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 1. Introduction:  

 In 1963 M. K. Singhal and A. R. Singhal introduced Almost continuous mappings. In 

1980, Joseph and Kwack introduced the notion of (, s)-continuous functions. In 1982, 

Jankovic introduced the notion of almost weakly continuous functions. Dontchev, Ganster 

and Reilly introduced a new class of functions called regular set-connected functions in 

1999. Jafari introduced the notion of (p, s)-continuous functions in 1999. T. Noiri and V. 

Popa studied some properties of almost-precontinuity in 2005 and unified theory of almost-

continuity in 2008. E. Ekici introduced almost-precontinuous functions in 2004 and 

recently have been investigated further by Noiri and Popa. Ekici E., introduced almost-

precontinuous functions in 2006. Ahmad Al-Omari and Mohd. Salmi Md. Noorani studied 

Some Properties of almost-b-Continuous Functions in 2009. Recently S. Balasubramanian, 

C. Sandhya and P.A.S.Vyjayanthi introduced v-continuous functions in 2010. Inspired with 

these developments, we introduce almost-v-continuous functions, obtain basic properties, 

preservation Theorems. 

_____________________________________________________________________ 
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2. Preliminaries: 

Definition 2.1: A X is said to be 

(i)  regular open[pre-open; semi-open; -open; -open] if A = int(cl(A))[A int(cl(A); A 

cl(int(A)); A int(cl(int(A))); A cl(int(cl(A))]. 

(ii) v-open[r-open] if  a regular open set O such that O A cl (O)[O A cl(O)] 

(iii) -closed[-semi-closed] if A = Cl(A) = {xX:cl(V)A  ; for every V}[A = 

sCl(A) = {xX:cl(V)A  ; for every V SO(X, x)}]. The complement of a -closed[-

semi-closed] set is said to be -open[-semi-open]. Cl(A)[sCl(A)] is -closure [-semi-

closure] of A.  

(iv) v-dense in X if vcl(A) = X. 

(v)  The v-frontier of A X; is defined by v Fr(A) = vcl(A)-vcl(X-A) = vcl(A)-vint(A). 

 

It is shown that Cl(V) = cl(V) for every V and Cl(S) is closed in X for every S X. 

 

Definition 2.2: A cover  = {U:   I} of subsets of X is called a v-cover if U is v-open 

for each  I. 

 

Definition 2.3: A filter base  is said to be v-convergent (resp. rc-convergent) to a point x 

in X if for any UvO(X, x)(resp. URC(X, x)), there exists a B such that B U. 

 

Definition 2.4: A function f: X  Y is called 

(i) almost-[resp: almost-semi-; almost-pre-;almost-r-; almost--; almost--; almost--; 

almost-pre-semi-; almost--]continuuos if f
- 1

(V) is open[resp: semi-open; pre-open; r-

open; -open; -open; -open; pre-semi-open; -open] in X for every V RO(Y). 

(ii) regular set-connected if inverse image of every regular open set V in Y is clopen in X. 

(iii) perfectly continuous inverse image of every open set V in Y is clopen in X. 

(iv)almost s-continuous if for each x X and each V SO(Y) with f(x)  V, there exists an 

open set U in X containing x such that f(U)  scl(V). 
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(v) (p, s)-continuous(resp. (, s)-continuous) if for each x X and each V SO(Y, f(x)), 

there exists U PO(X, x) (resp. U containing x) such that f(U)  Cl(V). 

(vi) weakly continuous if for each x X and each open set V(Y), f(x)), there exists an 

open set U of X containing x such that f(U)  cl(V). 

(vii) (, s)-continuous iff for each -semi-open set V of Y, f 
- 1

(V) is open in X. 

 

3. Almost v-Continuous Functions:  

Definition 3.1: A function f: X Y is said to be Almost v-continuous if the inverse image 

of every regular open set is v-open. 

 

Note 1: Here onwards we call almost v-continuous as al.v.c., briefly. 

 

Theorem 3.1:  (i) f is al.v.c. iff f is al.v.c. at each x X. 

(ii)  If f is v.c., then f is al.v.c. Converse is true if X is discrete space. 

(iii) If f is v-open and al.v.c. mapping, then f
- 1

(A)vO(X) for each AvO(Y)  

(iv) If f is al.v.c. and A RO(X), then f/A is al.v.c. 

 

Theorem 3.2: f is al.v.c. iff for every xX and UYvO(Y, f(x)) [URO(Y,f(x))],  

AvO(X, x) such that f(A)  U [f(A)  UY]. 

