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1. INTRODUCTION

In 1926 H.Levy[I] proved that a second order symmetric parallel non-singular tensor on
a space of constant curvature is a constant multiple of the metric tensor. In recent papers
R.Sharma([2],[3],[4]) generalized Levy’s result and also studied a second order parallel
tensor on Kaehler space of constant holomorphic sectional curvature as well as contact
manifolds.In 1996 U.C.De[5] studied second order parallel tensor on a P-Sasakian mani-

fold.Recently L.Das[0] studied a second order parallel tensor on a a-Sasakian manifold.
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In this shown that in a regular generalized Sasakian space-form admits the second order
symmetric parallel covariant tensora is a constant multiple of the associated metric tensor
if 5 # 0,where (8 is a function satisfying {8 = 0. Further, it is shown that on a regular
generalized Sasakian space-form there is no nonzero second order skew-symmetric parallel

tensor when 3 # 0.

2. GENERALIZED SASAKIAN SPACE-FORMS

The nature of a Riemannian manifold mostly depends on the curvature tensor R of the
manifold. It is well known that the sectional curvatures of a manifold determine curvature
tensor completely. A Riemannian manifold with constant sectional curvature c is known

as real-space-form and its curvature tensor is given by

R(X,Y)Z = c[g(Y, 2)X — g(X, Z)Y]. (2.1)

A Sasakian manifold with constant ¢-sectional curvature is a Sasakian-space-form and
it has a specific form of its curvature tensor. Similar notion also holds for Kenmotsu and
cosymplectic space-forms. In order to generalize such space-forms in a common frame
P. Alegre,D.E.Blair and A.Carriazo introduced the notion of generalized Sasakian-space-
forms in 2004[7].In this connection it should be mentioned that in 1989 Z.0Olszak[§] studied
generalized complex-space-forms and proved its existence. A generalized Sasakian-space-
form is defined in[7]: Given an almost contact metric manifold M (¢, &, n, g), we say that
M is generalized Sasakian-space-form if there exist three functions fi,fs,f3 on M such

that the curvature tensor R is given by
R(X,Y)Z = hlg(Y, 2)X — g(X, 2)Y] + falg(X, 02)¢Y — g(Y,02)9X + 29(X, ¢Y ) 2]

+ fs(XOn(2)Y —n(Y)n(2)X + g(X, Z)n(Y)E — g(Y, Z)n(X)¢],
(2.2)

for any vector fields X,Y,Z on M. In such a case we denote the manifold as M(f1, fo, f3)-

In[7] the authors cited several examples of such manifolds. If f; = <2 f, = <1 and f3 =
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c%%hen a generalized Sasakian space-form with Sasakian structure becomes Sasakian-

space-form.

Generalized Sasakian-space-forms and Sasakian-space-forms have been studied by sev-
eral authors,viz., [7],[9],[10],[11].Symmetry of a manifold is the most important property
among its all geometrical properties. Symmetry property of manifolds have been stud-
ied by many authors, viz.,[13],[14]. As a weaker notion of locally symmetric manifolds
T.Takahashi[I7] introduced and studied locally ¢-symmetric Sasakian manifolds. Symme-

try of a manifold primarily depends on curvature tensor and Ricci tensor of the manifold.

3. PRELIMINARIES

A (2n+1)-dimensional Riemannian manifold (M, g) is called an almost contact manifold

if the following results hold[9]:

¢*(X) = =X +n(X)g, (3.1)

¢§ =0,n(§) =1, (3.2)

9(X, &) = n(X),n(¢X) = 0, (3.3)
90X, 9Y) = g(X,Y) = n(X)n(Y), (3.4)
9(0X,Y) = —g(X, ¢Y), (3.5)
9(¢X, X) =0, (3.6)
(Vxn)(Y) = g(Vx€Y), (3.7)

An almost contact metric manifold is called contact metric manifold if
dn(X,Y) = ¢(X,Y) = g(X, ¢Y). (3.8)

¢ is called the fundamental two form of the manifold. If in addition £ is a Killing vector the
manifold is called a K-contact manifold. It is well known that a contact metric manifold is

