization constraint, describes 
propagation of initial distribution of the density ρ0 (V )  with the speed V that is 
proportional to the values of this density, i.e. the higher values of ρ propagate faster than 
lower ones. As a result, any compressive part of the wave, where the propagation velocity 
is a decreasing function of V, ultimately “breaks” to give a triple-valued (but still 



	  

	  

7	  

7	  

continuous) solution for ρ(V ,t) . Eventually, this process leads to the formation of strong 
discontinuities that are related to propagating jumps of the probability density. In the 
theory of nonlinear waves, this phenomenon is known as the formation of a shock wave, 
Fig.3. Thus, as follows from the solution (28), a single-valued continuous probability 
density spontaneously transforms into a triple-valued, and then, into discontinuous 
distribution.  
 

 
Figure 3. Formation of shock wave in probability space. 
 
 
In aerodynamical application of Eq. (27), when ρ stands for the gas density, these 
phenomena are eliminated through the model correction: at the small neighborhood of 
shocks, the gas viscosity ν  cannot be ignored, and the model must include the term 
describing dissipation of mechanical energy. The corrected model is represented by the 
Burgers’ equation    
∂ρ
∂t
+
∂
∂V
(ρ2 ) = ν ∂

2ρ

∂V 2
                                                                                    (29)                      

As shown in [4], this equation has continuous single-valued solution (no matter how 
small is the viscosityν ), and that provides a perfect explanation of abnormal behavior of 
the solution of Eq. (27). Similar correction can be applied to the case when ρ stands for 
the probability density if one includes Langevin forces Γ(t)  into Eq. (26) 

v =ρ+ νΓ(t), < Γ(t) >= 0, < Γ(t)Γ( $t ) >= 2δ(t − $t )                  (30)                           
Then the corresponding Fokker-Planck equation takes the form (29). It is reasonable to 

assume that small random forces of strength ν <<1are always present, and that 
protects the mathematical model (26), (27) from singularities and multi-valuedness in the 
same way as it does in the case of aerodynamics. 
          It is interesting to notice that Eq. (29) can be obtained from Eq. (26) in which 
random force is replaced by an additional Liouville feedback 

v = ξρ−σ ∂
∂v
lnρ,                                                                                             (31)  

and that is exactly Eq. (11).  
Eq. (11/29) is known as the Burgers equation, and it has the exact analytical solution,[4] 
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ρ(V ,t) =

V −η
t
e−G/2σ dη

−∞

∞

∫

e−G/2σ dη
−∞

∞

∫
        (32) 

  
where     

  G(η,v.t) = ρ
0

η

∫ ( $η ,t = 0)d $η +
(V −η)2

2t
                          

 Although this solution is well known, it should be emphasized that in our case it occurs 
in the probability space. This means that if one runs Eq. (31) independently many times 
starting with different initial conditions and compute the statistical characteristics of the 
family of these solutions, he will arrive at the evolution of the probability density 
described by Eq. (33). 
As a particular case of the solution (32), consider a long-term behavior of an initial step  

ρ(V ) =
ρ1 V > 0
ρ2 >ρ1 V < 0

"
#
$

%$

&
'
$

($
                                

that diffuses into the steady profile, [1]: 

ρ =ρ1 +
ρ2 −ρ1

1+ exp
ρ2 −ρ1
2ν

(V −Ut)
           (33) 

moving with the constant speed 

U =
ρ1 +ρ2
2

 for ξ =
1
2

      

 
when v/t is fixed, and t→∞ . 
In this case, Eq. (33) describes a stationary stochastic process to be applied to the 
proposed model of mind. 
One can verify that the additional (normalization) constraint imposed upon the 
probability density that is a state variable of the Burgers equation (29) is satisfied 
d
dt

ρdV = [σ ∂ρ
∂V−∞

∞

∫ −
1
2
ρ2 ]

−∞

∞

= 0       (34) 

Indeed, as follows from (34), if the normalization constraint is satisfied at the initial 
condition, it will be satisfies for all times.                                                                                                                                                                                         
An important non-classical property of the solution of this equation is a decrease of 
entropy. Indeed,  
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∂H
∂t

= −
∂
∂t

ρlnρdV = −
1
ξ
ρ(lnρ+1)dV =

1
ξ
∂
∂V−∞

∞

∫
−∞

∞

∫
−∞

∞

∫ (ρ2 ) ln(ρ+1)dV

=
1
ξ
[ |
−∞

∞

ρ2 (lnρ+1)− ρdV
−∞

∞

∫ ]= − 1
ξ
< 0

       (35)                                                                                        