Proof: Let UYRO(Y) and let xf
 - 1

(UY). Then f(x)UY and thus there exists AxvO(X, 

x) and f(Ax)  UY. Then xAx f 
- 1

(UY) and f 
- 1

(UY) =  Ax. Hence f 
- 1

(UY)vO(X). 

 

Theorem 3.3: Let fi: Xi  Yi be al.v.c. for i = 1, 2. Let f: X1 X2  Y1 Y2 be defined as 

follows: f(x1, x2) = (f1(x1), f2(x2)). Then f: X1 X2  Y1 Y2 is al.v.c. 

 

Theorem 3.4: Let h:XX1X2 be al.v.c., where h(x) =(h1(x), h2(x)). Then hi:XXi is 

al.v.c. for i = 1, 2. 

 

In general we have the following extension of theorems 3.3 and 3.4: 
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Theorem 3.5: (i) f:X Y is al.v.c, iff f: X Y is al.v.c for each  . 

(ii)If f:XY is al.v.c, then Pf: XY is al.v.c for every ; P:Y onto Y. 

 

Note 2: With respect to usual topology on , open sets and regular open sets are one and 

the same. So converse of theorem 3.5 is not true in general, as shown by. 

 

Example 1: Let X = X1 = X2 = [0, 1]. Let f1:X X1 and  f2:X X2 are defined as follows: 

f1(x) = 1 if 0  x  1/2 and f1(x) = 0 if 1/2 < x  1. f2(x) = 1 if 0  x < 1/2 and f2(x) = 0 if 1/2 

< x < 1. Then fi: XXi is clearly al.v.c. for i = 1, 2., but h(x) = (f1(x1), f2(x2)):XX1X2 is 

not al.v.c., for S1/2(1, 0)RO(X1X2), but h
-1

(S1/2(1, 0)) = {1/2}vO(X). 

 

Remark 1: In general, (i) The algebraic sum; product and composition of two al.v.c. 

functions is not  al.v.c. However the scalar multiple of al.v.c. function is al.v.c. 

(ii)The pointwise limit of a sequence of al.v.c. functions is not al.v.c.  

(iii) al.v.c. function of  al.v.c. function is not al.v.c. as shown by the following examples. 

 

Example 2: Let X = X1 = X2 = [0, 1]. Let f1:XX1 and f2:XX2 are defined as follows:  

f1(x) = x if 0 < x < 1/2 and f1(x) = 0 if 1/2 < x < 1; f2(x) = 0 if 0 < x < 1/2 and f2(x) = 1 if 1/2 

< x < 1. Then their product is not al.v.c. 

    

Example 3: Let X = Y = [0, 1]. Let fn defined on X as follows: fn(x) = xn for n  1 then f  is 

the limit of the sequence where f(x) = 0 if 0  x < 1 and f(x) = 1 if x = 1. Therefore f is not 

al.v.c. For (1/2, 1] is v-open in Y, f
- 1

((1/2, 1]) = (1) is not v-open in X.  

 

However we can prove the following theorem. 

Theorem 3.6: Uniform Limit of a sequence of al.v.c. functions is al.v.c. 

 

Problem: (i)  Are sup{f, g} and inf{f, g} are al.v.c if f, g are al.v.c 

(ii) Is Cal.v.c(X, R), the set of all al.v.c functions, 
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(1) a Group. (2) a Ring. (3) a Vector space. (4) a Lattice. 

Solution: No. 

 

Example 4: Let X = Y = [0, 1]. Let f: X Y be defined as follows: f(x) = 1 if 0  x < 1/2 

and f(x) = 0 if 1/2 < x  1. Then obviously f is al.v.c. but not r-continuous. 

 

Example 5: Let X = Y = {a, b, c};  = {, {a}, {b}, {a, b}, X} and  = {, {a}, {b}, {a, b}, 

{a, c}, X}. Then the identity map f:XY is al.s.c., and al.v.c. but not al.c., and r-irresolute. 

 

Example 6: Let X = Y = {a, b, c};  = {, {b}, {a, b}, {b, c}, X} and  = {, {a}, {b}, {a, 

b}, {a, c}, X} .Let f: XY be defined as f(a) = b; f(b) = a; f(c) = c is not al.s.c., al.c., 

al.v.c., and r-irresolute. 

 

under usual topology on  both continuous and nearly-continuous are same as well both 

al.s.c. and al.v.c. are same. In general, al.c and al.v.c. maps are independent to each other. 

 

Theorem 3.7: (i) If RO(X) = vO(X) then f is al.r.c. iff f is al.v.c. 

(ii) If vO(X) = RO(X) then f is al.v.c. iff f is r-irresolute. 

