
A Theorem for Knuth-Arrows 

By Sbiis Saibian 

email: sbiissaibian@aol.com 

2014.05.21 

ABSTRACT 

 Donald Knuth introduced the world to “Up-arrows” back in 1976. Since 

then they have become the most popular way to express the so called “hyper-

operators” , first described by Wilhelm Ackermann with his 1928 phi-function. 

Up-arrow notation allows us to express certain very large numbers, far larger 

than those expressible with scientific notation, with extreme ease. Performing 

calculations on expressions involving “Knuth-arrows” however can range 

from difficult to impossible. Since the numbers involved typically contain 

more digits than particles in the known universe, and require a similarly large 

amount of steps to evaluate, it may seem that various expressions are 

impossible to compare. This is not true. It is possible to devise ways to 

compare numbers, even without knowing anything about their decimal form.  

 In this paper I prove a simple theorem for Knuth-Arrows, which can be 

used to compare some very large numbers (those above ones we can directly 

compute, up to about fω+1 in the Fast Growing Hierarchy ). Even better I will 

show how this can be established axiomatically with 9 simple Axioms. 

INTRODUCTION 

 Donald Knuth invented the so called “Up-arrows” as a simple way to 

express very large numbers, and more specifically as a simple and intuitive 

way to express the hyper-operator hierarchy. 

 We can begin the development of the hyper-operator hierarchy  with 

addition, the most fundamental operator of elementary arithmetic. I will take 

it for granted that addition is fully understood. From this we can build a 

mailto:sbiissaibian@aol.com


hierarchy of higher operations built on addition, and beginning with 

multiplication. Define multiplication as follows: 

      
                                      1

 +       1        1
  

 Multiplication is defined here as a recursive function using the 

piecewise-notation. Multiplication builds on addition, in the sense that it uses 

both itself and addition in its definition.  

 Exponentiation is defined similarly. Knuth used the “caret”, “^”, to 

represent “a” raised to the bth power. This was because subscripts and 

superscripts were difficult to write on older type-writers and computer 

systems. In any case we now define Knuth’s caret operator  exponentiation  

as follows: 

a^b  =  
                        1

    ^   1        1
  

 Again exponentiation builds on multiplication since it uses itself and 

multiplication in its definition. Notice the similarity in definition to 

multiplication. If you take the definition for multiplication and simply swap 

out addition for multiplication and swap out multiplication for 

exponentiation, then you get the definition for exponentiation. This suggests a 

way to continue indefinitely beyond elementary arithmetic. First we can 

define a series of operator symbols. Knuth chose to include an extra caret, or 

“up-arrow” between the arguments to represent going up one level along the 

hierarchy of operators. The first hyper-operator is  “a^^b” , popularly called 

tetration (from tetra + exponentiation). “a^^b” is pronounced “a tetrated to 

the bth” . Next we have “a^^^b”, called pentation (from penta + 

exponentiation . “a^^^b” is pronounced “a pentated to the bth”. We can 

continue with “a^^^^b”  hexation , “a^^^^^b”  heptation , “a^^^^^^b” 

(octation), etc. Each new operator notation is formed by simply adding an 

additional up-arrow. Let “@” represent a string of up-arrows “^^^…^^^” 

where there is at least 1 up-arrow. In this case we can define the hyper-

operator hierarchy itself in a recursive fashion by defining each new operator 



as a recursion on the previous one. We define the next operator , @^, as 

follows: 

 @^    
                                      1

 @  @^   1        1
  

 

 In this simple way we obtain an endless sequence of new operators 

building on the previous set of operators.  There is no highest hyper-operator 

in this sequence, just as there is no largest number. However, each new hyper-

operator is much more powerful than the previous one and allows us to 

express compactly much larger numbers. 

 It is also possible to define the whole sequence as a single ternary 

function. We will use the notation  ,  ,   , devised by Jonathan Bowers, to 

represent this ternary function. Here “b” will be called the base , “p” will be 

called the polyponent (my generalized term for exponent based on poly + 

exponent  , and “k” will be called the Knuth-degree, corresponding to the 

number of Knuth-arrows. This is not that different than how Ackermann 

originally defined the hyper-operators … 

  ,  ,      

 ^                         1
                                                             1       1
  ,   ,   1,   ,   1               1       1

   

 In this notation we have that… 

  ,  ,      a^^^…^^^b w/k ^s 

 The theorem that I will prove in this paper is the following: 

Theorem I  [TI] 

     , ,  ,      

   , ,   ,  ,       , +  ,     ,   1 

 



 In order to prove Theorem I it will be necessary to establish some basic 

properties of the hyper-operator sequence via a series of lemmas.  

 Before we jump into the proof, I will provide a brief introduction to the 

power of this notation for readers unfamiliar with Knuth-arrows. For readers 

already versed in arrow notation, feel free to skip ahead to the next section, 

“Establishing our Axioms.” 

BUILDING INTUITION FOR KNUTH-ARROWS 

 Donald Knuth made the point that the distinction between the finite and 

infinite is not as useful as the distinction between reasonably large and 

unreasonably large. To say that a number is “finite” is to say almost nothing 

about it at all! Calling a number “finite” by no means bounds it in any practical 

sense of the word. A proof that a certain positive integer exists, for example, 

provides no actual bound on the size of such a number other than to simply 

say it’s not infinite. 20th Century mathematics has demonstrated on several 

occasions that the number may indeed  be very  large,  far larger than is 

realistic and practical by any stretch of the imagination. Perhaps some of the 

best examples of this are Skewes’ Number, Graham’s Number, and TREE(3) 

(the first two of these numbers are within the purview of the numbers we will 

discuss here, but TREE(3) goes far far beyond the scope of our present 

discussion.)  

