Ten prime-generating quadratic polynomials

Marius Coman
Bucuresti, Romania
email: mariuscoman13@gmail.com

Abstract

In two of my previous papers I treated quadratic polynomials which have the property to produce many primes in a row: in one of them I listed forty-two such polynomials which generate more than twenty-three primes in a row and in another one I listed few generic formulas which may conduct to find such prime-producing quadratic polynomials. In this paper I will present ten such polynomials which I discovered and posted in OEIS, each accompanied by its first fifty terms and some comments about it.

I.

The polynomial 16*n^2 - 300*n + 1447 .

Its first fifty terms:

$$
\begin{aligned}
& 1447,1163,911,691,503,347,223,131,71,43,47, \\
& 83,151,251,383,547,743,971,1231,1523,1847, \\
& 2203,2591,3011,3463,3947,4463,5011,5591,6203, \\
& 6847,7523,8231,8971,9743,10547,11383,12251, \\
& 13151,14083,15047,16043,17071,18131,19223,20347, \\
& 21503,22691,23911,25163,26447 .
\end{aligned}
$$

Comments:

This polynomial generates 30 primes in a row starting from $n=0$.
The polynomial $16 *_{n} \wedge 2-628 * n+6203$ generates the same primes in reverse order.
I found in the same family of prime-generating polynomials (with the discriminant equal to $-163 * 2 \wedge$ p, where p is even), the polynomials $4 n^{\wedge} 2-152 n+1607$, generating 40 primes in row starting from $n=0$ (20 distinct ones) and $4 n^{\wedge} 2-140 n+1877$, generating 36 primes in row starting from $n=0$ (18 distinct ones).
The following 5 (10 with their "reversal" polynomials) are the only ones I know from the family of Euler's polynomial $n^{\wedge} 2+n+41$ (having their discriminant equal to a multiple of -163) that generate more than 30 distinct primes in a row starting from $n=0$ (beside the Escott's polynomial n^2 - 79n + 1601):
(1) $4 n^{\wedge} 2-154 n+1523\left(4 n^{\wedge} 2-158 n+1601\right)$;
(2) $9 n^{\wedge} 2-231 n+1523\left(9 n^{\wedge} 2-471 n+6203\right) ;$
(3) $16 n^{\wedge} 2-292 n+1373\left(16 n^{\wedge} 2-668 n+7013\right) ;$
(4) $25 n^{\wedge} 2-365 n+1373\left(25 n^{\wedge} 2-1185 n+14083\right)$;
(5) $16 n^{\wedge} 2-300 n+1447\left(16 n^{\wedge} 2-628 n+6203\right)$.

II.

The polynomial $2 * n^{\wedge} 2-108 * n+1259$.

Its first fifty terms:

```
1259, 1153, 1051, 953, 859, 769, 683, 601, 523, 449,
379, 313, 251, 193, 139, 89, 43, 1, -37, -71, -101, -
127, -149, -167, -181, -191, -197, -199, -197, -191, -
181, -167, -149, -127, -101, -71, -37, 1, 43, 89, 139,
193, 251, 313, 379, 449, 523, 601, 683, 769.
```

Comments:
This polynomial generates 92 primes (66 distinct ones) for n from 0 to 99 (in fact the next two terms are still primes but we keep the range $0-99$, customary for comparisons), just three primes less than the record held by the Euler's polynomial for $n=m-35$, which is m^2 - 69*m + 1231, but having six distinct primes more than this one.
The non-prime terms in the first 100 are: 1 (taken twice), $1369=37 \wedge 2$, $1849=43 \wedge 2,4033=37 * 109,5633=$ $43 * 131,7739=71 * 109$ and $8251=37 * 223$.
For $n=2 * m-34$ we obtain the polynomial $8 * m^{\wedge} 2-488 * m$ +7243 , which generates 31 primes in a row starting from $m=0$.
For $n=4 * m-34$ we obtain the polynomial $32 *_{m}{ }^{\wedge} 2-$ 976*m + 7243, which generates 31 primes in row starting from $m=0$.

III.

The polynomial 2*n^2 - 212*n + 5419.

Its first fifty terms:

```
5419, 5209, 5003, 4801, 4603, 4409, 4219, 4033, 3851,
3673, 3499, 3329, 3163, 3001, 2843, 2689, 2539, 2393,
2251, 2113, 1979, 1849, 1723, 1601, 1483, 1369, 1259,
1153, 1051, 953, 859, 769, 683, 601, 523, 449, 379,
313, 251, 193, 139, 89, 43, 1, -37, -71, -101, -127, -
149, -167, -181.
```

Comments:

This polynomial generates 92 primes (57 distinct ones) for n from 0 to 99 (in fact the next seven terms are still primes but we keep the range $0-99$, customary for comparisons), just three primes less than the record held by the Euler's polynomial for $n=m-35$, which is $m^{\wedge} 2-69 * m+1231$.
The non-prime terms in the first 100 are: 1, $1369=$ $37^{\wedge} 2$, $1849=43^{\wedge} 2$, $4033=37 * 109$ (all taken twice).
For $n=2 * m+54$ we obtain the polynomial $8 * m^{\wedge} 2+8 * m-$ 197, which generates 31 primes in a row starting from m $=0$ (the polynomial $8 * m^{\wedge} 2-488 * m+7243$ generates the same 31 primes, but in reverse order).

