Almost *v*-continuity

S. Balasubramanian[†] and P.Aruna Swathi Vyjayanthi[‡] [†] Department of Mathematics, Government Arts College (A), Karur-639 005 (T.N.) [‡] Research Scholar, Dravidian University, Kuppam-517 425(A.P.)

mani55682@rediffmail.com., vyju_9285@rediffmail.com.

Abstract: The object of the paper is to study basic properties of Almost *v*-continuity.

Keywords: v-continuity, v-irresolute, and Contra v-continuity.

AMS-classification Numbers: 54C10; 54C08; 54C05

1. Introduction:

In 1963 M. K. Singhal and A. R. Singhal introduced Almost continuous mappings. In 1980, Joseph and Kwack introduced the notion of (θ, s) -continuous functions. In 1982, Jankovic introduced the notion of almost weakly continuous functions. Dontchev, Ganster and Reilly introduced a new class of functions called regular set-connected functions in 1999. Jafari introduced the notion of (p, s)-continuous functions in 1999. T. Noiri and V. Popa studied some properties of almost-precontinuity in 2005 and unified theory of almost-continuity in 2008. E. Ekici introduced almost-precontinuous functions in 2004 and recently have been investigated further by Noiri and Popa. Ekici E., introduced almost-precontinuous functions in 2006. Ahmad Al-Omari and Mohd. Salmi Md. Noorani studied Some Properties of almost-b-Continuous Functions in 2009. Recently S. Balasubramanian, C. Sandhya and P.A.S.Vyjayanthi introduced *v*-continuous functions in 2010. Inspired with these developments, we introduce almost-*v*-continuous functions, obtain basic properties, preservation Theorems.

Corresponding Author: S.Balasubramanian

2. Preliminaries:

Definition 2.1: $A \subset X$ is said to be

(i) regular open[pre-open; semi-open; α -open; β -open] if A = int(*cl*(A))[A \subseteq int(*cl*(A); A \subseteq *cl*(int(A)); A \subseteq int(*cl*(int(A))); A \subseteq *cl*(int(*cl*(A))].

(ii) *v*-open[r α -open] if \exists a regular open set O such that $O \subset A \subset cl$ (O)[$O \subset A \subset \alpha cl$ (O)] (iii) θ -closed[θ -semi-closed] if $A = Cl_{\theta}(A) = \{x \in X: cl(V) \cap A \neq \phi; \text{ for every } V \in \tau\}[A = \{x \in X: cl(V) \cap A \neq \phi; \text{ for every } V \in \tau\}[A = \{x \in X: cl(V) \cap A \neq \phi; x \in X: cl(V) \cap A \neq \phi\}\}$

 $sCl_{\theta}(A) = \{x \in X: cl(V) \cap A \neq \phi; \text{ for every } V \in SO(X, x)\}\]$. The complement of a θ -closed[θ -semi-closed] set is said to be θ -open[θ -semi-open]. $Cl_{\theta}(A)[sCl_{\theta}(A)]$ is θ -closure [θ -semi-closure] of A.

(iv) v-dense in X if vcl(A) = X.

(v) The *v*-frontier of $A \subset X$; is defined by $v \operatorname{Fr}(A) = vcl(A) - vcl(X-A) = vcl(A) - vint(A)$.

It is shown that $Cl_{\theta}(V) = cl(V)$ for every $V \in \tau$ and $Cl_{\theta}(S)$ is closed in X for every $S \subset X$.

Definition 2.2: A cover $\Sigma = \{U_{\alpha} : \alpha \in I\}$ of subsets of X is called a *v*-cover if U_{α} is *v*-open for each $\alpha \in I$.

Definition 2.3: A filter base Λ is said to be *v*-convergent (resp. rc-convergent) to a point x in X if for any $U \in vO(X, x)$ (resp. $U \in RC(X, x)$), there exists a $B \in \Lambda$ such that $B \subset U$.