 I concur with Knuth on this point. We will find it much more useful in 

this instance to distinguish between reasonably and unreasonably large. Keep 

in mind that however unfathomably large and never-ending the numbers 

discussed here may seem to be, they are all none the less finite.  

 For the purposes of this article we may call a positive integer trivially 

large  if it’s full decimal form can be feasibly be stored in memory. It is trivially 

large in the sense that, if a large number notation, can do no better than 

generate a number which we could simply write out  in decimal than why 

bother having the notation in the first place when decimal notation would 

suffice? Call a number non-trivially large  or remote  if we can not  feasibly 

express it in decimal notation. 



 Although in daily life we are inclined to think of millions, billions, and 

trillions  as very large numbers, in this context they are quite benign. Any such 

numbers can easily be written out on an ordinary piece of paper, and so are 

trivially large by definition. Going up another level of complexity, consider 

numbers with millions, billions, or even trillions of digits. A human being can 

not hope to write most of these numbers out as the human life span measured 

in seconds is only about three billion. However on modern hard-drives we can 

store such numbers using Megabytes, Gigabytes, or Terabytes of data. So it is 

actually feasible to store such numbers. Beyond this however we hit a grey 

area and we can not pin the exact moment when a number becomes 

unfeasibly large. If we include all the data on all the computer systems in the 

world, then we have an estimated 500 exabytes to work with. This would get 

us as far as numbers with millions of trillions of digits. This however is merely 

what is feasible at the present. How much data could the world potentially 

hold? We could provide an upperbound on this by simply converting all the 

mass of the earth into raw data at the atomic level. In this case we would only 

have enough data to express numbers with less than 1052 digits 

approximately. An even harder limit is reached if we consider all of the sub-

atomic particles in the observable universe, of which there is an estimated 

1080. We can thus nominally say a number is trivially large if it is less than… 

10  
  

 

 … and a number is remote if it is larger than this value. We can never 

know all the digits of a remote integer. Such integers can only be expressed 

using specialized “large number notations”. A common mistake of laymen 

when first encountering some of the very large numbers that occur only in 

mathematics is to wonder why we should bother creating a special notation 

when we could just write out their decimal expansion. The point is that for 

these numbers we can’t! They are non-trivially large, and this necessitates the 

use of highly specialized and esoteric notations in order to express them. Keep 

in mind that even these notations can only express a very select subset of the 

remote integers. Most remote integers can not be expressed in any  notation, 

which is why I call them remote.  



 As I’ll show, there are only a small minority of trivial cases for 

expressions involving Knuth arrows. Most expressions will result in non-

trivially large integers. Firstly we can observe that by the rules, any time the 

polyponent   1, we will get a trivially large value of the base… 

b^^…^^1   b 

If the base 1 then the return value must be 1… 

1^^…^^p = 1 

 So in order to get a non-trivially large value, both the base and 

polyponent must be greater than 1. The smallest such case is 2 tetrated to the 

2nd.  Here we consider tetration with a base of 2: 

(Note that all operators are to be carried out from right-to-left) 

2^^2 = 2^2 = 4 (trivially large) 

2^^3 = 2^2^2 = 2^4 = 16 (trivially large) 

2^^4 = 2^2^2^2 = 2^2^4 = 2^16 = 65,536 (trivially large) 

2^^5 = 2^2^2^2^2 = 2^65,536 ~ 1019,726 (trivially large) 

2^^6 = 22^65,536 ~ 1010^19,726 (remote!) 

 So 2^^6 is the first member of this sequence that has far more digits 

than we could ever hope to compute, and could not be stored in decimal form 

in the known universe. For reasons that will become more clear as we proceed 

to the proof, if 2^^6 is remote, so is 2^^7,2^^8,2^^9,etc. and in fact 

inconceivably more so.  

 Let’s consider the base of 3: 

3^^2 = 3^3 = 27 (trivially large) 

3^^3 = 3^3^3 = 3^27 = 7,625,597,484,987 (trivially large) 

3^^4 = 3^3^3^3 = 37,625,597,484,987 ~ 103,638,334,640,024 (trivially large) 



3^^5 = 33^7,625,597,484,987 ~ 1010^3,638,334,640,024 (remote!) 

 After 3^^5, we have further remote integers 3^^6 , 3^^7 , 3^^8, etc. 

Remember that we have no other way to express these number other than 

Knuth-arrow notation at this point, or some other equivalent and comparable 

notation. Knuth arrow notation allows us to express non-trivially large values 

well beyond what we can express in decimal notation compactly with only a 

handful of characters.  

Let’s consider base 4: 

4^^2 = 4^4 = 256 (trivially large) 

4^^3 = 4^4^4 = 4^256 ~ 10154 (trivially large) 

4^^4 = 44^256 ~ 1010^153 (remote!) 

 Of the remote values so far considered, 4^^4 is the smallest. It seems 

tantalizingly close to being realizable. Understand that even it is ridiculously 

far beyond what we could hope to compute.  

