Focal Curves of Biharmonic Curves in the $\mathbb{SL}_2(\mathbb{R})$

Talat Körpinar1 and Essin Turhan1 and J. López-Bonilla2

1Fırat University, Department of Mathematics, 23119, Elazığ, TURKEY
2ESIME-Zacatenco, Instituto Politécnico Nacional, Col. Lindavista, CP 07738, México D.F.
talatkorpinar@gmail.com, essin.turhan@gmail.com, jlopezb@ipn.mx

Abstract. In this paper, we study focal curve of biharmonic curves in the $\mathbb{SL}_2(\mathbb{R})$. Finally, we find out their explicit parametric equations.

Keywords: Biharmonic curve, $\mathbb{SL}_2(\mathbb{R})$, focal curve.

1 Introduction

The theory of biharmonic functions is an old and rich subject. Biharmonic functions have been studied since 1862 by Maxwell and Airy to describe a mathematical model of elasticity. The theory of polyharmonic functions was developed later on, for example, by E. Almansi, T. Levi-Civita and M. Nicolescu.

As suggested by Eells and Sampson in [6], we can define the bienergy of a map f by

$$ E_2(f) = \frac{1}{2} \int_M \tau(f)^2 \, v_g, $$

where $\tau(f) = \text{trace } \nabla df$ is tension field and say that is biharmonic if it is a critical point of the bienergy.

Jiang derived the first and the second variation formula for the bienergy in [8], showing that the Euler--Lagrange equation associated to E_2 is

$$ \tau_2(f) = -J' \left(\tau(f) \right) = -\Delta \tau(f) - \text{trace} R^N (df, \tau(f)) df = 0, \tag{1} $$

where J' is the Jacobi operator of f. The equation $\tau_2(f) = 0$ is called the biharmonic equation. Since J' is linear, any harmonic map is biharmonic.

This study is organised as follows: Firstly, we obtain focal curve of biharmonic curves in the $\mathbb{SL}_2(\mathbb{R})$. Finally, we find out their explicit parametric equations.
2 Preliminaries

We identify $\text{SL}_2(\mathbb{R})$ with

$$\mathbb{R}_+^3 = \{ (x, y, z) \in \mathbb{R}^3 : z > 0 \}$$

directed with

$$g = ds^2 = (dx + \frac{dy}{z})^2 + \frac{dy^2 + dz^2}{z^2}.$$

The following set of left-invariant vector fields forms an orthonormal basis for $\text{SL}_2(\mathbb{R})$

$$e_1 = \frac{\partial}{\partial x}, e_2 = z \frac{\partial}{\partial y} - \frac{\partial}{\partial x}, e_3 = z \frac{\partial}{\partial z}. \quad (2)$$

The characterising properties of g defined by

$$g(e_1, e_1) = g(e_2, e_2) = g(e_3, e_3) = 1, \quad g(e_1, e_2) = g(e_2, e_3) = g(e_1, e_3) = 0.$$

The Riemannian connection ∇ of the metric g is given by

\[
2g(\nabla_X Y, Z) = Xg(Y, Z) + Yg(Z, X) - Zg(X, Y) - g(X, [Y, Z]) - g(Y, [X, Z]) + g(Z, [X, Y]),
\]

which is known as Koszul's formula.

Using the Koszul's formula, we obtain

$$\nabla_{e_1} e_1 = 0, \quad \nabla_{e_1} e_2 = \frac{1}{2} e_3, \quad \nabla_{e_1} e_3 = -\frac{1}{2} e_2,$$

$$\nabla_{e_2} e_1 = \frac{1}{2} e_3, \quad \nabla_{e_2} e_2 = e_3, \quad \nabla_{e_2} e_3 = -\frac{1}{2} e_1 - e_2,$$

$$\nabla_{e_3} e_1 = -\frac{1}{2} e_2, \quad \nabla_{e_3} e_2 = \frac{1}{2} e_1, \quad \nabla_{e_3} e_3 = 0. \quad (3)$$

Moreover we put

$$R_{ijk} = R(e_i, e_j)e_k, \quad R_{ijkl} = R(e_i, e_j, e_k, e_l).$$
where the indices i, j, k and l take the values 1, 2 and 3

$$R_{1212} = R_{1313} = \frac{1}{4}, R_{2323} = -\frac{7}{4}. \quad (4)$$

3 Biharmonic Curves in $\mathbb{SL}_2(R)$

Biharmonic equation for the curve γ reduces to

$$\nabla^2_T T - R(T, \nabla_T T)T = 0, \quad (5)$$

that is, γ is called a biharmonic curve if it is a solution of the equation (5).