Definition 2.4: A function $f: X \to Y$ is called

(i) almost-[resp: almost-semi-; almost-pre-; almost- α -; almost- β -; almost- ω -; almost-pre-semi-; almost- λ -]continuuos if $f^{-1}(V)$ is open[resp: semi-open; pre-open; r α -open; β -open; ω -open; ω -open; pre-semi-open; λ -open] in X for every V \in RO(Y).

(ii) regular set-connected if inverse image of every regular open set V in Y is clopen in X.

(iii) perfectly continuous inverse image of every open set V in Y is clopen in X.

(iv)almost s-continuous if for each $x \in X$ and each $V \in SO(Y)$ with $f(x) \in V$, there exists an open set U in X containing x such that $f(U) \subset scl(V)$.

(v) (p, s)-continuous(resp. (θ , s)-continuous) if for each $x \in X$ and each $V \in SO(Y, f(x))$, there exists $U \in PO(X, x)$ (resp. $U \in \tau$ containing x) such that $f(U) \subset Cl(V)$. (vi) weakly continuous if for each $x \in X$ and each open set $V \in \sigma(Y)$, f(x)), there exists an open set U of X containing x such that $f(U) \subset cl(V)$. (vii) (θ , s)-continuous iff for each θ -semi-open set V of Y, $f^{-1}(V)$ is open in X.

3. Almost v-Continuous Functions:

Definition 3.1: A function $f: X \rightarrow Y$ is said to be Almost *v*-continuous if the inverse image of every regular open set is *v*-open.

Note 1: Here onwards we call almost v-continuous as al.v.c., briefly.

Theorem 3.1: (i) f is al.v.c. iff f is al.v.c. at each $x \in X$. (ii) If f is v.c., then f is al.v.c. Converse is true if X is discrete space. (iii) If f is v-open and al.v.c. mapping, then $f^{-1}(A) \in vO(X)$ for each $A \in vO(Y)$ (iv) If f is al.v.c. and $A \in RO(X)$, then f_{A} is al.v.c.

Theorem 3.2: f is al.v.c. iff for every $x \in X$ and $U_Y \in vO(Y, f(x))$ [$U \in RO(Y, f(x))$], $\exists A \in vO(X, x)$ such that $f(A) \subset U[f(A) \subset U_Y]$.

Proof: Let $U_Y \in RO(Y)$ and let $x \in f^{-1}(U_Y)$. Then $f(x) \in U_Y$ and thus there exists $A_x \in vO(X, x)$ and $f(A_x) \subset U_Y$. Then $x \in A_x \subset f^{-1}(U_Y)$ and $f^{-1}(U_Y) = \bigcup A_x$. Hence $f^{-1}(U_Y) \in vO(X)$.

Theorem 3.3: Let $f_i: X_i \to Y_i$ be al.v.c. for i = 1, 2. Let $f: X_1 \times X_2 \to Y_1 \times Y_2$ be defined as follows: $f(x_1, x_2) = (f_1(x_1), f_2(x_2))$. Then $f: X_1 \times X_2 \to Y_1 \times Y_2$ is al.v.c.

Theorem 3.4: Let $h:X \to X_1 \times X_2$ be al.v.c., where $h(x) = (h_1(x), h_2(x))$. Then $h_i:X \to X_i$ is al.v.c. for i = 1, 2.

In general we have the following extension of theorems 3.3 and 3.4:

Theorem 3.5: (i) $f:\Pi X_{\lambda} \to \Pi Y_{\lambda}$ is al.v.c, iff $f_{\lambda}: X_{\lambda} \to Y_{\lambda}$ is al.v.c for each $\lambda \in \Lambda$. (ii) If $f: X \to \Pi Y_{\lambda}$ is al.v.c, then $P_{\lambda} \bullet f: X \to Y_{\lambda}$ is al.v.c for every $\lambda \in \Lambda$; $P_{\lambda}:\Pi Y_{\lambda}$ onto Y_{λ} .