(iii)If vO(X) = O(X) then f is al. .c. iff f is al.v.c. 

(iv)If vO(X) = SO(X) then f is al.s.c. iff f is al.v.c. 

(v) If vO(X) = O(X) then f is al. .c. iff f is al.v.c. 

 

Theorem 3.8: (i)  If f is al.v.c. and g is r-irresolute then gf is al.v.c.  

(ii) If f and g are r-irresolute then gf is al.v.c. 

(iii)If f is v.c.[al.v.c.]; g is al.g.c.[al.rg.c.] and Y is T1/2[rT1/2], then gf is al.v.c. 

(iv) If f is al.v.c.;[resp: v.c.;] g is g.c.[rg.c.] and every g-open set[rg-open] in Y is r-open, 

then gf is al.v.c. 
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Theorem 3.9: If f is v-irresolute, v-open and vO(X) =  and g be a function, then gf is 

al.v.c iff g is al.v.c. 

 

Definition 3.2: f is said to be M-v-open if f(V) is v-open in Y whenever V is v-open in X. 

 

Example 7: Let X = Y =  with usual topology and f be defined by f(x) = 1 for all x X 

then X is v-open in X but f(X) is not v-open in Y. 

 

Theorem 3.10: Let X, Y, Z be spaces and every v-open set is r-open in Y, then the 

composition of two al.v.c.[resp:v-continuous] maps is al.v.c. 

 

Corollary 3.1: (i)If f be r-open, al.v.c. and g be al.v.c., then gf is al.v.c. 

(ii)  If f is v-irresolute, M-v-open and bijective, g is a function. Then g is al.v.c. iff gf is 

al.v.c. 

(iii) If f is al.v.c. and g is r-irresolute then gf is al.s.c. and al..c. 

(iv) If f is v.c.,[r.c.,];g is al.g.c.,[al.rg.c.,] and Y is T1/2[rT1/2], then gf is al.s.c. and al..c. 

 

Note 3: Pasting Lemma is not true with respect to al.v.c. functions. However we have the 

following weaker versions. 

 

Theorem 3.11: Pasting Lemma: Let X; Y be such that X = AB. Let f/A and g/B are 

al.v.c.[resp: r-irresolute] such that  f(x) = g(x) for every xAB. If A, BRO(X) and 

vO(X)[resp: RO(X)] is closed under finite unions, then the combination :XY is al.v.c. 

 

4. Further Results on almost-v-continuous functions: 

Theorem 4.1: The following statements are equivalent for a function f: 

(1) f is al.v.c.; 

(2) f 
- 1

(F) vC(X) for every F RC(Y); 

(3) for each xX and each F RC(Y,f(x)), there exists U v C(X,x) such that  f(U)  F; 
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(4) for each xX and each FRO(Y) non-containing f(x), there exists KvO(X) non-

containing x such that  f 
- 1

(V)  K; 

(5) f 
- 1

(int(cl(G)) vO(X) for every r-open subset G of Y; 

(6) f 
- 1

(cl(int(F))) vC(X) for every r-closed subset F of Y. 

 

Example 8: Let X = {a, b, c},  =  = {, {b}, {c}, {b, c}, X}. Then the identity function f 

on X is al.v.c. But it is not regular set-connected. 

 

Example 9: Let X = {a, b, c},  = {, X} and  = {, {a}, X}. The identity function f on X 

and f defined as f(a) = b; f(b) = c; f(c) = a are al.v.c. function which is not c.v.c., and v.c. 

 

Remark 2: Every restriction of an al.v.c. function is not necessarily al.v.c. 

 

Theorem 4.2: Let f be a function and  = {U:   I} be a v-cover of X. If for each  I, 

f|U is al.v.c., then f is an al.v.c. 

Proof: Let FRO(Y). f|U is al.v.c. for each I, f|U
- 1

(F)vO|U. Since UvO(X), f|U
- 

1
(F) vO(X) for each  I. Then f 

- 1
(F) = If|U

 - 1
(F)vO(X). Thus f is al.v.c. 

 

Theorem 4.3: Let f be a function and xX. If  URO(X, x) and f|U is al.v.c. at x, then f is 

al.v.c. at x. 

Proof: Let FRO(Y,f(x)). Since f|U is al.v.c. at x, there exists VvO(U, x) such that f(V) = 

(f|U)(V)  F. Since U RO(X, x), it follows that VvO(X, x). Therefore f is al.v.c. at x. 

 

Theorem 4.4: Let f be a function and let g:X XY be the graph function of f, defined by 

g(x) = (x, f(x)) for every x X. If g is al.v.c., then f is al.v.c. 