Obviously, presence of small diffusion, whenσ << 0 , does not change the inequality 
(35) during certain period of time. (However, eventually, for large times, diffusion takes 
over, and the inequality (3) is reversed). 
The inequality (35) is of fundamental importance: it confirms existence of such an 
isolated dynamical system that violates the second law of thermodynamics by decreasing 
the entropy during some period of time while obeying the rules of mathematics. 
Therefore if the corresponding hypothetical particle exists, it cannot belong to the modern 
physics, as we know it; actually it should belong to an extended physical world in the 
form of a quantum-classical hybrid. However the assumption about existence of such a 
particle is justified by similarity between its dynamical properties and those of living 
systems. The analysis of these similarities is performed in [1]], and we present a brief 
conclusive remarks below.  
The proposed model illuminates the “border line” between living and non-living systems. 
The model introduces a biological particle that, in addition to Newtonian properties, 
possesses the ability to process information. The probability density can be associated 
with the self-image of the biological particle as a member of the class to which this 
particle belongs, while its ability to convert the density into the information force - with 
the self-awareness (both these concepts are adopted from psychology). Continuing this 
line of associations, the equation of motion, Eq. (10)) can be identified with a motor 
dynamics, while the evolution of density (see Eq. (11) –with a mental dynamics. Actually 
the mental dynamics plays the role of the Maxwell sorting demon: it rearranges the 
probability distribution by creating the information potential and converting it into a force 
that is applied to the particle. One should notice that mental dynamics describes evolution 
of the whole class of state variables (differed from each other only by initial conditions), 
and that can be associated with the ability to generalize that is a privilege of living 
systems. Continuing our biologically inspired interpretation, it should be recalled that the 
second law of thermodynamics states that the entropy of an isolated system can only 
increase. This law has a clear probabilistic interpretation: increase of entropy corresponds 
to the passage of the system from less probable to more probable states, while the highest 
probability of the most disordered state (that is the state with the highest entropy) follows 
from a simple combinatorial analysis. However, this statement is correct only if there is 
no Maxwell’ sorting demon, i.e., nobody inside the system is rearranging the probability 
distributions. But this is precisely what the Liouville feedback is doing: it takes the 
probability density ρ  from Equation (11), creates functionals and functions of this 
density, converts them into a force and applies this force to the equation of motion (10). 
As already mentioned above, because of that property of the model, the evolution of the 
probability density becomes nonlinear, and the entropy may decrease “against the second 
law of thermodynamics”. Obviously the last statement should not be taken literary; 
indeed, the proposed model captures only those aspects of the living systems that are 
associated with their behavior, and in particular, with their motor-mental dynamics, since 
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other properties are beyond the dynamical formalism.  Therefore, such physiological 
processes that are needed for the metabolism are not included into the model. That is why 
this model is in a formal disagreement with the second law of thermodynamics while the 
living systems are not. In order to further illustrate the connection between the life-
nonlife discrimination and the second law of thermodynamics, consider a small physical 
particle in a state of random migration due to thermal energy, and compare its diffusion 
i.e. physical random walk, with a biological random walk performed by a bacterium. The 
fundamental difference between these two types of motions (that may be 
indistinguishable in physical space) can be detected in probability space: the probability 
density evolution of the physical particle is always linear and it has only one attractor: a 
stationary stochastic process where the motion is trapped. On the contrary, a typical 
probability density evolution of a biological particle is nonlinear: it can have many 
different attractors, but eventually each attractor can be departed from without any “help” 
from outside. 

The proposed model can be interpreted as representing interactions of the agent with the 
self-image and the images of other agents via the mechanisms of self-awareness. In order 
to associate these basic concepts of psychology with our mathematical formalism, we 
have to recall that living systems can be studied in many different spaces such as physical 
(or geographical) space as well as abstract (or conceptual) spaces. The latter category 
includes, for instance, social class space, sociometric space, social distance space, 
semantic space etc. Turning to our model, one can identify two spaces: the physical space 
x,t in which the agent state variables ii xv =   evolve,(see Eq.(10)), and an abstract space 
in which the probability density of the agent’ state variables evolve (see Eq.(11)).The 
connection between these spaces have been already described earlier: if Eq. (10) is run 
many times starting with the same initial conditions, one will arrive at an ensemble of  
different random solutions, while Eq. (11) will show what is the probability for each of 
these solutions to appear. Thus, Eq. (11) describes the general picture of evolution of the 
communicating agents that does not depend upon particular initial conditions. Therefore, 
the solution of this equation can be interpreted as the evolution of the self- and non-self 
images of the agents that jointly constitutes the collective mind in the probability space. 
Based upon that, one can propose the following interpretation of the model of 
communicating agents: considering the agents as intelligent subjects, one can identify Eq. 
(10) as a model simulating their motor dynamics, i.e. actual motions in physical space, 
while Eq.(11) as the collective mind composed of mental dynamics of the agents. Such an 
interpretation is evoked by the concept of reflection in psychology. Reflection is 
traditionally understood as the human ability to take the position of an observer in 
relation to one’s own thoughts. In other words, the reflection is the self-awareness via the 
interaction with the image of the self. Hence, in terms of the phenomenological 
formalism proposed above, a non-living system may possess the self-image, but it is not 
equipped with the self-awareness, and therefore, this self-image is not in use. On the 
contrary, in living systems the self-awareness is represented by the information forces 
that send information from the self-image (11) to the motor dynamics (10). Due to this 
property that is well-pronounced in the proposed model, an intelligent agent can run its 
mental dynamics ahead of real time, (since the mental dynamics is fully deterministic, 
and it does not depend explicitly upon the motor dynamics) and thereby, it can predict 
future expected values of its state variables; then, by interacting with the self-image via 
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the information forces, it can change the expectations if they are not consistent with the 
objective. Such a self-supervised dynamics provides a major advantage for the 
corresponding intelligent agents, and especially, for biological species: due to the ability 
to predict future, they are better equipped for dealing with uncertainties, and that 
improves their survivability. It should be emphasized that the proposed model, strictly 
speaking, does not discriminate living systems of different kind in a sense that all of them 
are characterized by a self-awareness-based feedback from mental (11) to motor (10) 
dynamics. However, in primitive living systems (such as bacteria or viruses) the self-
awareness is reduced to the simplest form that is the self-nonself discrimination; in other 
words, the difference between the living systems is represented by the level of 
complexity of that feedback.   
 
3. Terminal singularities in discrete events models. 
    Since we are planning to concentrate upon discrete aspect of cognitive performance of 
mind, the most transparent mathematical tool for that are time-delay equations. However, 
the problem with these equations is in their nonlocality. Indeed because the known laws 
of physics are all local, and because nonlocal interactions combined with relativity lead to 
causal paradoxes, many physicists find nonlocal models unacceptable. On the first sight, 
in our case this argument can be dismissed on the ground that the model of particle of life 
(that is planned to be the base of the model of mind) is quantum-inspired and it manifests 
entanglement that is a fundamentally nonlocal effect, [1,4]. However the entanglement-
based nonlocalities are not related to time-space nonlocalities of time-delay equations, 
and therefore, this counter-argument should be disqualified. In order to replace the time-
delay equations with differential equations, we apply terminal singularities, [2], 
represented by terminal attractor and terminal repellers. A brief description of this 
concept is presented below. 