 Here are some further trivially large bases: 

5^^2 = 5^5 = 3125 (trivially large) 

5^^3 = 5^5^5 = 5^3125 ~ 102184 (trivially large) 

5^^4 = 55^3125 ~ 1010^2184 (remote!) 

 

6^^2 = 6^6 = 46,656 (trivially large) 

6^^3 = 6^6^6 = 6^46,656 ~ 1036,305 (trivially large) 

6^^4 = 66^46,656 ~ 1010^36,305 (remote!) 

 

7^^2 = 7^7 = 823,543 (trivially large) 

7^^3 = 7^7^7 = 7^823,543 = 10695,974 (trivially large) 



7^^4 = 77^823,543 ~ 1010^695,974 (remote!) 

 

8^^2 = 8^8 = 16,777,216 (trivially large) 

8^^3 = 8^8^8 = 8^16,777,216 ~ 1015,151,335 (trivially large) 

8^^4 = 88^16,777,216 ~ 1010^15,151,335 (remote!) 

 

9^^2 = 9^9 = 387,420,489 (trivially large) 

9^^3 = 9^9^9 = 9^387,420,489 ~ 10369,693,099 (trivially large) 

9^^4 = 99^387,420,489 ~ 1010^369,693,099 (remote!) 

 

10^^2 = 10^10 = 10,000,000,000 (trivially large) 

10^^3 = 10^10^10 = 1010,000,000,000 (trivially large) 

10^^4 = 1010^10,000,000,000 (remote!) 

 As you can gather, if the tetraponent  ( the tetrational-exponent ) is 3 or 

less than we get a trivially large value, but if it is 4 or more we get non-trivially 

large values. The only exception to this is for the very small bases of 2 and 3. It 

is also true that if the base gets large enough eventually tetrating it to the 3rd 

will result in a non-trivially large value but this will take a little while. The 

base has to be >47 in order a^^3 to be non-trivially large. Even a^^2 may be 

non-trivially large with a large enough base, but the base needs to be roughly 

1078 for this to occur. Eventually the base itself becomes non-trivially large in 

which case even a^^1 is non-trivially large. 

 Beyond tetration, we find that trivial cases are even more scarce. The 

triple-arrow, has these cases: 

 



2^^^2 = 2^^2 = 2^2 = 4 (trivially large) 

2^^^3 = 2^^2^^2 = 2^^4 = 65,536 (trivially large) 

2^^^4 = 2^^2^^2^^2 = 2^^2^^4 = 2^^65,536 (EXTREMELY REMOTE!) 

 Notice how much faster this occurred. Now consider base =3 : 

3^^^2 = 3^^3 = 7,625,597,484,987 (trivially large) 

3^^^3 = 3^^3^^3 = 3^^7,625,597,484,987 (EXTREMELY REMOTE!) 

 Things begin to blow up really quickly after this… 

4^^^2 = 4^^4 = 44^256 ~ 1010^153 (remote!) 

5^^^2 = 5^^5 (remote!) 

6^^^2 = 6^^6 (remote!) 

7^^^2 = 7^^7 (remote!) 

8^^^2 = 8^^8 (remote!) 

9^^^2 = 9^^9 (remote!) 

10^^^2 = 10^^10 (remote!) 

 Almost immediately 2 is enough to make the number explode! Since 

a^^^1 = a , for all “a”, we will still have to wait until we reach non-trivially 

large bases before a^^^1 is non-trivially large. 

 After triple-arrows, every other base and operator will explode as long 

as the polyponent is greater than 1, except for the case where the base and 

polyponent is 2. 2^^^…^^^2 is known as the degenerate case. Consider the 

quadruple-arrow operator: 

2^^^^2 = 2^^^2 = 2^^2 = 2^2 = 4 (trivially large) 

2^^^^3 = 2^^^4 (EXTREMELY REMOTE!) 

 



3^^^^2 = 3^^^3 (EXTREMELY REMOTE!) 

4^^^^2 = 4^^^4 = 4^^4^^4^^4 (EXTREMELY REMOTE!) 

etc. 

2^^^^^2 = 2^^^^2 = 2^^^2 = 2^^2 = 2^2 = 4 (trivially large) 

2^^^^^3 = 2^^^^4 (EXTREMELY REMOTE!) 

3^^^^^2 = 3^^^^3 (EXTREMELY REMOTE!) 

4^^^^^2 = 4^^^^4 (EXTREMELY REMOTE!) 

etc. 

 As you can see Knuth-arrows are very powerful and quickly become so 

large that they can not be understood on any terms other than their own. 

 Now that I have demonstrated the necessity of Knuth-arrow notation to 

express numbers of this size, we can proceed to the proof. We will begin by 

presenting 2 simple axioms on which the entire proof is built. 