Note 2: With respect to usual topology on \Re , open sets and regular open sets are one and the same. So converse of theorem 3.5 is not true in general, as shown by.

Example 1: Let $X = X_1 = X_2 = [0, 1]$. Let $f_1: X \to X_1$ and $f_2: X \to X_2$ are defined as follows: $f_1(x) = 1$ if $0 \le x \le 1/2$ and $f_1(x) = 0$ if $1/2 \le x \le 1$. $f_2(x) = 1$ if $0 \le x \le 1/2$ and $f_2(x) = 0$ if $1/2 \le x \le 1$. Then $f_i: X \to X_i$ is clearly al.v.c. for i = 1, 2., but $h(x) = (f_1(x_1), f_2(x_2)): X \to X_1 \times X_2$ is not al.v.c., for $S_{1/2}(1, 0) \in RO(X_1 \times X_2)$, but $h^{-1}(S_{1/2}(1, 0)) = \{1/2\} \notin vO(X)$.

Remark 1: In general, (i) The algebraic sum; product and composition of two al.v.c. functions is not al.v.c. However the scalar multiple of al.v.c. function is al.v.c.
(ii)The pointwise limit of a sequence of al.v.c. functions is not al.v.c.
(iii) al.v.c. function of al.v.c. function is not al.v.c. as shown by the following examples.

Example 2: Let $X = X_1 = X_2 = [0, 1]$. Let $f_1: X \rightarrow X_1$ and $f_2: X \rightarrow X_2$ are defined as follows: $f_1(x) = x$ if 0 < x < 1/2 and $f_1(x) = 0$ if 1/2 < x < 1; $f_2(x) = 0$ if 0 < x < 1/2 and $f_2(x) = 1$ if 1/2 < x < 1. Then their product is not al.*v*.c.

Example 3: Let X = Y = [0, 1]. Let f_n defined on X as follows: $f_n(x) = x_n$ for $n \ge 1$ then f is the limit of the sequence where f(x) = 0 if $0 \le x < 1$ and f(x) = 1 if x = 1. Therefore f is not al.v.c. For (1/2, 1] is v-open in Y, $f^{-1}((1/2, 1]) = (1)$ is not v-open in X.

However we can prove the following theorem.

Theorem 3.6: Uniform Limit of a sequence of al.v.c. functions is al.v.c.

Problem: (i) Are $\sup\{f, g\}$ and $\inf\{f, g\}$ are al.v.c if f, g are al.v.c (ii) Is $C_{al.v.c}(X, R)$, the set of all al.v.c functions,

International Journal of Mathematical Engineering and Science		
ISSN : 2277-6982	Volume 1 Issue 8 (August 2012)	
http://www.ijmes.com/	https://sites.google.com/site/ijmesjournal/	

(1) a Group.(2) a Ring.(3) a Vector space.(4) a Lattice.Solution: No.

Example 4: Let X = Y = [0, 1]. Let $f: X \rightarrow Y$ be defined as follows: f(x) = 1 if $0 \le x < 1/2$ and f(x) = 0 if $1/2 < x \le 1$. Then obviously f is al.*v*.c. but not r-continuous.

Example 5: Let $X = Y = \{a, b, c\}$; $\tau = \{\phi, \{a\}, \{b\}, \{a, b\}, X\}$ and $\sigma = \{\phi, \{a\}, \{b\}, \{a, b\}, \{a, c\}, X\}$. Then the identity map *f*: $X \rightarrow Y$ is al.s.c., and al.v.c. but not al.c., and r-irresolute.

Example 6: Let $X = Y = \{a, b, c\}$; $\tau = \{\phi, \{b\}, \{a, b\}, \{b, c\}, X\}$ and $\sigma = \{\phi, \{a\}, \{b\}, \{a, b\}, \{a, c\}, X\}$. Let *f*: X \rightarrow Y be defined as *f*(a) = b; *f*(b) = a; *f*(c) = c is not al.s.c., al.c., al.v.c., and r-irresolute.

under usual topology on \Re both continuous and nearly-continuous are same as well both al.s.c. and al.v.c. are same. In general, al.c and al.v.c. maps are independent to each other.