Proof: Let VRC(Y), then XV = Xcl(int(V)) = cl(int(X))cl(int(V)) = cl(int(XV)) 

RC(XY). Since g is al.v.c., then f 
- 1

(V) = g 
- 1

(X V)vC(X). Thus, f is al.v.c. 

 

Theorem 4.5: For f and g. The following properties hold: 
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(1) If f is al.v.c.[ c.v.c.] and g is regular set-connected, then g f is al.v.c. 

(2) If f is al.v.c. and g is perfectly continuous, then g f is v.c. and c.v.c. 

 

Theorem 4.6: If f is a surjective M-v-open[resp:M-v-closed] and g is a function such that 

g f is al.v.c., then g is al.v.c. 

 

Theorem 4.7: If f is al.v.c., then for each point x X and each filter base  in X v-

converging to x, the filter base f() is rc-convergent to f(x). 

 

Definition 4.2: A function f is called (v, s)-continuous if for each x X and each V 

SO(Y, f(x)), there exists U v O(X, x) such that f(U)  cl{V}. 

 

Theorem 4.8: For f, the following properties are equivalent: 

(1) f is (v, s)-continuous; 

(2) f is al.v.c.; 

(3) f
- 1

(V) is v-open in X for each -semi-open set V of Y; 

(4) f 
- 1

(F) is v-closed in X for each -semi-closed set F of Y. 

 

Theorem 4.9: For f, the following properties are equivalent: 

(1) f is al.v.c.; 

(2) f(v(cl A))  sCl(f(A)) for every subset A of X; 

(3) vcl{(f
- 1

(B))}  f 
- 1

(sCl(B)) for every subset B of Y. 

 

5. The preservation theorems: 

Theorem 5.1: If f is al.v.c.[r-irresolute] surjection and X is v-compact, then Y is 

compact[resp: nearly compact]. 

 

Theorem 5.2: If f is al.v.c.[r-irresolute], surjection. Then the following statements hold: 

(i)  If X is v-compact[v-lindeloff; s-closed] then Y is mildly compact[mildly lindeloff]. 
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(ii) If X is locally v-compact, then Y is locally compact[locally nearly compact; locally 

mildly compact.]   

(iii)If X is v-Lindeloff[locally v-lindeloff], then Y is Lindeloff[resp: locally Lindeloff; 

nearly Lindeloff; locally nearly Lindeloff; locally mildly lindeloff]. 

(v)  If X is v-compact[resp: countably v-compact], then Y is S-closed[resp: countably S-

closed]. 

(vi) If X is v-Lindelof, then Y is S-Lindelof[resp: nearly Lindeloff]. 

 

Theorem 5.3: If f is an r-irresolute and al.c. surjection and X is mildly compact (resp. 

mildly countably compact, mildly Lindelof), then Y is nearly compact (resp. nearly 

countably compact, nearly Lindelof) and S-closed (resp. countably S-closed, S-Lindelof). 

 

Theorem 5.4: (i) If f is al.v.c.[contra v-irreolute] surjection and X is v-connected, then Y is 

connected[v-connected] 

(ii)  If X is v-ultra-connected and f is al.v.c. and surjective, then Y is hyperconnected. 

(iii) The inverse image of a disconnected[v-disconnected] space under al.v.c.,[contra v-

irreolute] surjection is v-disconnected. 

 

Theorem 5.6: If f is al.v.c., injection and 

(i)  Y is UTi[resp: UCi; UDi], then X is v Ti[resp:v Ci; vDi] and hence semi Ti[resp: semi Ci; 

semi Di] and Ti[resp: Ci; Di] i = 0,1,2. 

(ii) Y is URi, then X is v-Ri[hence semi-Ri and Ri] i = 0, 1. 

(iii)If f is closed, Y is UTi, then X is v-Ti[hence semi-Ti and Ti] i = 3, 4. 

 

Theorem 5.7: (i) If f is al.v.c.[resp: al.r.c] and Y is UT2, then the graph G(f) of f is v-

closed[resp:semi-closed; -closed and semi--closed] in X Y. 

(ii) If f is al.v.c.[al.r.c] and Y is UT2, then A = {(x1, x2)| f(x1) = f(x2)} is v-closed[and hence 

semi-closed and -closed] in X X. 

(iii) If f is r-irresolute{al.c.}; g is c.v.c; and Y is UT2, then E = {x X : f(x) = g(x)} is v-

closed[and hence semi-closed and -closed] in X. 
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(iii) If f is al.v.c. injection and Y is rT2, then X is v-Ti; i = 0,1,2. 