 
The governing equations of classical dynamics are based upon Newton’s laws 

d
dt
∂L
∂ q

=
∂L
∂qi

−
∂R
∂ qi

         (36) 

where L is the Lagrangian and q and q are the generalized coordinates and velocities, 

include a dissipation function R( qi ql )  that is associated with the friction forces 

Fi ( q1, q2 ,... qn ) =
∂R
∂ qi

        (37) 

The structure of the function (37) does not prescribed by the Newton’s laws, and, strictly 
speaking, some additional assumptions should be made in order to defined them.The 
natural assumption (that has never been challenged) is that these functions can be 
expanded in the Taylor series with respect to an equilibrium state 
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qi = 0            (38) 

Obviously this requires the existence of the derivatives 

∂Fi
∂ qj

<∞ at qi → 0        (39)  

i.e., Fi must satisfy the Lipchitz condition. This condition allows one to describe the 
Newtonian dynamics within the mathematical framework of classical theory of 
differential equation. However there is a certain price for such mathematical 
“convenience”: The Newtonian dynamics with dissipative forces remain fully reversible 
in the sense that its governing equations are invariant with respect to time inversion 
t→ (−t) . In this view, future and past play the same role: nothing can appear in future 
that could not have already existed in the past, since the trajectories followed by the 
particles can never cross in finite time. This means that classical dynamics cannot explain 
the emergence of new dynamical patterns in nature in which nonequilibrium dynamics 
does.  

In order to trivialize the mathematical part of our argument, let us consider the one-
dimensional motion of a particle decelerated by a friction force 

m w = F(w)          (40)  
      

in which m is mass and w is velocity. Invoking the assumption (39) one can linearize the 
force F with respect to the equilibrium v = 0: 

F→ (−αw) at w→ 0, α = −(∂F
∂w
)w→0 > 0     (41) 

  

and the solution of Eq. (40) for w→ 0  is 

w = w0e
−
α
m
t
→ 0 at t→∞, w0 = w(0)     (42)  

As follows from Eq. (42), the equilibrium w = 0 cannot be approached in finite time. A 
usual explanation of this paradox is that to accuracy of our limited scale of observation, 
the particle “actually” approaches the equilibrium in finite time. In other words, 
eventually the trajectories (42) and w = 0 become so close that we cannot distinguish 
them. The same type of explanation is used for emergence of chaos: if two trajectories 
originally are “very close” and then they diverge exponentially, the same initial 
conditions can be applied to either of them, and therefore, the motion cannot be traced. 
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Turning to the example (40), let us assume that 

F = −αwk , k = N
N + 2

<1       (43) 

in which N is an odd number.  

By selecting a large N, one can make k close to 1 so that Eqs. (41) and (43) will be almost 
identical everywhere excluding a small neighborhood of the equilibrium point w = 0 , 
while, as follows from Eq. (43), at this point 

∂F
∂w

= −kαwk−1→∞ at w→ 0       (44)  

Hence the condition (39) is violated; the friction force grows sharply at the equilibrium 
point, and then it gradually approaches the straight line (41). This effect can be 
interpreted as a jump from static to kinetic friction. It appears that this small difference 
between the friction forces (41) and (43) leads to fundamental change in Newtonian 
dynamics: the time of approaching the equilibrium w = 0 becomes finite. Indeed, as 
follows from (40) and (43) 

t0 = − −
mdw
αwkw0

0

∫ =
mw0

1−k

α(1− k)
<∞       (45)    

Obviously this integral diverge in the classical case when k ≥1 . 

As shown in [2], the equilibrium point v = 0 of Eq. (43) represents a terminal attractor 
that is “infinitely” stable and is intersected by all the attracted transients.  

Therefore the uniqueness of the solution at w = 0 is violated, and the motion for t < t1 or t 
< t2 is totally forgotten. This is a mathematical implication of irreversibility in dynamics 
(43). 

So far we were concerned with the stabilizing effects of dissipative forces. However, as is 
well known from dynamics of nonconservative systems, these forces can destabilize the 
motion when they feed external energy into the system (the transmission of energy from 
laminar to turbulent flow in fluid dynamics, or from rotation to oscillations in dynamics 
of flexible systems). In order to capture the fundamental properties of these effects in the 
case of non-Lipchitz, or “terminal” dissipative forces (43) by using the simplest 
mathematical model, let us turn to Eq.(43) and assume that now the friction force feeds 
energy into the system 
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m w = αwk , k = N
N + 2

<1        (46) 

One can verify that that for Eq. (46), the equilibrium point w = 0 becomes a terminal 
repeller, and since 

d w
dw

= k α
m
wk−1→∞ at w→ 0       (47) 

it is infinitely unstable. If the initial condition is infinitely close to this repeller, the 
transient solution will escape it during a finite time period 

t0 =
mdw
αwkw0

0

∫ =
mw0

1−k

α(1− k)
<∞       (48)  

while for a regular repeller the time period would be infinite. But in addition to that, 
terminal repellers possess even more surprising characteristics: the solution of Eq. (46) 
becomes totally unpredictable. 

w = ±[α
m
(1− k)t]1/1−k        (49)  

Indeed, two different motions described by Eq. (49) are possible for “almost the same” 
initial conditions:  

w0 = +ε→ 0 or w0 = −ε→ 0 at t = 0     (50) 

The most essential property of this result in that the divergence of these two solutions is 
characterized by an unbounded rate   

σ = limt→t0
(1
t
ln αt

1/(1−k )

m |w0 |
)→∞ at |w0 |→ 0     (51)  

In contrast to the classical case where t0 →∞ , here σ can be defined within an 
arbitrarily small time interval t0 since during this interval the initial infinitesimal distance 
between the solutions becomes finite. Thus a terminal repeller represents a vanishingly 
small, but infinitely powerful “pulse of unpredictability” that is pumped into the system 
via terminal dissipative forces. Obviously, failure of the uniqueness of the solution here 
results from the violation of the Lipchitz condition(39) at w = 0. 
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As known in theory of chaos and turbulence, a combination of stabilizing and 
destabilizing effects can lead to a new phenomenon: intermittency. In order to describe 
similar effects in dynamics with terminal dissipating forces, let us slightly modify Eq. 
(46) 

m w = αwk cosωt, k = N
N + 2

<1      (52)  

Here stabilization and destabilization effects alternate. With the initial conditions  

w→ 0 at t→ 0          (53) 

the exact solution of Eq. (52) consists of a regular solution 

w = ±[α
m
(1− k)sinωt]1/1−k , at w ≠ 0      (54)  

and a singular solution 

w = 0          (55)  

During the first period 0 < t < π / 2ω  the equilibrium point (55) is a terminal repeller. 
Therefore within this period the motion can follow one of two possible trajectories (54), 
each with the probability ½. These trajectories diverge with unbounded rate (51) at w = 0. 
During the next period,π / 2ω < t < 3π / 2ω ,  the equilibrium point (55) becomes the 
terminal attractor: the solution approaches it at t = πω , and it remains at rest until 
t > 3π / 2ω . After that the terminal attractor becomes a terminal repeller, and the 
solution escapes again, etc. , Fig.4. 
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Figure 4. Terminal chaotic oscillations. 