ESTABLISHING OUR AXIOMS 

 We will use the following Axioms. All variables are positive integers: 

AXIOM I 

Axiom of  Part and Sum [A1 – part] 

“The sum of positive integers is always greater than any of its summands” 

a < a+b 

AXIOM II 

Axiom of  Symmetry [A2 – symmetry] 

“The order one receives sums does not change the final total” 

a+b = b+a 



 

 

 

AXIOM III 

Axiom of Order [A3 – order] 

“The order one combines sums does not change the final total ” 

 (a+b)+c = a+(b+c) 

AXIOM IV 

Axiom of the Least [A4 – least] 

“If one positive integer is larger than another, than it is at least as large as the 

successor of the smaller” 

a < b  a+1 ≤ b 

AXIOM V 

Axiom of Transitivity [A5 – transitive] 

“ That which is greater than that which is greater is greater still ” 

a<b & b<c  a<c 

AXIOM VI 

Axiom of Greater Sums [A6 – greater] 

“Greater parts, greater sum” 

a<b , c<d  a+c < b+d 

 

 

 



AXIOM VII 

Axiom of Substitution [A7 – substitution] 

“If two things are equivalent they are interchangeable” 

Let E(x) be a formula or statement involving occurrences of the expression “x” 

a=b   ( E(a) = E(b) ) if E( ) is a formula 

& 

a=b  ( E(a)  E(b) ) if E( ) is a statement 

AXIOM VIII 

Axiom of Induction [A8 – induction] 

“That which holds for the first statement of a sequence, and for which the 

truth of one statement implies the next, may be taken to imply any desired 

statement in the sequence. ” 

Let P(x) be the xth statement. If P(1) holds and P(k)  P(k+1) then P(x) 

holds for all x Z+ 

AXIOM IX 

Axiom of multiplication [A9 – multiplication] 

“ m copies of n is the same as n copies of m” 

m*n = n*m 

  Hopefully these Axioms are very simple and easy to accept. With 

these 9 axioms  we can prove Theorem I. 

  Next we use our axioms to establish the basic properties of the 

hyper-operators. 

 

 



IMPORTANT PROPERTIES OF THE HYPER-OPERATORS 

 Before we can begin our general proof, we must establish some 

important properties of the hyper-operators. We begin with the following 

definitions… 

DEFINITION 1 – Strictly Increasing Function 

 An integer-to-integer  function, f , is Strictly Increasing  if and only if for 

any two integers, “a” and “b” , such that a b it follows that f a    f b . More 

formally… 

f(n) is Strictly Increasing (Str.Inc) iff 

∀a,b | f a    f b  : a b 

DEFINITION 2 – Everywhere Abundant Function 

 An integer-to-integer function, f, is Everywhere-Abundant  if and only if 

for every integer, “n”, f n    n. More formally… 

f(n) is Everywhere-Abundant (E.AB) iff 

∀n | n   f n  

 

 We will prove that any function of the form: 

        ,  ,      1 

 For constants “b” and “k”, is a Strictly Increasing Everywhere-Abundant 

function. Such functions have the handy property that the output is always 

greater than the input, and that if we increase the input we also increase the 

output. In addition to this, I’ll also demonstrate that, increasing the base or 

knuth-degree  is guaranteed to give us a larger value under very broad 

conditions. 

 We begin by establishing that multiplication is Str.Inc and E.AB. Define… 

M(n) = b*n 



where b>1 

We have… 

M(1) = b*1 = b > 1 

M(n+1) = b*(n+1) = b+b*n = b+M(n) > M(n) [A1+A2 – part + symmetry ] 

∴ M n    M n+1  

By virtue of the 2nd statement we prove that M is Strictly Increasing… 

M 1    M 2    M 3    M 4    … 

By virtue of the 1st and 2nd statement we prove that the function M is 

Everywhere-Abundant : 

1 < M(1) 

Assume there exists some k such that 

k < M(k) 

then we have… 

k < M(k) < M(k+1) 

k+1 ≤ M k    M k+1  [A4 - Least] 

k+1 ≤ M k    M k+1   

means  

k+1 < M(k) < M(k+1)  

or  

k+1 = M(k) < M(k+1) 

In the first case k+1 < M(k) < M(k+1)  k+1 < M(k+1) [A5 – transitive] 

In the second case we have… 

k+1 = M(k) & M(k) < M(k+1)  k+1 < M(k+1) [A7 – substitution] 



Therefore… 

k+1 < M(k+1) 

so… 

k<M(k)  k+1<M(k+1) 

∴ n   M n  ∀n [A8 - Induction] 

Thus M is also Everywhere-Abundant. Next we prove the same properties for 

the function… 

E(n) = b^n : b>1 

Consider… 

E(1) = b^1 = b > 1 

E(n+1) = b^(n+1) = b*b^n  

Note, b*b^n is greater than b^n because multiplication is E.AB, which means 

the output must be larger than the input. Therefore… 

b*b^n > b^n = E(n) 

∴ E n    E n+1  

From E(n) < E(n+1) we have a proof that E(n) is a Str.Inc function since… 

E 1    E 2    E 3    E 4    … 

From 1 < E(1) & E(n) < E(n+1) we know that the function is also E.AB, 

since… 

1 < E(1) 

Assume there exists a “k” such that… 

k < E(k) 

consider… 



k < E(k) < E(k+1) 

k+1 ≤ E k    E k+1  [ A4 - least ] 

k+1 < E(k+1)  [A8 – induction] 

Therefore E(n) is both Str.Inc and E.AB. 