Let us consider biharmonicity of curves in $\mathbb{SL}_2(R)$. Let $\{T, N, B\}$ be the Frenet frame field along γ. Then, the Frenet frame satisfies the following Frenet--Serret equations:

$$\nabla_T T = \kappa N, \quad \nabla_T N = -\kappa T + \tau B, \quad \nabla_T B = -\tau N, \quad (6)$$

where κ is the curvature of γ and τ its torsion and

$$g(T, T) = 1, g(N, N) = 1, g(B, B) = 1, \quad g(T, N) = g(T, B) = g(N, B) = 0.$$

With respect to the orthonormal basis $\{e_1, e_2, e_3\}$, we can write

$$T = T_1 e_1 + T_2 e_2 + T_3 e_3, \quad N = N_1 e_1 + N_2 e_2 + N_3 e_3, \quad B = T \times N = B_1 e_1 + B_2 e_2 + B_3 e_3. \quad (7)$$

Theorem 3.1. $\gamma : I \to \mathbb{SL}_2(R)$ is a biharmonic curve if and only if

$$\kappa = \text{constant} \neq 0, \quad \kappa^2 + \tau^2 = -\frac{1}{4} + \frac{15}{4} B_1^2, \quad \tau' = 2 N_1 B_1. \quad (8)$$

Proof. Using (5) and Frenet formulas (6), we have (8).

Theorem 3.2. (9) Let $\gamma : I \to \mathbb{SL}_2(R)$ be a unit speed non-geodesic biharmonic curve. Then, the parametric equations of γ are
\[
x(s) = \frac{1}{\kappa} \sin \varphi \sin [\kappa s + C] + \frac{1}{\kappa} \sin \varphi \cos [\kappa s + C] + \varphi_2,
\]
\[
y(s) = \frac{1}{\kappa^2 + \cos^2 \varphi} \sin \varphi \varphi_1 e^{\cos \varphi} (-\kappa \cos [\kappa s + C] + \cos \varphi \sin [\kappa s + C]),
\]
\[
z(s) = \varphi_1 e^{\cos \varphi},
\]
where \(\kappa, \ C, \ \varphi_1, \ \varphi_2 \) are constants of integration.

4 Focal Curve of Biharmonic Curves in \(\text{SL}_2(\mathbb{R}) \)

Denoting the focal curve by \(\varphi_\gamma \), we can write
\[
\varphi_\gamma(s) = (\gamma + c_1 N + c_2 B)(s),
\]
where the coefficients \(c_1, \ c_2 \) are smooth functions of the parameter of the curve \(\gamma \), called the first and second focal curvatures of \(\gamma \), respectively. Further, the focal curvatures \(c_1, \ c_2 \) are defined by
\[
c_1 = \frac{1}{\kappa}, \ c_2 = \frac{c_1}{\tau}, _kappa \neq 0, \tau \neq 0.
\]

Lemma 4.1. Let \(\gamma: I \rightarrow \text{SL}_2(\mathbb{R}) \) be a unit speed biharmonic curve and \(\varphi_\gamma \) its focal curve on \(\text{SL}_2(\mathbb{R}) \). Then,
\[
c_1 = \frac{1}{\kappa} = \text{constant and } c_2 = 0.
\]

Proof. Using (7) and (11), we get (12).