It is important to notice that each time the system escapes the terminal repeller, the 
solution splits into two symmetric branches, so that there are 2n possible scenarios of the 
oscillations with respect to the center w = 0, while each scenario has the probability 2-n to 
occur, where n is the number of cycles. Hence the motion (54) resembles chaotic 
oscillations known from classical dynamics: it combines random characteristics with the 
attraction to the center. However in classical case, chaos is caused by a supersensitivity to 
the initial conditions, while the uniqueness of the solution for the unique initial conditions 
is guaranteed. In contrast to that, the chaos in the oscillations (54) is caused by the failure 
of the uniqueness of the solutions at the equilibrium points, and it has a well-organized 
probabilistic structure. Since the time of approaching the equilibrium point w = 0 by the 
solution (54) is finite, this type of chaos can be called terminal.  

4. Terminal model of punctuated evolution. 
a. Governing equations. 

The model proposed in this section is based upon dynamical simulation of terminal 
oscillations introduced above. We start with  a rectilinear motion of a particle of unit 
mass (m=1) described by the following differential equations: 
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w = αw1/3 cosωt +ε, α,ω = const > 0, |αw1/3 |>>|ε |→ 0    (56)                      
x = w                     (57) 

where x and w are the position and velocity, respectively, and ε is infinitesimal  
ambient noise that triggers the mechanism of instability of terminal repellers.  
Let us start with Eq. (56). Actually this is a particular case of Eq. (52) at k=1/3. 
The solution of this equation subject to the initial conditions (53) is 

 w = ±[2α
3ω
sinωt]3/2 , at w ≠ 0      (58)  

and a singular solution 

w = 0          (59)  
These two solutions coexist at t=0, and that is possible because at this point the Lipchitz 
condition fails 

| d w
dw
|= 1
3
αw−2/3 sinωt |t→0→∞       (60)  

As shown in Fig. 4, the particle velocity w performs oscillations with respect to its zero 
value in such a way that the positive and negative branches of the solution (58) alternate 
randomly after each period equal to 2π /ω .  
It should be emphasized again that the noise ε  is not driving the solution of Eq. (56): it 
only controls the energy supply via the harmonic oscillations sinωt . As follows from 
Eq. (56), ε  can be ignored when w ≠ 0or when w = 0 , but the solution is stable, i.e. at 
t = π /ω, t = 3π /ω, etc., however it becomes significant during the instants of 
instability, i.e. at t = 0, t = 2π /ω, etc.  
 
Turning to Eq.(57), one obtains the distance between two adjacent equilibrium positions 
of the particle  

Δxi = xi − xi−1 = ± (2α
3ω0

π/ω

∫ sinωt)3/2dt = (2α
3ω
)3/2 Γ(1/ 2)
2Γ(7 / 4)

= ±h   (61) 

where Γ is the gamma-function. 
Thus the equilibrium positions of the particle are 
x0 = 0, x1 = ±h, x2 = ±h± h...etc.,      (62) 
while the positive and negative signs randomly alternate with the  probability p, where p 
is the probability that ε > 0 . The equilibrium positions are stable when sinωt < 0 , and 
unstable when sinωt > 0 . Since the Lipchitz condition at these equilibrium points is 
violated, that makes them terminal attractors and terminal repellers, respectively. As a 
result of that, the transition time τ from one point to another is finite. 

Thus, the solution of Eqs. (56). and (57) combines acting (the transition from one 
equilibrium point to another), and ‘‘thinking’’ (the decision making process based upon 
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sgnε ). 

b. Dynamics of probabilities. 

Since the solutions of Eqs. (56) and (57) include random components, it is useful to 
describe them in terms of probabilities. For that purpose, let us introduce a function 
f (x,t) , which represents the probability that the particle occupies the equilibrium 

position x at time τ . Then, based upon the property of the solution solution (62), one can 
write the following partial difference equation as a random walk, [5] 

f (x,t + τ) = pf (x − h,t)+ (1− p) f (x + h,t), 0 ≤ p ≤1,                   (63) 

p = probability(ε > 0) = pr (ε > 0)           (64)   
supplemented by the normalization constraint 

f (x,t)dx =1
0

xn

∫              (65) 

In case of unrestricted random walk, n→∞ in Eq. (65). 

Eq. (63) can be considered as a terminal version of the Liouville equation generated by 
the system (56), (57). Indeed, as the classical Liouville equation (see Eq. (3)), it describes 
evolution of an initial error distribution. However, in terminal version of dynamics, this 
error occurs only in discrete points representing terminal repellers, and that makes the 
Liouville equation discrete as well. 

One can notice that in the limit case h→ 0, τ→ 0,Eq. (63) tends to the Fokker- 
Planck equation, (see Eq. (14)).   

c. The noise structure. 

In this sub-section we will analyze possible structures of the noise that is responsible for 
triggering the transition from one equilibrium to another in the direction depending upon 
sgnε .  

Regardless of the type of the corresponding terminal repeller, the noise can be derived 
from a sample of an underlying stationary stochastic process characterized by some 
probability density Φ(λ) . Suppose that 

ε = λ −λ+µ           (66) 

where λ  is the mean of λ  
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λ = λΦ(λ)dλ
−∞

∞

∫          (67) 

and µ is some deterministic variable to be defined below. 

Then 

pr (ε > 0) = (λ −λ+µ)dλ = θ(µ)
0

∞

∫       (68) 

while 

θ(0) = 1
2
, dθ
dµ

≥ 0, 0 ≤ θ ≤1        (69) 

Obviously any stationary stochastic process uniquely defines the function θ(µ) . 