Theorem 3.7: (i) If $R\alpha O(X) = vO(X)$ then *f* is al.r α .c. iff *f* is al.*v*.c. (ii) If vO(X) = RO(X) then *f* is al.*v*.c. iff *f* is r-irresolute. (iii) If $vO(X) = \alpha O(X)$ then *f* is al. α .c. iff *f* is al.*v*.c. (iv) If vO(X) = SO(X) then *f* is al.s.c. iff *f* is al.*v*.c. (v) If $vO(X) = \beta O(X)$ then *f* is al. β .c. iff *f* is al.*v*.c.

Theorem 3.8: (i) If f is al.v.c. and g is r-irresolute then $g \bullet f$ is al.v.c.

(ii) If f and g are r-irresolute then $g \bullet f$ is al.v.c.

(iii)If f is v.c.[al.v.c.]; g is al.g.c.[al.rg.c.] and Y is $T_{1/2}[rT_{1/2}]$, then $g \bullet f$ is al.v.c.

(iv) If f is al.v.c.; [resp: v.c.;] g is g.c. [rg.c.] and every g-open set [rg-open] in Y is r-open, then $g \bullet f$ is al.v.c.

International Journal of Mathematical Engineering and Science		
ISSN : 2277-6982	Volume 1 Issue 8 (August 2012)	
http://www.ijmes.com/	https://sites.google.com/site/ijmesjournal/	

Theorem 3.9: If f is v-irresolute, v-open and $vO(X) = \tau$ and g be a function, then $g \bullet f$ is al.v.c iff g is al.v.c.

Definition 3.2: f is said to be M-v-open if f(V) is v-open in Y whenever V is v-open in X.

Example 7: Let $X = Y = \Re$ with usual topology and *f* be defined by f(x) = 1 for all $x \in X$ then X is *v*-open in X but f(X) is not *v*-open in Y.

Theorem 3.10: Let X, Y, Z be spaces and every *v*-open set is r-open in Y, then the composition of two al.*v*.c.[resp:*v*-continuous] maps is al.*v*.c.

Corollary 3.1: (i) If f be r-open, al.v.c. and g be al.v.c., then $g \bullet f$ is al.v.c.

(ii) If f is v-irresolute, M-v-open and bijective, g is a function. Then g is al.v.c. iff $g \bullet f$ is al.v.c.

(iii) If f is al.v.c. and g is r-irresolute then $g \bullet f$ is al.s.c. and al. β .c.

(iv) If f is v.c., [r.c.,]; g is al.g.c., [al.rg.c.,] and Y is $T_{1/2}[rT_{1/2}]$, then $g \bullet f$ is al.s.c. and al. β .c.

Note 3: Pasting Lemma is not true with respect to al.*v*.c. functions. However we have the following weaker versions.

Theorem 3.11: Pasting Lemma: Let X; Y be such that $X = A \cup B$. Let f_{A} and g_{B} are al.v.c.[resp: r-irresolute] such that f(x) = g(x) for every $x \in A \cap B$. If A, $B \in RO(X)$ and vO(X)[resp: RO(X)] is closed under finite unions, then the combination $\alpha: X \rightarrow Y$ is al.v.c.

4. Further Results on almost-v-continuous functions:

Theorem 4.1: The following statements are equivalent for a function *f*:

(1)*f* is al.*v*.c.;

(2) $f^{-1}(F) \in vC(X)$ for every $F \in RC(Y)$;

(3) for each $x \in X$ and each $F \in RC(Y, f(x))$, there exists $U \in v C(X, x)$ such that $f(U) \subset F$;

(4) for each $x \in X$ and each $F \in RO(Y)$ non-containing f(x), there exists $K \in vO(X)$ non-containing x such that $f^{-1}(V) \subset K$;

 $(5) f^{-1}(int(cl(G)) \subset vO(X)$ for every r-open subset G of Y;

 $(6) f^{-1}(cl(int(F))) \subset vC(X)$ for every r-closed subset F of Y.