Now assume there is a function that is both Str.Inc and E.AB called f(n). We 

prove that the function g(n) is also Str.Inc and E.AB. Define g(n): 

g(1) = b 

g(n+1) = f(g(n)) 

where b>1 

To prove “g” is Strictly Increasing we simply observe: 

g(n) < f(g(n)) 

because f is E.AB 

therefore… 

g(n) < f(g(n)) = g(n+1) 

∴ g n    g n+1  

Thus g n  is Str.Inc. Furthermore we have… 

1 < g(1) 

Assume there exists a k such that… 

k < g(k) 

consider… 

k < g(k) < g(k+1) 

k+1 ≤ g k    g k+1  [ A4 - least ] 

k+1 < g(k+1) [A8 – induction] 



So “g” is also E.AB. Thus since b^n is Str.Inc and E.AB so are the functions 

b^^n , b^^^n , b^^^^n, b^^^^^n , b^^^^^^n, etc. 

Thus in this way we have demonstrated that all the hyper-operators, as well 

as the elementary functions b*n and b^n, are Strictly Increasing and 

Everywhere Abundant. This becomes our first lemma… 

 

LEMMA I [L1] 

b*n is Str.Inc & E.AB , 

∀        ,  ,      1 ,        .        .    

 

 This lemma allows us to know, for example, that 3^^^3 is definitely less 

than 3^^^4 since 3^^^n is Str.Inc. We also know that 3 < 3^^^3 and 4 < 

3^^^4 since 3^^^n is E.AB. 

 This lemma on its own however is not sufficient for the proof of 

Theorem I. For this we want to demonstrate that each new up-arrow does 

actually provide larger values. For the sake of completeness I will also 

demonstrate that a larger base always leads to larger values. This is not 

strictly necessary for the proof, but provides a strong axiomatic foundation for 

manipulating and comparing expressions using Knuth-arrows. At the end of 

the paper I’ll show how this fact can be used along with Lemma I and Theorem 

I to quickly obtain powerful results with great ease.  

 First I’ll prove that a larger base means a larger value. We first consider 

the multiplication functions: 

f(n) = b*n , g(n) = c*n   

where b<c 

Firstly 

f(1) = b*1 = b < c = c*1 = g(1) 



∴f 1    g 1  

Next we have… 

If f(k) < g(k) 

f(k+1) = b*(k+1) = b*k+b 

b*k < c*k & b < c  b*k+b < c*k+c [A5 – greater] 

c*k+c = c*(k+1) = g(k+1) 

 f(k+1) < g(k+1) [A5+A7 – transitivity+substitution] 

∴ f n    g n  : ∀n [A8 – induction] 

We now use multiplication to prove the same property for exponentiation… 

f(n) = b^n , g(n) = c^n : b<c 

b^1 = b < c = c^1 

b^1 < c^1 [A7 – substitution] 

If b^k < c^k 

b^(k+1) = b*b^k 

We know that multiplication is Str.Inc, therefore… 

b*b^k < b*c^k 

But we also know that a larger base results in a larger value so… 

b*c^k < c*c^k = c^(k+1) 

Thus… b^n   c^n for all n. 

 Again we generalize this. Assume that b@n   c@n, as well as “@” being 

Str.Inc and E.AB. 

b@^1 = b < c = c@^1  

b@^1 < c@^1 [A7] 



Assume b@^k < c@^k 

b@^(k+1) = b@(b@^k) 

b@(b@^k) < c@(b@^k) [b@n < c@n] 

c@(b@^k) < c@(c@^k) [@ is Str.Inc] 

 b@^(k+1) < c@^(k+1) 

∴All the hyper-operators produce larger values if the base is increased. 

This is our second lemma… 

LEMMA II [L2] 

            

  ,  ,      ,  ,        

 

 Lastly we will prove that each new hyper-operator does in fact produce 

much larger values than all previous hyper-operators.  

 Firstly we must observe that… 

b*1   b^1   b^^1   b^^^1   b^^^^1   … 

So all the operators produce the same value if the polyponent =1. At 2 

however we have… 

2*2 ≤ b*2 [ Lemma II ] 

This works since we established a larger base means a larger output. Next we 

have… 

b*2 ≤ b*b   b^2 ≤ b^b   b^^2 ≤ b^^b   b^^^2 ≤ b^^^b   b^^^^2 ≤ … 

 By substitution [A7] and transitivity [A5] this establishes that if the 

polyponent is 2, then the output is at least 4. Note that the ≤ comes into play 

only because “b” might be 2, in which case we have… 



4   2*2   2^2   2^^2   2^^^2   2^^^^2   … 

However if b 2 then we can replace the ≤ with   in each instance and we 

obtain… 

b*2   b^2   b^^2   b^^^2   b^^^^2   … 

So each time we go up by knuth-degree we are indeed getting a larger value 

here as long as the base is greater than 2. Now let’s consider the next step 

when the polyponent = 3. 

b*3   b*4   b* b*2  ≤ b* b^2    b^3 

∴ b*3   b^3 [A5+A7] 

From this we can gather… 

b*3 < b^3 < b*b^3 = b^4 

Since b*n is E.AB 

3 < b*3 

By the Axiom of the Least [A4] … 

4 ≤ b*3 

Therefore… 

4 ≤ b*3   b^3   b^4 

4 < b^3 < b*b^3 = b^4 

therefore… 

b*4 < b*b^3 = b^4 

b*4 < b^4 

Assume the following holds for k: 

b*k < b^k 



Now consider… 

b*k < b^k < b*b^k = b^(k+1) 

k+1 ≤ b*k   b^k   b*b^k   b^ k+1  

k+1 < b^k 

b*(k+1) < b*(b^k) = b^(k+1) 

∴ b* k+1    b^ k+1  

 Thus we have shown that exponentiation, b^n, always produces larger 

values than b*n provided n>2. 