In general, µ  can depend upon the particle velocity w, particle coordinate x, its 
probability distribution f(x), and the functionals of f(x) such as the mean  

m = x = xf (x)∑          (70) 

the variance 

σ = (x −m)2∑ f (x)         (71) 

or the Shannon uncertainty (entropy) 

H = − f (x)ln f (x)∑         (72) 

i.e. 

µ =µ{x, f (x),m[ f (x)],σ[ f (x)],H[ f (x)],w}     (73) 

Actually, all the variety and complexity of the particle behavior described by Eqs. (56) 
and (57) is defined by the structure of the function (73). A variety of structures of this 
function as well as specific characteristics of the corresponding behaviors was analyzed 
in [6]. In the next section we will concentrate upon the case 

µ =µ(w), w ={−1,1}        (74) 
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with application of the terminal model of punctuated  evolution to Boolean dynamics. 
        

5. Terminal model of Boolean dynamics. 

In this section, we start with a critical review of the dynamics of a set of n variables 
wi , i =1,2,...n that have two possible values (say 0 and 1, or -1, and1), [7,8]. These 
variables interact with each other according to some given rules, specified through a set 
of Boolean coupling functions that determine the variables at the next time-step, and 
thereby generate the dynamics of the system. Such a discrete stepping of a set of Boolean 
variables, also known in general terms as a Boolean network, is of potential interest in 
several different fields, ranging from gene regulation and control, to modeling democracy 
and social organization. In the context of this paper, Boolean nets could be considerer as 
a candidate of a model of mind.  

Any model of a Boolean net starts from n binary elements  

wi ∈{±1}, i =1,2,...n        (75) 

 In the time stepping, each of these Boolean elements is defined by a function of all the 
elements (75), or at least, some of them. More precisely, the value of wi  at time t + 1 is 
determined by the value of its Ki controlling elements at time t, while Ki ≤ n .  

A typical Boolean network consists of a set of n nodes, and each of these nodes receives 
inputs from K other nodes. For K=n, the dynamics can be presented in the following form 

wi (t +1) = Sign[ αijw j (t)+β], i =1,2,...n
j=1

n

∑     (76) 

where the synapse weights αij and the activation threshold β are random variables that 

can be adapted (in learning processes) or stay fixed (in recall or association processes). 
Note that with the above definitions, the nodes have the values (75). 

In [9], K. Kurten has considered the case in which the synapse weights are independent 
random variables distributed according to a symmetric probability function ρ(α) . By 
analyzing the Hamming distance, he has shown that this kind of network has three phases 
(frozen, critical and chaotic) depending on the connectivity and the dilution of the 
network (dilution is a measure of the amount of nodes for which the synapse weight is 0). 
The main result is that for low connectivity and dilution, the model (76) exhibits exactly 
the same dynamics in the Hamming distance, [9], as neural networks in physical space. 
[10]. 

The interest to Boolean dynamics as a candidate for the model of mind is due to its 
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capability to process discrete-events with application to logic and linguistic that is the 
fundamental privilege of human mind. However, the existing models of Boolean 
dynamics described above have two limitations that disqualify them from that purpose.  

   The first limitation is their nonlocality since they are presented by difference rather than 
differential equations. However as mentioned in Section 3, since the known laws of 
physics are all local, and because nonlocal interactions combined with relativity lead to 
causal paradoxes, many physicists find nonlocal models unacceptable.  

   The second limitation is that these models are not isolated systems. As emphasized in 
the Introduction, the proposed model of mind as a part of the hypothetical particle of life 
is based only upon one assumption: the ability to move from disorder to order without 
external sources, i.e. in violation of the second law of thermodynamics. Starting with that 
postulate, mathematical formalism is supposed to take over and to lead to a quantum-
inspired model of mind. 
 
In order to remove these limitations, we apply the terminal model of punctuated evolution 
presented in the previous Section. We will concentrate upon the case of (Eq.(73) when 
µ = −γw                    (77) 
and consider the equation 
w = αw1/3cosωt +ε− γw,

ω = const > 0, α >>|ε |→ 0, ε < γ < ε
                                           (78) 

subject to the initial conditions 
w→ 0 at t→ 0          (79) 

The solution consists of a regular solution 

 w = ±[2α
3ω
sinωt]3/2 , at w ≠ 0      (80)  

and a singular solution 

w = 0          (81)  
These two solutions coexist at t=0, and that is possible because at this point the Lipchitz 
condition fails 

| d w
dw
|= 1
3
αw−2/3 sinωt |t→0→∞       (82) 

During the first period 0 < t < π / 2ω , the equilibrium point (81) is a terminal repeller. 
Therefore within this period, the motion can follow one of two possible trajectories (80), 
each with the probability ½. These trajectories diverge with unbounded rate (51) at w = 0. 
During the next period,π / 2ω < t < 3π / 2ω , the equilibrium point (81) becomes the 
terminal attractor: the solution approaches it at t = π /ω , and it remains at rest until 
t > 3π / 2ω . After that the terminal attractor becomes a terminal repeller, and the 
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solution escapes again, but because of the additional term in Eq.(78), it has only one 
trajectory for the escape. Indeed, let us turn to Fig. 4: if initially the particle moves right, 
(see the green trajectory), then after the period of rest, it will move back, (see the red 
trajectory); inversely, if initially it moves left, (see the red trajectory), then after the 
period of rest, it will move back on the green trajectory. Therefore the particle (see Eq. 
(57)) in both cases will return to the original position (81) after one step aside, i.e. instead 
of unrestricted random walk considered above, it performs a restriction random walk, i.e. 
random oscillations with respect to the origin  

x1 = x2 = ...xn = ±h,          (83) 

with an unstable transitional point  

x0 = 0          (84) 

Let us concentrate on the variable w. Turning to Eq. (80) and selecting the constants 
α andω such that 

(2α
3ω
)3/2 =1          (85) 

one arrives at a Boolean variable (75). Unlike a “classical” Boolean variable that takes 
values 0 and 1, this variable takes values (-1) and 1, while zero plays the role of a 
transitional point that, as a result of its instability, provides a passage to the stable points 
(-1) or 1. This transitional point plays another important role: it separates future from past 
in such a way that at this point, past is completely forgotten, and the motion starts afresh. 
The last property is a fundamental characteristic of terminal attractors/repellers.    
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Figure 5. Probability of terminal version of Boolean dynamics. 