IV.

The polynomial 25*n^2 - 1185*n + 14083.

Its first fifty terms:

```
14083, 12923, 11813, 10753, 9743, 8783, 7873, 7013,
6203, 5443, 4733, 4073, 3463, 2903, 2393, 1933, 1523,
1163, 853, 593, 383, 223, 113, 53, 43, 83, 173, 313,
503, 743, 1033, 1373, 1763, 2203, 2693, 3233, 3823,
4463, 5153, 5893, 6683, 7523, 8413, 9353, 10343, 12473,
13613, 14803, 16043, 17333.
```

Comments:
The polynomial generates 32 primes in row starting from $\mathrm{n}=0$.
The polynomial $25 *{ }^{n}{ }^{\wedge} 2-365 * n+1373$ generates the same primes in reverse order.
This family of prime-generating polynomials (with the discriminant equal to $-4075=-163 * 5^{\wedge} 2$) is interesting for generating primes of same form: the polynomial $25{ }^{*} n^{\wedge} 2-395(n+1601$ generates 16 primes of the form $10 * \mathrm{k}+1$ (1601, 1231, 911, 641, 421, 251, 131, 61, 41, 71, 151, 281, 461, 691, 971, 1301) and the polynomial $25^{*} n^{\wedge} 2+25 * n+47$ generates 16 primes of the form $10 * k$ +7 (47, 97, 197, 347, 547, 797, 1097, 1447, 1847, 2297, 2797, 3347, 3947, 4597, 5297, 6047).
Note:
All the polynomials of the form $25{ }^{*} \mathrm{n}^{\wedge} 2+5 * \mathrm{n}+41$, $25 \star^{\wedge}{ }^{\wedge} 2+15 *_{n}+43, \ldots, 25 *_{n} \wedge 2+5 *(2 k+1){ }^{*} n+p, \ldots$, $25 *_{n} \wedge 2+5 * 79 * n+1601$, where p is a (prime) term of the Euler's polynomial $p=k^{\wedge} 2+k+41$, from $k=0$ to $\mathrm{k}=39$, have their discriminant equal to $-4075=$ $163 * 5^{\wedge} 2$.

V.

The polynomial $16{ }^{*} n^{\wedge} 2-292 * n+1373$.

Its first fifty terms:

1373, 1097, 853, 641, 461, 313, 197, 113, 61, 41, 53, 97, 173, 281, 421, 593, 797, 1033, 1301, 1601, 1933, 2297, 2693, 3121, 3581, 4073, 4597, 5153, 5741, 6361, 7013, 7697, 8413, 9161, 9941, 10753, 11597, 12473, 13381, 14321, 15293, 16297, 17333, 18401, 20633, 21797, 22993, 24221, 25481, 26773.

Comments:
The polynomial generates 31 primes in row starting from $\mathrm{n}=0$.
The polynomial 16 n^2 $^{\wedge}-668 * n+7013$ generates the same primes in reverse order.
Note:
All the polynomials of the form $p^{\wedge} 2 *^{*} n^{\wedge} \pm p^{*} n+$ 41, $p^{\wedge} 2{ }^{*} n^{\wedge} 2 \pm 3{ }^{*} p^{\star} n+43, \quad p^{\wedge} 2{ }^{*} n^{\wedge} 2 \pm 5{ }^{*} p^{\star} n+47, \ldots$, $p^{\wedge} 2{ }^{\star} n^{\wedge} 2 \pm(2 k+1){ }^{*} p^{\star} n+q, \ldots, p^{\wedge} 2 * n^{\wedge} 2 \pm 79 * p^{*} n+1601$, where q is a (prime) term of the Euler's polynomial $q=$ $\mathrm{k}^{\wedge} 2+\mathrm{k}+41$, from $\mathrm{k}=0$ to $\mathrm{k}=39$, have their discriminant equal to $-163^{*} p^{\wedge} 2$; the demonstration is easy: the discriminant is equal to $\mathrm{b}^{\wedge} 2-4 * \mathrm{a}^{\star} \mathrm{C}=(2 * \mathrm{k}+$ $1)^{\wedge} 2 * p^{\wedge} 2-4 * q^{*} p^{\wedge} 2=-p^{\wedge} 2\left((2 * k+1)^{\wedge} 2-4 * q\right)=-$ $\mathrm{p}^{\wedge} 2^{*}\left(4^{*} \mathrm{k}^{\wedge} 2+4^{*} \mathrm{k}+1-4^{*} \mathrm{k}^{\wedge} 2-4^{*} \mathrm{k}-164\right)=-163^{*} \mathrm{p}^{\wedge} 2$ 。
Observation:
Many of the polynomials formed this way have the capacity to generate many primes in row. Examples:
: $9 * n^{\wedge} 2+3 * n+41$ generates 27 primes in row starting from $n=0$ (and 40 primes for $n=n$ 13) ;
: $9 *_{n} \wedge 2-237 * n+1601$ generates 27 primes in row starting from $n=0$;
: $16{ }^{*} n^{\wedge} 2+4{ }^{*} n+41$ generates, for $n=n-21$ (that is $\left.16 *_{n} \wedge 2-668 * n+7013\right) 31$ primes in row.
VI.