 To prove the general case we consider b@n which is Str.Inc and E.AB. 

We need to show that… 

b@n < b@^n : n>2 

We have… 

b@1 = b@^1 = b 

b@2 ≤ b@b   b@^2 

Next we have… 

b@3   b@4 ≤ b@ b@2  ≤ b@ b@b    b@^3 

b@3 < b@^3 

Assume the following holds for k: 

b@k < b@^k 

Then we have… 

k < b@k < b@^k < b@b@^k = b@^(k+1) 

k+1 ≤ b@k   b@^k 

k+1 < b@^k 



b@(k+1) < b@(b@^k) = b@^(k+1) 

∴ b@ k+1    b@^ k+1  

Thus we have… 

b@n < b@^n : n>2 

Thus we conclude that all the hyper-operators output larger values than the 

previous hyper-operator. We can state this in our third lemma… 

LEMMA III [L3] 

     ^    2 

  ,  ,       ,  ,  + 1    2 

 

 

 We now use Lemma I and Lemma III to aid us in proving Theorem I. 

THEOREM I : TETRAPONENT LEMMA 

 We first prove the Tetraponent Lemma (TL) for positive integer values, 

before moving on to the more general case. A tetraponent   from “tetra” + 

“exponent”  , is the polyponent of the “^^” operator, commonly known as 

tetration. The Tetraponent Lemma can be stated as… 

(b^^m)^^n < b^^(m+n) : b>1 

 As long as the base is greater than 1, the adding of the tetraponents is a 

larger value. This has many interesting consequences, one of them being the 

ability to inductively prove it for all higher hyper-operators. 

 We will assume from here on in that b is a positive integer greater than 

1. We can begin by getting the trivial cases out of the way. From our prior 

definitions it follows that… 

(b^^1)^^1 < b^^2 



(b^^m)^^1 < b^^(m+1) 

(b^^1)^^n < b^^(1+n) 

 This only leaves cases in which neither “m” nor “n” is equal to 1. The 

smallest case of this is if m=n=2. To ease our transition to the more general 

case we begin by eliminating cases in which one or both of these is equal to 2. 

Firstly we have… 

(b^^2)^^2 = (b^b)^(b^b) = b^(b*b^b) = b^b^(b+1) 

b^b^(b+1) is less than b^b^b^b, because b+1 < b^b 

This can be seen because b+1 < b+b   b*2 ≤ b*b   b^2 ≤ b^b 

We now consider the other cases… 

Assume m>2 

(b^^m)^^2 = (b^^m)^(b^^m) = b^(b^^(m-1) * b^^m ) < b^(b^^m)^2  

= b^b^(2*b^^(m-1)) ≤ b^b^(b*b^^(m-1)) = b^b^b^(1+b^^(m-2)) 

We need to show that… 

1+b^^(m-2) is less than b^^(m-1) 

We can observe that… 

1+b^a   b^ a+1  for b 2, and “a” is an positive integer. 

This is because… 

1+b^a < b^a+b^a = (b^a)*2 = 2*b^a [A9 – multiplication] 

 ≤ b*b^a [L2] = b^(a+1) 

Furthermore we know from earlier that 

b+1 < b^b 

therefore… 



1+b^b < b^(b+1) < b^b^b 

1+b^b^b < b^(b^b+1) < b^b^(b+1) < b^b^b^b 

1+b^b^b^b < b^(b^b^b+1) < b^b^(b^b+1) < b^b^b^(b+1) < b^b^b^b^b 

etc. 

Inductively we can prove it for the general case, thus… 

1+b^^(m-2) is less than b^^(m-1) 

Therefore… 

b^b^b^(1+b^^(m-2)) < b^b^b^b^^(m-1) = b^b^b^^m = b^b^^(m+1) = 

b^^(m+2) 

therefore… 

(b^^m)^^2 < b^^(m+2) 

Now we need to show… 

(b^^2)^^n < b^^(2+n) 

We begin… 

 b^^2 ^^n    b^b ^^n    b^b ^ b^b ^ b^b ^…^ b^b ^ b^b  w/n copies of 

b^b 

We begin in an inductive fashion… 

(b^b)^(b^b) = b^(b*b^b) = b^b^(1+b) 

(b^b)^(b^b)^(b^b) = b^(b*b^b^(1+b)) = b^b^(1+b^(1+b))  

(b^b)^(b^b)^(b^b)^(b^b) = b^(b* b^b^(1+b^(1+b))) = 

b^b^(1+b^(1+b^(1+b))) 

… 

b^b^ 1+b^ 1+b^  …  1+b^ 1+b^ 1+b    …     w/n+1 copies of “b” 



The extra “baggage” of +1’s can easily be eliminated by observing that in each 

case the exponent to the right is some positive integer and we already proved 

1+b^a < b^(a+1) in all such cases.  We can also show that 2+b^a ≤ b^ a+1  

2+b^a ≤ b+b^a ≤ b^a+b^a   2*b^a ≤ b*b^a   b^ a+1  

Thus we can conclude… 

b^b^ 1+b^ 1+b^  …  1+b^ 1+b^ 1+b    …     

  b^b^b^ 2+b^  …  1+b^ 1+b^ 1+b    …    

… 

≤ b^b^b^b^ …  2+b^ 1+b^ 1+b    

≤ b^b^b^b^ … ^b^ 2+b^ 1+b   

≤ b^b^b^b^ … ^b^b^ 2+b  w/n+1 “b”s 

Now we merely need to show that 2+b <= b^b : b>1. This is accomplished 

handily: 