Lemma 4.2. Let \(\gamma: I \rightarrow \text{SL}_2(\mathbb{R}) \) be a unit speed biharmonic curve and \(\varphi_\gamma \) its focal curve on \(\text{SL}_2(\mathbb{R}) \). Then,
\[
\varphi_\gamma(s) = (\gamma + c_1 N)(s).
\]
Lemma 4.3. Let \(\gamma : I \to \text{SL}_2(\mathbb{R}) \) be a unit speed non-geodesic biharmonic curve. Then, the position vector of \(\gamma \) is

\[
\gamma(s) = \frac{1}{\kappa} \sin \varphi \sin [N s + C] + \frac{1}{\kappa} \sin \varphi \cos [N s + C] + \varphi_2
\]

\[
+ \left[\frac{1}{(N^2 + \cos^2 \varphi)} \sin \varphi (-N \cos [N s + C] + \cos \varphi \sin [N s + C]) \right] e_1
\]

\[
- \frac{c_1}{\kappa} \sin \sin [N s + C] e_1
\]

and \(\varphi_1 \) is \(\gamma \)’s focal curve on \(\text{SL}_2(\mathbb{R}) \).

Proof. Assume that \(\gamma \) is a non-geodesic biharmonic curve \(\text{SL}_2(\mathbb{R}) \). Using (2), yields

\[
\frac{\partial}{\partial x} = e_1, \quad \frac{\partial}{\partial y} = \frac{1}{z} (e_2 + e_1), \quad \frac{\partial}{\partial z} = \frac{1}{z} e_3.
\]

Substituting (15) to (9), we have (14) as desired.

Theorem 4.4. Let \(\gamma : I \to \text{SL}_2(\mathbb{R}) \) be a unit speed non-geodesic biharmonic curve and \(\varphi_1 \) its focal curve on \(\text{SL}_2(\mathbb{R}) \). Then,

\[
\varphi_1(s) = \frac{1}{\kappa} \sin \varphi \sin [N s + C] + \frac{1}{\kappa} \sin \varphi \cos [N s + C] + \varphi_2
\]

\[
+ \left[\frac{1}{(N^2 + \cos^2 \varphi)} \sin \varphi (-N \cos [N s + C] + \cos \varphi \sin [N s + C]) \right] e_1
\]

\[
- \frac{c_1}{\kappa} \sin \sin [N s + C] e_1
\]

\[
+ \left[\frac{1}{(N^2 + \cos^2 \varphi)} \sin \varphi (-N \cos [N s + C] + \cos \varphi \sin [N s + C]) \right] e_2
\]

\[
+ \frac{c_1}{\kappa} (N \sin \varphi \cos [N s + C] - \sin^2 \varphi \cos [N s + C] \sin [N s + C] - \cos \varphi \sin \varphi \cos [N s + C]) e_3
\]
\[+ \left(1 + \frac{C_1}{\kappa} \left(\sin^2 \varphi \cos[Ns + C] \sin[Ns + C] + \sin^2 \varphi \sin^2[Ns + C]\right)\right)e_3, \]

where \(N, C, \varphi_1, \varphi_2 \) are constants of integration.

Proof. We assume that \(\gamma: I \rightarrow SL_2(\mathbb{R}) \) be a unit speed biharmonic curve. Using Lemma 4.1, we get

\[T = \sin \varphi \cos[Ns + C]e_1 + \sin \varphi \sin[Ns + C]e_2 + \cos \varphi e_3. \]

Using first equation of the system (6) and (4), we have

\[\nabla_1 T = (T'_1) e_1 + (T'_2 - T'_1 T_2 - T_1 T'_3) e_2 + (T'_3 + T_1 T'_2 + T_2^2) e_3. \]

By the use of Frenet formulas and above equation, we get

\[
N = -\frac{N}{\kappa} \sin \sin[Ns + C] e_1 \\
+ \frac{1}{\kappa} (N \sin \varphi \cos[Ns + C] - \sin^2 \varphi \cos[Ns + C] \sin[Ns + C] - \cos \varphi \sin \varphi \cos[Ns + C] e_2 \\
+ \frac{1}{\kappa} \left(\sin^2 \varphi \cos[Ns + C] \sin[Ns + C] + \sin^2 \varphi \sin^2[Ns + C]\right) e_3.
\]

Combining (17) and (11), we obtain (16). This concludes the proof of Theorem. We can use Mathematica in above Theorems 3.3 - 4.2, yields
Fig. 1. Mathematical’s result in Theorems 3.3 – 4.2.

References

12. Sato, I.: On a structure similar to the almost contact structure, Tensor, (N.S.), 30, 219--224 (1976)