Figure 5 illustrates dynamics of probability of the binary evolution described by Eq. (78). 
Let us assume that the particle is located at the point w = 0 at t = 0. As long as this point 
is a terminal attractor, the probability is equal to 1. When this point becomes a terminal 
repeller, the probability splits in two equal parts, and the particle can go right or left with 
the probability ½. It will stay there until this new point becomes a terminal repeller, and it 
moves back to the zero point that is becoming a terminal attractor. This pattern continues 
indefinitely. 

Applying the formula for the binary entropy function 

Hb = −p log2 p− (1− p)log2(1− p)      (86) 

where 

p = Pr(w =1), 1− p = Pr(w = −1)      (87) 

one calculates the change of the entropy: it starts with zero value at t = 0 

Hb(t = 0) = 0, p = 0        (88) 

Then it jumps to its maximum value at t = π /ω  

Hb(t = π /ω) =1, p =1/ 2       (89) 
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Finally it returns to its initial value (88) at t = 3π / 2ω , (see Fig. 6). 

 

 

Figure 6. Change of binary entropy function. 

On the first sight, it seems surprising that entropy may decrease (see the green line). 
However, turning to the governing equation (78), one concludes that such an “inverse” 
evolution results from the fact that this system is not isolated, although it is closed, (there 
is no mass exchange). Indeed, it consumes energy via the harmonic oscillations sinωt , 
and therefore, the green line in Fig.6  does not violate the second law of thermodynamics. 

Prior to generalizing Eq. (78) to the n-dimensional case, we will emphasize the role of the 
term (77). When t→ 0 , Eq. (78) can be simplified to the following 

w ≈ −γw,         (90), 

and the term (77) provide stability of Eq. (90). As a result of that, the particle 
returns to its initial position w = 0 thereby performing restricted one-step random 
walk. Obviously without this term, the random walk would be unrestricted, and 
the variable w would not be a Boolean one. 

In order to introduce not only the Boolean variables, but the Boolean functions as 
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well, we will recall that  

tanh x ≈ x at x→ 0, tanh x ≈ ±1 at x→∞     (91) 

Therefore Eq. (90) can be approximated as 

w ≈ − tanh γw          (92) 

Let us now move to the n-dimensional case 

wi = αiwi
1/3 cosωt +ε+ tanh γijw j

j=1

n

∑ ,

ω = const > 0, αi >>|ε |→ 0, ε < γij < ε, (
2αi
3ω
)3/2 =1

   (93) 

where the synapse weights γij are constants. 

However in order to prevent the system (93) from an unrestricted walk, the 
synapse weights should be chosen such that that the system 

 wi = − γijw j
j=1

n

∑ ,        (94) 

is asymptotically stable. The sufficient conditions for that are the following 

γij = γ ji , γ11 > 0,
γ11γ12
γ12γ22

> 0,...etc      (95) 

i.e. | γij | is symmetric positive-definite matrix. The properties (95) provide the asymptotic 

stability of the system (95) as well as the asymptotic stability at wi = 0  of the original 
system (93) when sinωt > 0 . 

Let us turn to the analysis of the system (93). Comparing this system with the one-
dimensional case (78), one notice that each Boolean variable wi  is not affected by the rest 
of the variables, and the role of the Boolean functions  

Bi = tanh γijw j
j=1

n

∑        (96) 
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is to provide the stability of the system (93) at wi = 0  when sinωt > 0 . Therefore the 
probability dynamics of each Boolean variable is described in Fig. 5, and the dynamics of 
the binary entropy function is illustrated in Fig. 6. As follows from Eq. (96), the values of 
the Boolean functions Bi are changed with changes of the corresponding Boolean 
variables. 

6. Proposed model of human mind. 

In this Section, we discuss the system (93) as a candidate for the model of the human 
mind. Unlike the Boolean dynamics model (76) that is nonlocal, the model (93) is 
described by the system of differential (but not difference!) equations, and therefore, it is 
local. Hence the first limitation of the model (76) formulated in the previous Section is 
removed in the system (93). However the second limitation is still there: the system (93), 
as well as the system (76), is not isolated. Indeed the system (93) consumes energy via 
the harmonic oscillations sinωt . In addition to that, it requires some energy to support a 
stationary stochastic process Φ(λ) for generating infinitesimal noise, (see Eqs. (66) and 
(67)).  It should be reminded that the main challenge of this work is to propose a model 
of mind based only upon one assumption: the ability to move from disorder to order 
without external sources, i.e. in violation of the second law of thermodynamics. Starting 
with that postulate, mathematical formalism is supposed to take over and lead to a model 
of mind. 
 In order to achieve that, we combine the model of mind with the corresponding model of 
the particle of life (L-particle) allowing the mind to “borrow” energy from the L-particle. 
Such a symbiosis is natural from the physiological viewpoint. Thereby we introduce a 
master-slave system that is isolated from the external world. Such an idealization allows 
us to capture distinguished properties of livings that possess intelligence. 
 Let us turn to the system (13), (14) which describes the dynamics of L-particle. From its 
solution given by Eq. (18), one can express 
t =Cv2          (97)  
Turning to the stationary stochastic process generated by L-particle and described by Eq. 
(33), one can adapt from it random values of noise (66) 
ε = ε(vi )          (98) 

In order to obtain random samples vi of the variable v distributed with the density (33), 
one should run simultaneously many identical L-particles with the same initial 
conditions. As shown in [1], each particle will have different values of the constants Ci , 
with the samples velocities vi to be distributed with the density (33).  
Now with help of Eqs. (97) and (98), the system (93) can be presented in the following 
form 
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wi = αiwi
1/3 cos(ωCv2 )+ε(vi )+ tanh γijw j

j=1

n

∑ ,

ω = const > 0, αi >>|ε |→ 0, ε < γij < ε, (
2αi
3ω
)3/2 =1

    (99) 

 
The system is still not closed because of additional variables v and vi . For the closure 
this system is supposed to be considered together with equations of L-particle 

v = ξρ−σ ∂
∂v
lnρ,         (100)   

∂ρ
∂t
+
∂
∂V
(ρ2 ) = ν ∂

2ρ

∂V 2
       (101) 

Now the system (99), (100) and (101) is closed and isolated. Because of the master-slave 
coupling we can assume that the functions (97) and (98) are preset, and analyze Eqs. (99) 
separately from Eqs. (100) and (101). 
   As follows from Eq. (97), the system (99) was set up based upon preserving the time 
scale of the L-particle. However in general, the mind may have its intrinsic time scale. 

