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1. introduction

In 1926 H.Levy[1] proved that a second order symmetric parallel non-singular tensor on

a space of constant curvature is a constant multiple of the metric tensor. In recent papers

R.Sharma([2],[3],[4]) generalized Levy’s result and also studied a second order parallel

tensor on Kaehler space of constant holomorphic sectional curvature as well as contact

manifolds.In 1996 U.C.De[5] studied second order parallel tensor on a P-Sasakian mani-

fold.Recently L.Das[6] studied a second order parallel tensor on a α-Sasakian manifold.
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In this shown that in a regular generalized Sasakian space-form admits the second order

symmetric parallel covariant tensorα is a constant multiple of the associated metric tensor

if β 6= 0,where β is a function satisfying ξβ = 0. Further, it is shown that on a regular

generalized Sasakian space-form there is no nonzero second order skew-symmetric parallel

tensor when β 6= 0.

2. Generalized Sasakian space-forms

The nature of a Riemannian manifold mostly depends on the curvature tensor R of the

manifold. It is well known that the sectional curvatures of a manifold determine curvature

tensor completely. A Riemannian manifold with constant sectional curvature c is known

as real-space-form and its curvature tensor is given by

R(X, Y )Z = c[g(Y, Z)X − g(X,Z)Y ]. (2.1)

A Sasakian manifold with constant φ-sectional curvature is a Sasakian-space-form and

it has a specific form of its curvature tensor. Similar notion also holds for Kenmotsu and

cosymplectic space-forms. In order to generalize such space-forms in a common frame

P. Alegre,D.E.Blair and A.Carriazo introduced the notion of generalized Sasakian-space-

forms in 2004[7].In this connection it should be mentioned that in 1989 Z.Olszak[8] studied

generalized complex-space-forms and proved its existence. A generalized Sasakian-space-

form is defined in[7]: Given an almost contact metric manifold M(φ, ξ, η, g), we say that

M is generalized Sasakian-space-form if there exist three functions f1,f2,f3 on M such

that the curvature tensor R is given by

R(X, Y )Z = f1[g(Y, Z)X − g(X,Z)Y ] + f2[g(X,φZ)φY − g(Y, φZ)φX + 2g(X,φY )φZ]

+ f3[η(X)η(Z)Y − η(Y )η(Z)X + g(X,Z)η(Y )ξ − g(Y, Z)η(X)ξ],

(2.2)

for any vector fields X,Y,Z on M . In such a case we denote the manifold as M(f1, f2, f3).

In[7] the authors cited several examples of such manifolds. If f1 = c+3
4

,f2 = c−1
4

and f3 =
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c−1
4

then a generalized Sasakian space-form with Sasakian structure becomes Sasakian-

space-form.

Generalized Sasakian-space-forms and Sasakian-space-forms have been studied by sev-

eral authors,viz., [7],[9],[10],[11].Symmetry of a manifold is the most important property

among its all geometrical properties. Symmetry property of manifolds have been stud-

ied by many authors, viz.,[13],[14]. As a weaker notion of locally symmetric manifolds

T.Takahashi[17] introduced and studied locally φ-symmetric Sasakian manifolds. Symme-

try of a manifold primarily depends on curvature tensor and Ricci tensor of the manifold.

3. Preliminaries

A (2n+1)-dimensional Riemannian manifold (M, g) is called an almost contact manifold

if the following results hold[9]:

φ2(X) = −X + η(X)ξ, (3.1)

φξ = 0, η(ξ) = 1, (3.2)

g(X, ξ) = η(X), η(φX) = 0, (3.3)

g(φX, φY ) = g(X, Y )− η(X)η(Y ), (3.4)

g(φX, Y ) = −g(X,φY ), (3.5)

g(φX,X) = 0, (3.6)

(∇Xη)(Y ) = g(∇Xξ, Y ), (3.7)

An almost contact metric manifold is called contact metric manifold if

dη(X, Y ) = φ(X, Y ) = g(X,φY ). (3.8)