2+b ≤ b+b = 2*b ≤ b*b = b^2 ≤ b^b 

This demonstrates that  2+b ≤ b^b. Thus… 

b^b^b^b^ … ^b^b^ 2+b  w/n+1 “b”s 

≤ b^b^b^b^ … ^b^b^b^b w/n+2 “b”s 

thus… 

(b^^2)^^n < b^^(2+n) 

The only cases that remain now are ones in which both “m” and “n” are 

greater than 2. So we now consider the general case… 

(b^^m)^^n 

(where m,n>2) 

We have… 



(b^^m)^^2 = (b^^m)^(b^^m) = b^(b^^(m-1)*b^^m)  

= b^b^(b^^(m-2)+b^^(m-1)) < b^b^b^(1+b^^(m-2)) 

(b^^m)^^3 = (b^^m)^(b^^m)^(b^^m) < (b^^m)^b^b^b^(1+b^^(m-2)) 

= b^(b^^(m-1)*b^b^b^(1+b^^(m-2)))  

= b^b^(b^^(m-2)+b^b^(1+b^^(m-2))) < b^b^b^(1+b^(1+b^^(m-2))) 

… 

(b^^m)^^n  

  b^b^b^ 1+b^ 1+b^ … 1+b^ 1+b^ 1+b^^ m-2    …    w/n+2 b’s 

< b^b^b^b^ 2+b^ … 1+b^ 1+b^ 1+b^^ m-2    …    

… 

≤ b^b^b^b^b^…^b^ 2+b^ 1+b^ 1+b^^ m-2))) 

≤ b^b^b^b^b^…^b^b^ 2+b^ 1+b^^ m-2))) 

≤ b^b^b^b^b^…^b^b^b^ 2+b^^ m-2)) = b^(2+b^^(m-2))#(n+1) 

Now we focus on 2+b^^(m-2) 

This is at least 2^^(3-2) = 2^^1 = 2 

If so we have… 

2+b ≤ b+b = 2*b ≤ b*b = b^2 ≤ b^b 

2+b^a ≤ b+b^a ≤ b^a+b^a = 2*b^a ≤ b*b^a = b^(a+1) 

2+b^b < b^(b+1) < b^b^b 

2+b^b^b < b^(b^b+1) < b^b^(b+1) < b^b^b^b 

2+b^b^b^b ≤ b^(b^b^b+1) < b^b^b^b^b 

etc. 



Thus 2+b^^(m-2) ≤ b^^(m-1) 

Thus… 

b^b^…^b^b^ b^^ m-1   w/n b’s 

= b^^(m-1+n+1) = b^^(m+n) 

Thus… 

(b^^m)^^n < b^^(m+n) 

Thus we have proven the TL. 

THEOREM I : GENERAL CASE 

We now generalize our result. This will accomplished inductively. We will 

assume that the following holds for… 

(b@m)@n < b@(m+n) 

For some set of operations equal to and below “@”. We then demonstrate that 

if this is so, then necessarily it must follow… 

(b@^m)@^n < b@^(m+n) 

 To accomplish this we must use the properties we proved about the 

hyper-operators in the sub-heading “Important properties of the Hyper-

Operators”. Firstly we prove the trivial cases… 

(b@^1)@^1 = b@^1 

However… 

b@^1 < b@^2 

[L1 - @^ must be a strictly increasing function ] 

∴ b@^1 @^1   b@^ 1+1  

(b@^m)@^1 = b@^m < b@^(m+1) 

[ L1 - @^ is Str.Inc ] 



∴  b@^m @^1   b@^ m+1  

Next… 

(b@^1)@^n = b@^n < b@^ n+1  ∵ [L1 - @^ is Str.Inc] 

∴  b@^1 @^n   b@^ 1+n  

Now we consider the less trivial case of m=n=2. 

(b@^2)@^2 = (b@b)@(b@b) 

Recall that “@” holds under [TI], therefore… 

(b@b)@(b@b) < b@(b+b@b) 

b < b@b  

[L1 - @ is E.AB] 

Therefore… 

b@(b+b@b) < b@(b@b+b@b) = b@ 2*b@b  ≤ b@ b*b@b  

We have… 

1 < b < b@b 

2 < b@b 

Therefore… 

b*b@b   b^b@b   b^^b@b   b^^^b@b   … 

via [L3] which states that the higher the knuth-degree the higher the value if 

the input is greater than 2. b@b must be at least 4, so this holds. 