Indeed, substituting C t instead of t we change the scale of time: it runs infinitely faster 
(almost by a jump) in the very beginning and then it slows down approaching zero at 
infinity. The role of the constant C has been discussed in Section 2, (see Eq. (18). Hence 
in general, instead of t, one can substitute Cv(t) . 
Now we can rewrite Eqs. (99) in the following form 
 

wi = αiwi
1/3 cos[ωCv(t)]+ε(vi )+ tanh γijw j

j=1

n

∑ ,

ω = const > 0, αi >>|ε |→ 0, ε < γij < ε, (
2αi
3ω
)3/2 =1

  (102) 

However there is still a limitation to be removed: the Boolean functions 

Bi = tanh γij
j=1

n

∑ wj         (103) 

do not change their structure in the course of dynamics evolution. In order to make their 
structure plastic while preserving the stability constraints (95) we add a free random term 
 

Bi = tanh( γij
j=1

n

∑ wj +βi )        (104) 

that can be associated with the activation threshold, (compare with Eq.(76)).  

The governing equations for these terms will be presented in the form of unrestricted 
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````random walk, (see Eqs. (58) 

βi = αiβi
1/3 cosωt +ε, αi ,ω = const > 0, |αiβi

1/3 |>>|ε |→ 0   (105) 

with equilibrium values  

βi = ±1±1± ...etc          (106) 

These free terms randomly change the structure of the Boolean functions in course 
of their dynamics evolution. 

Now we can present the proposed model of human mind in the final form 

wi = αiwi
1/3 cos[ωCv(t)]+ε(vi )+ tanh( γijw j

j=1

n

∑ +βi ),

ω = const > 0, αi >>|ε |→ 0, ε < γij < ε, (
2αi
3ω
)3/2 =1

   (107) 

βi = αiβi
1/3 cosωt +ε, αi ,ω = const > 0, |αiβi

1/3 |>>|ε |→ 0   (108) 

i =1,2,...n  

v = ξρ−σ ∂
∂v
lnρ,          (109) 

∂ρ
∂t
+
∂
∂V
(ρ2 ) = ν ∂

2ρ

∂V 2
        (110) 

 The system (107) – (110) is closed and isolated.  
Prior to analysis of this model, we have to make a comment concerning the Boolean 
variables w and the Boolean functions B. Strictly speaking, they are not Boolean since 
they can take three values: -1, 0, 1; however zero values are transitional, and they appear 
with periodic regularity after each of the values -1 and 1. So if we associate the proposed 
dynamics with information processing, the zero values can be ignored since they are fully 
predictable. The formal difference between the standard Boolean functions taking values 
0 and 1 can be removes by a trivial variable transformation.  
 
7. Analysis of the proposed model.  

Starting with Eq. (107) and compare it with Eq. (93), one concludes that each Boolean 
variable wi  is not affected by the rest of the variables, and the role of the Boolean 
functions (104) is   
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to provide the stability of the system (107) at wi = 0  when sinωt > 0 . Therefore the 
probability dynamics of each Boolean variable is described in Fig. 5, and the dynamics of 
the binary entropy function is described in Fig. 6. Figure 5 illustrates dynamics of 
probability of the binary evolution of each Boolean variable in Eq. (78). Let us assume 
that the particle is located at the point w = 0 at t = 0. As long as this point is a terminal 
attractor, the probability is equal to 1. When this point becomes a terminal repeller, the 
probability splits in two equal parts, and the particle can go right or left with the 
probability ½. It will stay there until this new point becomes a terminal repeller, and it 
moves back to the zero point that is becoming a terminal attractor. This pattern continues 
indefinitely. It should be emphasized that any two neighboring Boolean values are always 
separated by a transitional zero point that erases all the memory about the previous 
values.  Since the state space of each Boolean function consists of 2n configurations, the 
most convenient quantitative tool for describing Boolean dynamics is the Humming 
distance.  

The Hamming distance between two state configurations of equal length is the number of 
positions at which the corresponding symbols are different. In another way, it measures 
the minimum number of substitutions required to change one state configuration in into 
the other. Due to the property of the Boolean dynamics pointed out above, any two 
strings of configurations at different times are separated by transitional zero points, and 
therefore, are uncorrelated. 

Let us calculate the probability that two neighboring configuration sequences have zero 
Humming distance. This event can happen if all n Boolean variables stay at the same 
places during the next cycle. Since each variable can stay or change with the same 
probability ½, the probability of the event is  

Pr(DH = 0) = Pr(DH = n) = 2
−n       (111)   

where DH  is the Humming distance. 

Then 

Pr(DH =m ≤
n
2
) ≥ 2m−n , Pr(DH =m ≥

n
2
) ≥ 2

n
2
−m

   (112) 

The minimum probability that two configuration strings have the Humming distance 
m ≤ n are illustrated in Fig. 7. If the Humming distance is associate with the entropy (the 
larger the Humming distance the larger the disorder), then the curve in Fig. 7 can be 
compared, at least qualitatively, with the curve in Fig 6: both cases describe dynamics 
when the process starts with the order, then moves to a disorder, and finally returns to the 
order. Each cycle in this dynamics is separated from the previous one by a zero 
transitional state at which all information is erased, and that makes the strings of 
configurations uncorrelated.     
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Figure 7. The minimum probability that two configuration strings have the Humming 
distance m ≤ n . 