φ is called the fundamental two form of the manifold. If in addition ξ is a Killing vector the

manifold is called a K-contact manifold. It is well known that a contact metric manifold is

K-contact if and only if ∇Xξ = −φX, for any vector field X on M . On the other hand a
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normal contact metric manifold is known as Sasakian manifold. An almost contact metric

manifold is Sasakian if and only if

(∇Xφ)Y = g(X, Y )ξ − η(Y )X, (3.9)

for any vector field X,Y. In 1967, D.E.Blair introduced the notion of quasi-Sasakian mani-

fold to unify Sasakian and cosymplectic manifolds[19]. Again in 1987, Z.Olszak introduced

and characterized three-dimensional quasi-Sasakian manifolds[18]. An almost contact

metric manifold of dimension three is quasi-Sasakian if and only if

∇Xξ = −βφX, (3.10)

for all X ∈ TM and a function β such that ξβ = 0. As a consequence of (3.10), we get

(∇Xη)(Y ) = g(∇Xξ, Y ) = −βg(φX, Y ), (3.11)

(∇Xη)(ξ) = −βg(φX, ξ) = 0. (3.12)

Clearly such a quasi-Sasakian manifold is cosymplectic if and only if β = 0. It is known

that[20] for a three-dimensional quasi-Sasakian manifold the Riemannian curvature tensor

satisfies

R(X, Y )ξ = β2[η(Y )X − η(X)Y ] + dβ(Y )φX − dβ(X)φY. (3.13)

For a (2n+1)-dimensional generalized Sasakian-space-form, we have

R(X, Y )Z = f1[g(Y, Z)X − g(X,Z)Y ] + f2[g(X,φZ)φY − g(Y, φZ)φX + 2g(X,φY )φZ]

+ f3[η(X)η(Z)Y − η(Y )η(Z)X + g(X,Z)η(Y )ξ − g(Y, Z)η(X)ξ],

(3.14)

R(X, Y )ξ = (f1 − f3)[η(Y )X − η(X)Y ], (3.15)

R(ξ,X)Y = (f1 − f3)[g(X, Y )ξ − η(Y )X], (3.16)

g(R(ξ,X)Y, ξ) = (f1 − f3)g(φX, φY ), (3.17)

R(ξ,X)ξ = (f1 − f3)φ2X, (3.18)

S(X, Y ) = (2nf1 + 3f2 − f3)g(X, Y )− (3f2 + (2n− 1)f3)η(X)η(Y ), (3.19)

Qξ = 2n(f1 − f3)ξ, (3.20)

S(φX, φY ) = S(X, Y ) + 2n(f3 − f1)η(X)η(Y ), (3.21)
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r = 2n(2n− 1)f1 + 6nf2 − 4nf3. (3.22)

Here S is the Ricci tensor and r is the scalar curvature tensor of the space-forms. A

generalized Sasakian space-form of dimension greater than three is said to be conformally

flat if and only if Weyl-conformal curvature tensor vanishes. It is known that[11] a (2n+1)-

dimensional(n > 1) generalized Sasakian space-form is conformally flat if and only if

f2 = 0.

4. Second order parallel tensors

Definition 4.1. A tensor α of second order is said to be a parallel tensor if ∇α = 0,

where ∇ denotes the operator of covariant differentiation with respect to the metric tensor

g.

Let α be a (0,2)-symmetric tensor field on a generalized Sasakian space-form M, such

that ∇α = 0. Applying the Ricci identity[2], we get

∇2α(X, Y ;Z,W )−∇2α(X, Y ;W,Z) = 0 (4.1)

which gives

α(R(W,X)Y, Z) + α(Y,R(W,X)Z) = 0, (4.2)

for arbitrary vector fields W,X,Y,Z on M. The substitution of Y = Z = ξ in (4.2) gives

α(ξ, R(W,X)ξ) = 0 (4.3)

since α is symmetric. By using the expression (3.14) for generalized Sasakian spaceform

and (3.18)in the above equation, we get

(f1 − f3)[g(X, ξ)α(W, ξ)− g(W, ξ)α(X, ξ)] = 0. (4.4)

Definition 4.2. M2n+1(ξ) is called regular if (f1 − f3 6= 0).