The polynomial $4 * n^{\wedge} 2-284 * n+3449$.
Its first fifty terms:

```
3449, 3169, 2897, 2633, 2377, 2129, 1889, 1657, 1433,
1217, 1009, 809, 617, 433, 257, 89, -71, -223, -367, -
503, -631, -751, -863, -967, -1063, -1151, -1231, -
1303, -1367, -1423, -1471, -1511, -1543, -1567, -1583,
-1591, -1591, -1583, -1567, -1543, -1511, -1471, -1367,
-1303, -1231, -1151, -1063, -967, -863, -751.
```

Comments:

The polynomial successively generates 35 primes or negative values of primes starting at $n=0$.
This polynomial generates 95 primes in absolute value (60 distinct ones) for n from 0 to 99, equaling the record held by the Euler's polynomial for $n=m-35$, which is m^2 - 69*m +1231.
The non-prime terms (in absolute value) up to $n=99$ are: $1591=37 * 43,3737=37 * 101,4033=37 * 109$; $5633=$ $43 * 131 ; 5977=43 * 139 ; ~ 9017=71 * 127$.
The polynomial $4 *_{n}{ }^{\wedge} 2+12 *_{n}-1583$ generates the same 35 primes in row starting from $n=0$ in reverse order.
Note:
In the same family of prime-generating polynomials (with the discriminant equal to $199 * 2^{\wedge} p$, where p is odd) there are the polynomial $32 * n^{\wedge} 2-944 * n+6763$ (with its "reversed polynomial" 32*m^2 - 976*m + 7243, for $m=30-n)$, generating 31 primes in row, and the polynomial $4 *_{n \wedge} 2-428 * n+5081$ (with $4 * m^{\wedge} 2+188 * m-$ 4159, for $m=30-n)$, generating 31 primes in row.
VII.

The polynomial $n^{\wedge} 2+3 * n-167$.
Its first fifty terms:

```
-167, -163, -157, -149, -139, -127, -113, -97, -79, -
59, -37, -13, 13, 41, 71, 103, 137, 173, 211, 251, 293,
337, 383, 431, 481, 533, 587, 643, 701, 761, 823, 887,
953, 1021, 1091, 1163, 1237, 1313, 1391, 1471, 1553,
1637, 1723, 1811, 1901, 1993, 2087, 2183, 2381, 2483.
```

Comments:
The polynomial generates 24 primes in absolute value (23 distinct ones) in row starting from $n=0$ (and 42 primes in absolute value for n from 0 to 46).
The polynomial $n^{\wedge} 2-49 * n+431$ generates the same primes in reverse order.
Note:
We found in the same family of prime-generating polynomials (with the discriminant equal to 677) the polynomial $13 *_{n}{ }^{\wedge} 2-311 * n+1847\left(13 * n^{\wedge} 2-469 * n+\right.$ 4217) generating 23 primes and two noncomposite numbers (in absolute value) in row starting from $n=0$ (1847, 1549, 1277, 1031, 811, 617, 449, 307, 191, 101, 37, -1, -13, 1, 41, 107, 199, 317, 461, 631, 827, 1049, 1297, 1571, 1871).
Note:
Another interesting algorithm to produce primegenerating polynomials could be $N=m * n^{\wedge} 2+(6 * m+1) * n$ $+8 \star m+3$, where $m, 6 * m+1$ and $8 * m+3$ are primes. For
$m=7$ then $n=t-20$ we get $N=7 * t^{\wedge} 2-237 * t+1999$, which generates the following primes: 239, 163, 101, 53, 19, $-1,-7,1,23,59,109,173,251$ (we can see the same pattern: ..., $-1,-m, 1, \ldots)$.
VIII.