Example 8: Let $X = \{a, b, c\}, \tau = \sigma = \{\phi, \{b\}, \{c\}, \{b, c\}, X\}$. Then the identity function f on X is al.v.c. But it is not regular set-connected.

Example 9: Let $X = \{a, b, c\}, \tau = \{\phi, X\}$ and $\sigma = \{\phi, \{a\}, X\}$. The identity function *f* on X and *f* defined as f(a) = b; f(b) = c; f(c) = a are al.v.c. function which is not c.v.c., and v.c.

Remark 2: Every restriction of an al.v.c. function is not necessarily al.v.c.

Theorem 4.2: Let *f* be a function and $\Sigma = \{U_{\alpha} : \alpha \in I\}$ be a *v*-cover of X. If for each $\alpha \in I$, $f_{|U_{\alpha}|}$ is al.*v*.c., then *f* is an al.*v*.c.

Proof: Let $F \in RO(Y)$. $f_{|U\alpha|}$ is al.v.c. for each $\alpha \in I$, $f_{|U\alpha|}^{-1}(F) \in vO_{|U\alpha|}$. Since $U_{\alpha} \in vO(X)$, $f_{|U\alpha|}^{-1}(F) \in vO(X)$ for each $\alpha \in I$. Then $f^{-1}(F) = \bigcup_{\alpha \in I} f_{|U\alpha|}^{-1}(F) \in vO(X)$. Thus f is al.v.c.

Theorem 4.3: Let *f* be a function and $x \in X$. If $\exists U \in RO(X, x)$ and $f_{|U|}$ is al.*v*.c. at *x*, then *f* is al.*v*.c. at *x*.

Proof: Let $F \in RO(Y, f(x))$. Since $f_{|U}$ is al.*v*.c. at x, there exists $V \in vO(U, x)$ such that $f(V) = (f_{|U})(V) \subset F$. Since $U \in RO(X, x)$, it follows that $V \in vO(X, x)$. Therefore *f* is al.*v*.c. at x.

Theorem 4.4: Let *f* be a function and let $g: X \to X \times Y$ be the graph function of *f*, defined by g(x) = (x, f(x)) for every $x \in X$. If *g* is al.*v*.c., then *f* is al.*v*.c.

Proof: Let $V \in RC(Y)$, then $X \times V = X \times cl(int(V)) = cl(int(X)) \times cl(int(V)) = cl(int(X \times V)) \in RC(X \times Y)$. Since g is al.v.c., then $f^{-1}(V) = g^{-1}(X \times V) \in vC(X)$. Thus, f is al.v.c.

Theorem 4.5: For *f* and *g*. The following properties hold:

(1) If f is al.v.c. [c.v.c.] and g is regular set-connected, then $g \bullet f$ is al.v.c.

(2) If f is al.v.c. and g is perfectly continuous, then $g \bullet f$ is v.c. and c.v.c.

Theorem 4.6: If f is a surjective M-v-open[resp:M-v-closed] and g is a function such that $g \bullet f$ is al.v.c., then g is al.v.c.

Theorem 4.7: If f is al.v.c., then for each point $x \in X$ and each filter base Λ in X v-converging to x, the filter base $f(\Lambda)$ is rc-convergent to f(x).

Definition 4.2: A function *f* is called (*v*, s)-continuous if for each $x \in X$ and each $V \in$ SO(Y, f(x)), there exists $U \in v O(X, x)$ such that $f(U) \subset cl\{V\}$.