In order to obtain a characterization of such manifolds we consider:
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Definition 4.3. ( [16] ) ξ is called semi-torse forming vector field for (M,g) if, for all

vector fields X:

R(X, ξ)ξ = 0. (4.5)

From (3.16) we get

R(X, ξ)ξ = (f1 − f3)(X − η(X)ξ) (4.6)

and therefore, if X ∈ kerη = ξ⊥,then R(X, ξ)ξ = (f1 − f3)X and we obtain:

Proposition 1. For M2n+1(ξ) the following are equivalent: i) is regular,

ii)ξ is not semi-torse forming,

iii)S(ξ, ξ) 6= 0 i.e.,ξ is non-degenerate with respect to S,

iv) Q(ξ) 6= 0 i.e.,ξ does not belong to the kernel of Q.

In particular,if ξ is parallel (∇ξ = 0)then M is not regular.

In the following we restrict to the regular case. Returning to (4.4), with W = ξ then

we obtain:

η(X)α(ξ, ξ)− α(X, ξ) = 0. (4.7)

Moreover, by differentiating (4.7) covariantly along Y,we get

[g(∇YX, ξ)+g(X,∇Y ξ)]α(ξ, ξ)+2g(X, ξ)α(∇Y ξ, ξ)−[α(∇YX, ξ)+α(X,∇Y ξ)] = 0. (4.8)

Put X = ∇YX in (4.7)

g(∇YX, ξ)α(ξ, ξ)− α(∇YX, ξ) = 0. (4.9)

From (4.8) and (4.9), we get

− βg(X,φY )α(ξ, ξ)− 2βg(X, ξ)α(φY, ξ) + βα(X,φY ) = 0. (4.10)

Replace X by φY in (4.7), we have

α(φY, ξ) = 0. (4.11)

From (4.10) and (4.11) it follows that

− β[g(X,φY )α(ξ, ξ)− α(X,φY )] = 0. (4.12)
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Replacing Y by φY in (4.12) and using (3.1),(4.7), we get

− β[α(X, Y )− g(X, Y )α(ξ, ξ)] = 0. (4.13)

By differentiating (4.13) covariantly along any vector field on M, it can be easily seen that

α(ξ, ξ) is constant when β 6= 0. Hence we can state the following theorem:

Theorem 4.1. A parallel second order symmetric covariant tensor in a regular General-

ized Sasakian space forms is a constant multiple of the metric tensor when β 6= 0.

Next, Let M be a generalized Sasakian space-form and α be a parallel 2-form. Putting

Y = W = ξ in (4.2), we obtain

α(R(ξ,X)ξ, Z) + α(ξ, R(ξ,X)Z) = 0. (4.14)

Using (3.16) and (3.18) then we get,

(f1 − f3)[α(ξ, Z)η(X)− α(X,Z) + α(ξ, ξ)g(X,Z)− α(ξ,X)η(Z)] = 0, (4.15)

Here also we restrict to the regular case, ie.,(f1 − f3) 6= 0. Then the above equation

becomes

α(X,Z) = α(ξ, Z)η(X) + α(ξ, ξ)g(X,Z)− α(ξ,X)η(Z), (4.16)

since α is 2-form, that is α is (0,2) skew-symmetric tensor. Therefore α(ξ, ξ) = 0 and

hence (4.16) reduces to

α(X,Z) = α(ξ, Z)η(X)− α(ξ,X)η(Z). (4.17)

Now, let A be (1,1) tensor field which is metrically equivalent to α, ie,α(X, Y ) = g(AX, Y ).