Let % be the operation such that %^   @. In this case we eventually reach… 

b%b@b = b@(b+1) 

Thus we have… 

b@b@ b+1    b@b@ b+b    b@b@ b*2  ≤ b@b@ b*b   



≤ b@b@b@b   b@^ 4  

Therefore… 

(b@^2)@^2 < b@^(2+2) 

Next we have… 

(b@^m)@^2 = (b@^m)@(b@^m) = b@(b@^(m-1) + b@^m)  

  b@ b@^m + b@^m    b@ 2*b@^m  ≤ b@ b*b@^m    b@b@^ m+1   

= b@^(m+2) 

∴ b@^m @^2   b@^ m+2  

Next we have… 

(b@^2)@^n 

Here we consider the steps… 

(b@^2)@(b@^2) = b@(b+b@b) < b@b@(1+b) 

Let… 

R(1) = 1+b 

R(n+1) = 1+b@R(n) 

b@b@(1+b) = b@b@R(1) 

(b@^2)@^3 < (b@^2)@b@b@R(1) < b@(b+b@b@R(1)) < 

b@b@(1+b@R(1)) = b@b@R(2) 

if… 

(b@^2)@^k < b@b@R(k-1) 

… 

(b@^2)@^(k+1) = (b@^2)@b@b@R(k-1) < b@(b+b@b@R(k-1))  

< b@b@(1+b@R(k-1)) = b@b@R(k) 



Thus it holds that… 

(b@^2)@^n < b@b@R(n-1) 

From this we obtain… 

b@b@(1+b@R(n-2)) < b@b@b@(1+R(n-2)) = b@b@b@(2+b@R(n-3)) 

< b@b@b@b@(2+b@R(n-4     … 

< b@(2+b@R(1))#(n-1) < b@(b@(2+b))#(n-1) = b@(2+b)#n 

≤ b@ b+b #n   b@ b*2 #n ≤ b@ b*b #n ≤ b@ b@b #n   b@^ 2+n  

∴  b@^2 @^n   b@^ 2+n  

This leaves only the general case in order to prove [TI] conclusively. 

(b@^m)@^n 

(b@^m)@(b@^m) < b@(b@^(m-1) + b@^m) < b@(b@^m + b@^m) = 

b@(2*b@^m) 

≤ b@ b*b@^m    b@ b*b@b@^ m-1)) < b@(b%b@b@^(m-1)) = 

b@b@(1+b@^(m-1)) 

Let R(1) = 1+b@^(m-1) 

R(n+1) = 1+b@R(n) 

So… 

(b@^m)@^2 < b@b@R(1) 

(b@^m)@^3 < (b@^m)@b@b@R(1) < b@(b@^(m-1) + b@b@R(1))  

  b@ b*b@b@R 1   ≤ b@ b%b@b@R 1     b@b@ 1+b@R 1     

b@b@R(2) 

Let… 

(b@^m)@^k < b@b@R(k-1) 



(b@^m)@^(k+1) < (b@^m)@(b@b@R(k-1)) < b@(b@^(m-1)+b@b@R(k-

1)) 

< b@(b*b@b@R(k-1   ≤ b@ b%b@b@R k-1)) = b@b@(1+b@R(k-1)) = 

b@b@R(k) 

Thus… 

(b@^m)@^n < b@b@R(n-1) 

Unpacking it we have… 

b@b@R(n-1) = b@b@(1+b@R(n-2)) < b@b@(b*b@R(n-2))  

≤ b@b@b@ 1+R n-2)) 

= b@b@b@(2+b@R(n-3)) 

  ….   b@ 2+b@R 1  # n-1) < b@(b*b@R(1))#(n-1)  

≤ b@ b%b@R 1  # n-1) 

= b@(b@(2+b@^(m-1))#(n-1) = b@(2+b@^(m-1)#n  

< b@(b*b@b@^(m-2))#n 

≤ b@ b%b@b@^ m-2))#n = b@(b@(1+b@^(m-2)))#n  

< b@(b@^m)#n = b@^(m+n) 

Thus we have proven [TI]. 

CONCLUSION 

 This paper I believe has demonstrated, using sound mathematical 

reasoning, that inescapably… 

 b^…^m ^…^n   b^…^ m+n  

And this result is built on the 9 Axioms presented in this paper 

Once obtained it can easily be put to good use on any number of difficult 

comparison and bounding problems involving up-arrows very handily. For 



example, a common mentioned number in relation to Graham’s Number, by 

means of size comparison is “a power tower of googolplexes a googolplex 

terms high”. This can be written compactly using Knuth-Arrows as… 

(10^10^100)^^(10^10^100) 

Now we use [TI] to prove that this is way less than Graham’s Number… 

(10^10^100)^^(10^10^100) < (10^10^10^10)^^(10^10^100) 

= (10^^4)^^(10^10^100) < 10^^(4+10^10^100) [TI] 

< 10^^10^(1+10^100) < 10^^10^10^101 < 10^^10^10^10^10 < 

10^^10^^4 < 10^^10^^10 = 10^^^3 

At this point we may seem to be stuck since we require a base of 3 for direct 

comparison. However… 

10 < 3^3 < 3^3^3 = 3^^3 < 3^^3^^3 = 3^^^3 

Thus… 

10^^^3 < (3^^^3)^^^3 [L2 – base change] 

< 3^^^6 [TI] < 3^^^3^3 < 3^^^3^^^3 [L1+L3] = 3^^^^3 = G(1) << G(64) 

Thus we prove that not only is googolplex^^googolplex much less than G(64), 

but it is even smaller than G(1). Thus TI is very versatile, and among one of its 

uses is the ability to perform base changes to smaller bases and still prove 

upper-bounds! 

 TI can now be used to substantiate other facts about large numbers. The 

lemmas used in its proof (L1,L2, and L3) are also useful in assisting TI, and 

may be considered as part of TI.  

 

 

 