Theorem 4.8: For *f*, the following properties are equivalent:
(1) *f* is (*v*, s)-continuous;
(2) *f* is al.*v*.c.;
(3) *f*⁻¹(V) is *v*-open in X for each θ-semi-open set V of Y;
(4) *f*⁻¹(F) is *v*-closed in X for each θ-semi-closed set F of Y.

Theorem 4.9: For *f*, the following properties are equivalent:

(1) *f* is al.v.c.; (2) $f(v(cl A)) \subset sCl_{\theta}(f(A))$ for every subset A of X; (3) $vcl\{(f^{-1}(B))\} \subset f^{-1}(sCl_{\theta}(B))$ for every subset B of Y.

5. The preservation theorems:

Theorem 5.1: If f is al.v.c.[r-irresolute] surjection and X is v-compact, then Y is compact[resp: nearly compact].

Theorem 5.2: If *f* is al.*v*.c.[r-irresolute], surjection. Then the following statements hold: (i) If X is *v*-compact[*v*-lindeloff; s-closed] then Y is mildly compact[mildly lindeloff].

(ii) If X is locally *v*-compact, then Y is locally compact[locally nearly compact; locally mildly compact.]

(iii)If X is *v*-Lindeloff[locally *v*-lindeloff], then Y is Lindeloff[resp: locally Lindeloff; nearly Lindeloff; locally nearly Lindeloff; locally mildly lindeloff].

(v) If X is *v*-compact[resp: countably *v*-compact], then Y is S-closed[resp: countably S-closed].

(vi) If X is v-Lindelof, then Y is S-Lindelof[resp: nearly Lindeloff].

Theorem 5.3: If f is an r-irresolute and al.c. surjection and X is mildly compact (resp. mildly countably compact, mildly Lindelof), then Y is nearly compact (resp. nearly countably compact, nearly Lindelof) and S-closed (resp. countably S-closed, S-Lindelof).

Theorem 5.4: (i) If *f* is al.*v*.c.[contra *v*-irreolute] surjection and X is *v*-connected, then Y is connected[*v*-connected]

(ii) If X is v-ultra-connected and f is al.v.c. and surjective, then Y is hyperconnected.

(iii) The inverse image of a disconnected[*v*-disconnected] space under al.*v*.c.,[contra *v*-irreolute] surjection is *v*-disconnected.

Theorem 5.6: If f is al.v.c., injection and

(i) Y is $UT_i[resp: UC_i; UD_i]$, then X is $v T_i[resp: v C_i; vD_i]$ and hence semi $T_i[resp: semi C_i;$ semi $D_i]$ and $\beta T_i[resp: \beta C_i; \beta D_i]$ i = 0,1,2.

(ii) Y is UR_i, then X is v-R_i[hence semi-R_i and β R_i] i = 0, 1.

(iii) If f is closed, Y is UT_i, then X is v-T_i[hence semi-T_i and β T_i] i = 3, 4.

Theorem 5.7: (i) If *f* is al.*v*.c.[resp: al.r.c] and Y is UT₂, then the graph G(f) of *f* is *v*-closed[resp:semi-closed; β -closed and semi- θ -closed] in X×Y.

(ii) If f is al.v.c.[al.r.c] and Y is UT₂, then A = $\{(x_1, x_2) | f(x_1) = f(x_2)\}$ is v-closed[and hence semi-closed and β -closed] in X× X.

(iii) If *f* is r-irresolute{al.c.}; *g* is c.v.c; and Y is UT₂, then $E = \{x \in X : f(x) = g(x)\}$ is v-closed[and hence semi-closed and β -closed] in X.

International Journal of Mathematical Engineering and Science		
ISSN : 2277-6982	Volume 1 Issue 8 (August 2012)	
http://www.ijmes.com/	https://sites.google.com/site/ijmesjournal/	

(iii) If f is al.v.c. injection and Y is rT_2 , then X is v-T_i; i = 0,1,2.

6. Relations to weak forms of continuity:

Definition 6.1: A function *f* is said to be faintly *v*-continuous if for each $x \in X$ and each θ open set V of Y containing f(x), there exists $U \in v O(X, x)$ such that $f(U) \subset V$.