Then from (4.17) we have

g(AX,Z) = η(X)g(Aξ, Z)− η(Z)g(Aξ,X) (4.18)

and thus

AX = η(X)Aξ − g(Aξ,X)ξ (4.19)

Since α is parallel it follows that A is parallel. Hence using ∇Xξ = −βφX, we get

∇X(Aξ) = A(∇Xξ) = A(−βφX). (4.20)
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Thus

∇φX(Aξ) = A(−βφ2X) = β[AX − η(X)Aξ]. (4.21)

Therefore, We have from (4.19) and (4.21)

∇φX(Aξ) = −βg(Aξ,X)ξ. (4.22)

Now, from (4.19) we get

g(Aξ, ξ) = 0. (4.23)

From (4.22) and (4.23),we have

g(∇φX(Aξ), Aξ) = 0. (4.24)

Replacing φX by X in (4.24) and using ∇ξξ = 0,we get

g(∇X(Aξ), Aξ) = 0, (4.25)

for any X, and thus ‖ Aξ ‖=constant on M. From (4.25) we deduce that

g(A(∇Xξ), Aξ) = −g(∇Xξ, A
2ξ) = 0. (4.26)

Replace X by φX in the above equation, it follows that

g(∇φXξ, A
2ξ) = g(−βφ2X,A2ξ) = 0. (4.27)

So

g(X,A2ξ) = g(η(X)ξ, A2ξ), ifβ 6= 0 (4.28)

and hence

A2ξ = − ‖ Aξ ‖2 ξ (4.29)

Differentiating the above equation covariantly along X, we obtain

∇X(A2ξ) = A2(∇Xξ) = − ‖ Aξ ‖2 (∇Xξ), (4.30)

which in turn gives

A2(−βφX) = − ‖ Aξ ‖2 (−βφX). (4.31)

Replacing φX by X, in (4.29) to get

A2X = − ‖ Aξ ‖2 X. (4.32)
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Now, if ‖ Aξ ‖6= 0, then 1
‖Aξ‖ A is an almost complex structure on M. In fact,(J, g) is a

Kahler structure on M. The fundamental 2-form is g(JX, Y ) = λg(AX, Y ) = λα(X, Y ),

with λ = 1
‖Aξ‖ = constant. But (4.19) means

α(X,Z) = η(X)α(ξ, Z)− η(Z)α(ξ,X) (4.33)

and thus α is degenerate, which is a conradiction. Therefore ‖ Aξ ‖= 0 and hence α = 0.

Hence we can state the following theorem:

Theorem 4.2. On a regular generalized Sasakian space-form there is no non-zero second

order skew symmetric parallel tensor if β 6= 0.

Corollary 4.1. A locally Ricci symmetric (∇S = 0) regular generalized Sasakian space-

form is an Einstein manifold.

Remark 4.3. The following statements for generalized Sasakian spaceform are equivalent.

The manifold is (i) Einstein (ii)locally Ricci symmetric (iii) Ricci semi-symmetric that is

R · S = 0.

The implication (i)=⇒(ii)=⇒(iii) is trivial. Now we prove the implication (iii)=⇒(i)

and R.S = 0 means exactly (4.2) with replaced α by S that is

(R(X, Y ) · S)(U, V ) = −S(R(X, Y )U, V )− S(U,R(X, Y )V ). (4.34)

Considering R · S = 0 and putting X = ξ in (4.34), we have

S(R(ξ, Y )U, V ) + S(U,R(ξ, Y )V ) = 0. (4.35)

By using (3.16) and (3.19), we obtain

2n(f1 − f3)2g(Y, U)η(V )− (f1 − f3)η(U)S(Y, V ) + 2n(f1 − f3)2g(Y, V )η(U)

− (f1 − f3)η(V )S(U, Y ) = 0.
(4.36)

Again by putting U = ξ in the above equation and by using (3.2),(3.3) and (3.19), we

obtain

S(Y, V ) = 2n(f1 − f3)g(Y, V ). (4.37)

In conclusion:
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Proposition 2. A Ricci semi-symmetric regular generalized Sasakian spaceform is Ein-

stein.
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