As follows from Eq. (104), the values of the Boolean functions Bi change with changes of 
the corresponding Boolean variables. But in addition to that, they also change because the 
Boolean functions are changed themselves due to additional random inputs βi . Therefore 
dynamics of the system (107) consists of a sequence of uncorrelated two-step cycles 
during which a new values of the Boolean functions are exposed. It should be recalled 
that in terms of mathematical logic, each Boolean function is characterized by the truth 
table, [7], which is simply a list of all the values of the function at 2nvalues of its 
arguments. If these arguments are listed in a certain order, every Boolean function has a 
unique truth table, and as a consequence, the same logical meaning. In this context, the 
dynamics spontaneously generates new uncorrelated logical statements that expose a 
choice for making common sense decisions.  

The system (107), (108) can be expanded to introduce a new generation of Boolean 
functions !Bi based upon the old Boolean functions Bi  as arguments, and thereby 
broaden the choice and complexity of the logical statements available for making 
appropriate decisions  
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!Bi = !αi ( !Bi )
1/3 cos[ωCv(t)]+ε(vi )+ tanh( !γijBj

j=1

n

∑ + !βi ),

ω = const > 0, !αi >>|ε |→ 0, ε < !γij < ε, (
2 !αi
3ω
)3/2 =1

   (113) 

!βi = !α (i !β )i
1/3 cosωt +ε, !αi ,ω = const > 0, | !αi ( !βi )

1/3 |>>|ε |→ 0   (114) 

In the same way, next generations of Boolean functions !!Bi , !!!Bi , etc. can be introduces. As 
a result, the proposed model is represented as a chain of slave equations ruled by the 
master equations (100) and (101). The whole system is isolated, although each of the 
slave equation taken separately is closed, but not isolated.  

7. Discussion and conclusion. 

The objective of this work is to extend the model of a hypothetical particle of life, [1], to 
include the capability to process discrete events dynamics. This capability opens up a 
way to capture some specific activity of human mind such as information processing via 
language and logic. The main target of this activity is a mysterious machinery of common 
sense. It was well understood that rational human behavior, and in particular, the decision 
making process, is governed by feedbacks from the external world, and this part of the 
problem was successfully simulated in the most sophisticated way by control systems.  
However, in addition to that, when the external world does not provide sufficient 
information, a human turns for an “advise” to his experience, and that is associated with a 
common sense.  

Therefore the first challenge of our objective is to preserve isolation of the model of mind 
from the external world. Such idealization simplifies mathematical formalism without 
diminishing the proof of concept. 

The second challenge is to preserve locality of the model of mind as a part of L-particle: 
since the known laws of physics are all local, and because nonlocal interactions combined 
with relativity lead to causal paradoxes, many physicists find nonlocal models 
unacceptable. However to present a discrete-event dynamics in a local way is a 
formidable problem: all existing approaches to discrete event dynamics are nonlocal. 

Adopting terminology of computer science, we will associate brain with a computer, and 
mind – with a set of algorithms implemented by the brain. This allows us to distance 
ourselves from biological aspects of brain and concentrate on intrinsic mathematical 
properties of mind. And this leads us to the third challenge: to derive the model of human 
mind based only upon one assumption - the ability to move from disorder to order 
without external sources, i.e. in violation of the second law of thermodynamics. Starting 
with that postulate, mathematical formalism is supposed to take over and lead to a 
quantum-inspired model of mind. 
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Based upon these objective and challenges, this work proposes a mathematical formalism 
for describing the machinery of human mind creativity. Since some functions of mind 
support discreteness of cognition, but others support its continuity, while time in physics 
is always continuous, an attempt to overcome the continuous/discrete duality of mind 
performance is implemented via utilization of special critical points: terminal attractors 
and repellers that act as autonomous biological clock. In this paper, attention is 
concentrated upon the discrete mode of the mind activity since the continuous mode was 
introduced and discussed in details in our previous publications. 
 
 The fundamental novelty of the model is in its capability to move from disorder to order 
without external inputs in violation of the second law of thermodynamics; that suggests 
that this kind of dynamics requires extension of modern physics to include physics of life. 
Conceptually the discrete model links to its continuous version represented by a 
hypothetical particle of life that is briefly discussed prior to derivation of the discrete 
model. However the discrete model should be considered as the next step in study of 
mind dynamics since it provides a bridge to mathematical origin of self-generated 
novelties in such brunches as mathematical logic and linguistic, i.e. the highest level 
activities of human mind.  
The proposed model deals with rules of mind activity rather than with it’s content, i.e. 
with grammar, but not semantic.  
The model is represented by a system of differential equations with terminal attractors 
and repellers that provide the capability to process discrete-event-based flow of 
information. This system has master-slave architecture: the master equations (see Eqs. 
(109) and (110)) describe dynamics of the corresponding L-particle, while the slave 
equations (see Eqs. (107), (108), (113) and (114)) present dynamics of Boolean functions 
that capture the mind activity such as mathematical logic and linguistic. The Boolean 
dynamics consists of a sequence of two-step cycles during which a new values of the 
uncorrelated Boolean functions are exposed. It should be recalled that in terms of 
mathematical logic, each Boolean function is characterized by the truth table,[7], which is 
simply a list of all the values of the function at 2nvalues of its arguments. If these 
arguments are listed in a certain order, every Boolean function has a unique truth table, 
and as a consequence, the same logical meaning. In this context, the dynamics 
spontaneously generates new uncorrelated logical statements that expose a choice for 
making common sense decisions.  

The chain of slave equations can be extended thereby generating new logical statements. 

From the thermodynamics viewpoint, during each cycle, entropy of the slave system first 
grows from zero, and then drops back to zero. Such behavior does not violate the second 
law of thermodynamics since the slave system is not isolated, although it is closed: It 
exchanges energy with the master system describing L-particle. However the whole 
system that includes the master and slave equations is isolated, and nevertheless it 
generates new logical statements, new patterns of behavior and new information, and that 
violates the second law of thermodynamics. It should be emphasized that such a unique 
property of L-particle is due to the feedback from the Liouville equation (110) 
representing the mental dynamics, to Eq. (109) representing the motor dynamics. This 
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feedback implements a new type of force – the information force that does not exist 
neither in Newtonian nor in quantum mechanics, Fig. 1. Since the proposed model of 
human mind, along with L-particle, being a quantum-classical hybrid, acquires non-
Newtonian and non-quantum properties, it does not belong to the physics matter as we 
know it: the modern physics should be complemented with the concept of the information 
force that represents a bridge between non-living and living matter. 
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