Example 10: Let $X = \{a, b, c\}, \tau = \{\phi, \{a, b\}, X\}$ and $\sigma = \{\phi, \{a\}, \{b, c\}, X\}$. Then, the identity function *f* is not al.v.c and is not weakly continuous.

Example 11: Let $X = \{a, b, c\}, \tau = \{\phi, \{a\}, \{a, b\}, \{a, c\}, X\}$ and $\sigma = \{\phi, \{a\}, \{a, b\}, X\}$. Then, the identity function *f* is (θ, s) -continuous and al.v.c.

Example 12: Let \Re be the reals with the usual topology and $f: \Re \to \Re$ the identity function. Then f is continuous; weakly continuous; al.p.c., and al.v.c.

Example 13: Let $X = \{a, b, c\}, \tau = \{\phi, \{a\}, \{b\}, \{a, b\}, \{a, c\}, X\}$ and $\sigma = \{\phi, \{b\}, \{c\}, \{b, c\}, X\}$. Then the identity function *f* on X is c.c., c.s.c., but it is not al.*v*.c.

Corollary 6.1: If *f* is M-*v*-open and c.*v*.c., then *f* is al.*v*.c.

Lemma 6.1: For *f*, the following properties are equivalent:

(1) *f* is faintly-*v*-continuous;

(2) $f^{-1}(V) \in vO(X)$ for every θ -open set V of Y;

 $(3) f^{-1}(K) \in vC(X)$ for every θ -closed set K of Y.

Theorem 6.1: If for each $x_1 \neq x_2 \in X$ there exists a function f of X into a Urysohn space Y such that $f(x_1) \neq f(x_2)$ and f is al.v.c., at x_1 and x_2 , then X is v-T₂. **Proof:** Let $x_1 \neq x_2$. By hypothesis, $\exists V_i \in (\sigma_i f(x_i))$ s.t., $\bigcirc cl(V_i) = \phi$ for i = 1, 2. For f is

al.v.c., at x_i , $\exists U_i \in vO(X, x_i)$ s.t., $f(U_i) \subset cl(V_i)$ for i = 1, 2, and $\cap U_i = \phi$. Hence X is vT_2 .

Corollary 6.2: If f is al.v.c. injection and Y is Urysohn, then X is v T₂.

Theorem 6.2: { $x \in X$: f is not al.v.c.} is identical with the union of the *v*-frontier of the inverse images of regular closed sets of Y containing f(x).

Proof: If *f* is not al.*v*.c. at $x \in X$. By Theorem 4.1,, $\exists F \in RC(Y, f(x))$ s.t., $f(U) \cap (Y - F) \neq \phi$ for every $U \in vO(X, x)$. Then $x \in vcl(f^{-1}(Y - F)) = vcl(X - f^{-1}(F))$. On the other hand, we get $x \in f^{-1}(F) \subset vcl(f^{-1}(F))$ and hence $x \in v \operatorname{Fr}(f^{-1}(F))$.

Conversely, If *f* is al.*v*.c. at x and $F \in RO(Y, f(x))$. By Thm. 4.1, $\exists U \in vO(X, x)$ s.t $x \in U \subset f^{-1}(F)$. Hence $x \in vint(f^{-1}(F))$, which contradicts $x \in vFr(f^{-1}(F))$. Thus *f* is not al.*v*.c.

Definition 6.2: A function *f* is said to have a strongly contra-*v*-closed graph if for each (x, $y \in (X \times Y) - g(f)$ there exists $U \in vO(X, x)$ and $V \in RC(Y, y)$ such that $(U \times V) \cap \{g(f)\} = \phi$.

Lemma 6.2: *f* has a strongly contra-*v*-closed graph iff for each (x, y) \in (X× Y) - *g*(*f*) \exists U $\in vO(X, x)$ and V $\in RC(Y, y)$ such that $f(U) \cap V = \phi$.