 

6. Relations to weak forms of continuity: 

Definition 6.1: A function f is said to be faintly v-continuous if for each x X and each -

open set V of Y containing f(x), there exists U v O(X, x)such that  f(U)  V. 

 

Example 10: Let X = {a, b, c},  = {, {a, b}, X} and  = {, {a}, {b, c}, X}. Then, the 

identity function f is not al.v.c and is not weakly continuous. 

 

Example 11: Let X = {a, b, c},  = {, {a}, {a, b}, {a, c}, X} and  = {, {a}, {a, b}, X}. 

Then, the identity function f is (, s)-continuous and al.v.c. 

 

Example 12: Let  be the reals with the usual topology and f:    the identity 

function. Then f is continuous; weakly continuous; al.p.c., and al.v.c. 

 

Example 13: Let X = {a, b, c},  = {, {a}, {b}, {a, b}, {a, c}, X} and  = {, {b}, {c}, 

{b, c}, X}. Then the identity function f on X is c.c., c.s.c., but it is not al.v.c. 

 

Corollary 6.1: If f is M-v-open and c.v.c., then f is al.v.c. 

 

Lemma 6.1: For f, the following properties are equivalent: 

(1) f is faintly-v-continuous; 

(2) f 
- 1

(V)vO(X) for every -open set V of Y; 

(3) f 
- 1

(K)vC(X) for every -closed set K of Y. 

 

Theorem 6.1: If for each x1  x2 X there exists a function f of X into a Urysohn space Y 

such that f(x1)  f(x2) and f is al.v.c., at x1 and x2, then X is v-T2. 

Proof: Let x1  x2. By hypothesis,  Vi(,f(xi)) s.t.,  cl(Vi) =  for i = 1,2. For f is 

al.v.c., at xi,  UivO(X, xi) s.t.,  f(Ui)cl(Vi) for i = 1, 2., and Ui = . Hence X is vT2. 
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Corollary 6.2: If f is al.v.c. injection and Y is Urysohn, then X is v T2. 

 

Theorem 6.2: {x X: f is not al.v.c.} is identical with the union of the v-frontier of the 

inverse images of regular closed sets of Y containing f(x). 

Proof: If f is not al.v.c. at xX. By Theorem 4.1,,   FRC(Y, f(x)) s.t.,  f(U)(Y -F)   

for every UvO(X, x). Then x vcl(f
 - 1

(Y -F)) = vcl(X - f 
- 1

(F)). On the other hand, we get 

x f 
- 1

(F)  vcl(f
 - 1

(F)) and hence x v Fr(f
 - 1

(F)). 

Conversely, If f is al.v.c. at x and F RO(Y, f(x)). By Thm. 4.1,  UvO(X, x) s.t  xUf
 - 

1
(F). Hence xvint(f

 - 1
(F)), which contradicts xvFr(f

 - 1
(F)). Thus f is not al.v.c. 

 

Definition 6.2: A function f is said to have a strongly contra-v-closed graph if for each (x, 

y)(XY) - g(f) there exists UvO(X, x) and VRC(Y,y) such that  (UV){g(f)} = . 

 

Lemma 6.2: f has a strongly contra-v-closed graph iff for each (x, y)  (X Y) - g(f)  

UvO(X, x) and V RC(Y,y) such that  f(U)V = . 

 

Theorem 6.3: If f is al.v.c. and Y is Hausdorff, then g(f) is strongly contra-v-closed. 

Proof: If (x, y)  (XY)-g(f), then y  f(x). Since Y is T2,  V (, y) and W (, f(x)), 

s.t., VW = ; hence cl(V)int(cl(W)) = . Since f is al.v.c., by Lemma 6.3  UvO(X, x) 

s.t., f(U)int(cl(W)). Thus f(U)cl(V) =  and hence g(f) is strongly contrav-closed. 

 

Theorem 6.4: If f is injective al.v.c. with strongly contra-v-closed graph, then X is vT2. 

Proof: Let x  y X. Since f is injective, we have f(x)  f(y) and (x, f(y))  (X Y) - g(f). 

Since g(f) is strongly contra-v-closed, by Lemma 6.2 there exists UvO(X, x) and 

VRC(Y, f(y)) such that  f(U)V = . Since f is al.v.c., by Theorem 4.1, there exists 

GvO(X, y) such that f(G)V. Therefore f(U)f(G) = ; hence UG = . Thus X is v T2. 
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Corollary 6.3: If f is al.v.c. and Y is Urysohn, then g(f) is strongly contra-v-closed and 

contra-v-closed. 

 

CONCLUSION: In this paper we defined almost v-continuous functions, studied its 

properties and their interrelations with other types of almost-continuous functions. 
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