The polynomial 81*n^2 - 2247*n + 15383.
Its first forty terms:

```
15383, 13217, 11213, 9371, 7691, 6173, 4817, 3623,
2591, 1721, 1013, 467, 83, -139, -199, -97, 167, 593,
1181, 1931, 2843, 3917, 5153, 6551, 8111, 9833, 11717,
13763, 15971, 18341, 20873, 23567, 26423, 29441, 32621,
35963, 39467, 43133, 46961, 50951.
```

Comments:
The polynomial generates 33 primes/negative values of primes in row starting from $n=0$.
The polynomial $81 *_{n} \wedge 2-2937 *_{n}+26423$ generates the same primes in reverse order.
Note:
We found in the same family of prime-generating polynomials (with the discriminant equal to $64917=$ 3^2*7213) the polynomial 27*n^2 - 753*n + 4649 (with its "reversed polynomial" 27*n^2 - 921*n + 7253), generating 32 primes in row and the polynomial 27*n^2 $741 * \mathrm{n}+4483\left(27 * \mathrm{n}^{\wedge} 2-1095 * \mathrm{n}+10501\right)$, generating 35 primes in row, if we consider that 1 is prime (which seems to be constructive in the study of primegenerating polynomials, at least).
Note:
The polynomial $36 \star_{n}{ }^{\wedge} 2-810{ }^{*} n+2753$, which is the known quadratic polynom that generates the most distinct primes in row (45), has the discriminant equal to $259668=2^{\wedge} 2 * 3^{\wedge} 2 * 7213$.

IX.

The polynomial $4 * n^{\wedge} 2+12 * n-1583$.

Its first forty terms:

```
-1583, -1567, -1543, -1511, -1471, -1423, -1367, -1303,
-1231, -1151, -1063, -967, -863, -751, -631, -503, -
367, -223, -71, 89, 257, 433, 617, 809, 1009, 1217,
1433, 1657, 1889, 2129, 2377, 2633, 2897, 3169, 3449,
3737, 4033, 4337, 4649, 4969.
```

Comments:

The polynomial generates 35 primes/negative values of primes in row starting from $n=0$.
The polynomial $4 *_{n}{ }^{\wedge} 2-284 * \mathrm{n}+3449$ generates the same primes in reverse order.
Note:
Other related polynomials are:
: For $n=6 * n+6$ than $n=n-11$ we get $144 *_{n}{ }^{\wedge} 2$ $2808 * n+12097$ which generates 16 primes in row starting from $\mathrm{n}=0$ (with the discriminant equal to 2^9*3^2*199);
: For $\mathrm{n}=12 *_{\mathrm{n}}+12$ than $\mathrm{n}=\mathrm{n}-15$ we get 576 n $^{\wedge}{ }^{2} 2$ 15984*n + 109297 which generates 17 primes in row starting from $\mathrm{n}=0$ (with the discriminant equal to 2^11*3^2*199).
Note:
So this polynomial opens at least two directions of study:
(1) polynomials of type $4 \star^{\wedge} \wedge 2+12 *_{n}-p$, where p is prime (could be of the form $30 * k+23$);
(2) polynomials with the discriminant equal to $2^{\wedge} n * 3^{\wedge} m * 199$, where n is odd and m is even (an example of such a polynomial, with the discriminant equal to $2^{\wedge} 5 * 3 \wedge 4 * 199$, is $36 * n^{\wedge} 2$ $1020 * n+3643$ which generates 32 primes for values of n from 0 to 34).

X.

The polynomial 4*n^2 - 482*n + 14561.
Its first forty terms:

$$
\begin{aligned}
& 14561,14083,13613,13151,12697,12251,11813,11383, \\
& 10961,10547,10141,9743,9353,8971,8597,8231, \\
& 7873,7523,7181,6847,6521,6203,5893,5591,5297, \\
& 5011,4733,4463,4201,3947,3701,3463,3233,3011, \\
& \text { 2797, 2591, 2393, 2203, 2021, 1847. }
\end{aligned}
$$

Comments:

This polynomial generates 88 distinct primes for n from 0 to 99, just two primes less than the record held by the polynomial discovered by N. Boston and M. L. Greenwood, that is $41 *_{n} \wedge 2-4641 * n+88007$ (this polynomial is sometimes cited as 41*n^2 + 33*n - 43321, which is the same for the input values [-57, 42].
Note:
The non-prime terms in the first 100 are: $10961=$ 97*113; $10547=53 * 199 ; ~ 9353=47 * 199 ; 7181=43 * 167$; $6847=41 * 167 ; 5893=71 * 83 ; 3233=53 * 61 ; 2021=$ 43*47; $1681=41 \wedge 2 ; 1763=41 * 43 ; 2491=47 * 53 ; 4331=$ $61 * 71$.

Note:
For $\mathrm{n}=\mathrm{m}+41$ we obtain the polynomial $4 * \mathrm{~m}$ ^2 - 154*m + 1523, which generates 40 primes in a row starting from $\mathrm{m}=0$.