Theorem 6.3: If *f* is al.*v*.c. and Y is Hausdorff, then g(f) is strongly contra-*v*-closed. **Proof:** If $(x, y) \in (X \times Y)$ -g(f), then $y \neq f(x)$. Since Y is T_2 , $\exists V \in (\sigma, y)$ and $W \in (\sigma, f(x))$, s.t., $V \cap W = \phi$; hence $cl(V) \cap int(cl(W)) = \phi$. Since *f* is al.*v*.c., by Lemma 6.3 $\exists U \in vO(X, x)$ s.t., $f(U) \subset int(cl(W))$. Thus $f(U) \cap cl(V) = \phi$ and hence g(f) is strongly contrav-closed.

Theorem 6.4: If *f* is injective al.*v*.c. with strongly contra-*v*-closed graph, then X is vT_2 . **Proof:** Let $x \neq y \in X$. Since *f* is injective, we have $f(x) \neq f(y)$ and $(x, f(y)) \in (X \times Y) - g(f)$. Since g(f) is strongly contra-*v*-closed, by Lemma 6.2 there exists $U \in vO(X, x)$ and $V \in RC(Y, f(y))$ such that $f(U) \cap V = \phi$. Since *f* is al.*v*.c., by Theorem 4.1, there exists $G \in vO(X, y)$ such that $f(G) \subset V$. Therefore $f(U) \cap f(G) = \phi$; hence $U \cap G = \phi$. Thus X is vT_2 .

Corollary 6.3: If f is al.v.c. and Y is Urysohn, then g(f) is strongly contra-v-closed and contra-v-closed.

CONCLUSION: In this paper we defined almost *v*-continuous functions, studied its properties and their interrelations with other types of almost-continuous functions.

Acknowledgment: The authors would like to thank the referees for their suggestion and critical comments for the development of the paper.

References:

1. Ahmad Al-Omari and Mohd.Salmi Md.Noorani, Some Properties of Contra-b-Continuous and Almost Contra-b-Continuous Functions, E.J.P.A.M., 2(2)(2009)213-230.

2. D.Andrijevic, semipre-open sets, Mat. Vesnick 38(1986), 24-32.

3. C.W.Baker, Subcontra-continuous functions, I.J.M.M.S., 21(1)(1998)19-24.

 C.W.Baker, On contra almost β-continuous functions in Topological Spaces, Kochi. J. M.,1 (2006)1-8.

5. S.Balasubramanian, C.Sandhya and P.A.S.Vyjayanthi, *v*-open sets and *v*-mappings, I.J.M.S.E.A,4(2)(June, 2010)395-405.

6. S.Balasubramanian, C.Sandhya and P.A.S.Vyjayanthi, note on *v*-continuity, Bull. Kerala Math. Association, 6(2)(Dec 2010)21-28.

7. S.Balasubramanian and P.A.S.Vyjayanthi, *v*-open mappings, Scientia Magna, 6(4) (2010)118-124.

8. S.Balasubramanian and P.A.S.Vyjayanthi, v-closed mappings, J.Adv.Res.Pure Math., 3(1)(2011)135-143.

9] J. Dontchev, M. Ganster and I. Reilly, More on almost s-continuity, *Indian J. Math.*,41 (1999), 139–146.

10. E. Ekici. Generalization of perfectly continuous, regular set-connected and clopen functions. *Acta Math. Hungar* 107 (3) (2005), 193–206.

11. J. E. Joseph and M. H. Kwack, *On S-closed spaces*, Proc. Amer.Math. Soc., **80** (1980), 341–348.

12. T. Noiri, S. Jafari, Properties of $(\theta; s)$ -continuous functions, Topology and its Applications, 123(2002), 167 – 179.

13. M.K.Singhal, A.R.Singhal. Almost continuous mappings. Yokohama. J. Math., 16 (1968)63-73.