K-contact if and only if Vx& = —¢X, for any vector field X on M. On the other hand a
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normal contact metric manifold is known as Sasakian manifold. An almost contact metric

manifold is Sasakian if and only if

(Vx9)Y =g(X,Y)§ —n(Y)X, (3.9)
for any vector field X,Y. In 1967, D.E.Blair introduced the notion of quasi-Sasakian mani-
fold to unify Sasakian and cosymplectic manifolds[19]. Again in 1987, Z.Olszak introduced
and characterized three-dimensional quasi-Sasakian manifolds[I§]. An almost contact
metric manifold of dimension three is quasi-Sasakian if and only if

Vx§ =X, (3.10)

for all X € TM and a function [ such that {5 = 0. As a consequence of (3.10)), we get
(Vxn)(Y) = g(Vx€Y) = —Bg(6X,Y), (3.11)

(Vxn)(§) = —Bg(¢X, &) = 0. (3.12)

Clearly such a quasi-Sasakian manifold is cosymplectic if and only if 5 = 0. It is known
that[20] for a three-dimensional quasi-Sasakian manifold the Riemannian curvature tensor
satisfies

R(X,Y)E = B2[n(Y)X = n(X)Y] + dB(Y)$X — dB(X)oY. (3.13)
For a (2n+1)-dimensional generalized Sasakian-space-form, we have

R(X,Y)Z = filg(Y, 2)X = g(X, 2)Y] + folg(X, 0Z2)0Y — g(Y, 0Z)0X + 29(X, ¢Y)pZ]

+ f3[(X)n(2)Y —n(Y)n(Z2)X + g(X, Z)n(Y)§ — g(Y, Z)n(X)E],

(3.14)
R(X,Y)E = (fi = fs)In(Y)X —n(X)Y], (3.15)

R, X)Y = (fi = f3)[g(X, Y )€ —n(Y)X], (3.16)

g(R(§, X)Y, &) = (f1 — f3)9(0X, 9Y), (3.17)

R(&,X)E = (fi — f3)6°X, (3.18)

S(X,Y) = @2nfi+3f2— f3)9(X.Y) = Bfa + (2n — 1) f3)n(X)n(Y), (3.19)
Q¢ = 2n(f1 — f3)¢, (3.20)

S(¢X,0Y) = S(X,Y) + 2n(fs — f1)n(X)n(Y), (3:21)
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r=2n(2n—1)fi +6nfy —4Anfs. (3.22)

Here S is the Ricci tensor and r is the scalar curvature tensor of the space-forms. A
generalized Sasakian space-form of dimension greater than three is said to be conformally
flat if and only if Weyl-conformal curvature tensor vanishes. It is known that[I1] a (2n+1)-

dimensional(n > 1) generalized Sasakian space-form is conformally flat if and only if

fa=0.

4. SECOND ORDER PARALLEL TENSORS

Definition 4.1. A tensor a of second order is said to be a parallel tensor if Va = 0,

where V denotes the operator of covariant differentiation with respect to the metric tensor

g.

Let « be a (0,2)-symmetric tensor field on a generalized Sasakian space-form M, such

that Va = 0. Applying the Ricci identity[2], we get

Via(X,Y; Z, W) - Va(X,Y;W,Z) =0 (4.1)
which gives

a(RW, X)Y,Z)+ a(Y,R(W,X)Z) =0, (4.2)
for arbitrary vector fields W, X,Y,Z on M. The substitution of Y = Z = ¢ in (4.2)) gives

alE, RV, X)E) =0 (4.3)

since « is symmetric. By using the expression (3.14]) for generalized Sasakian spaceform
and (3.18)in the above equation, we get

(fi = f3)9(X, Ea(W, ) — g(W, §)a(X, §)] = 0. (4.4)

Definition 4.2. M*"*(€) is called reqular if (fi — f3 # 0).

In order to obtain a characterization of such manifolds we consider:
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Definition 4.3. ( [16] ) & is called semi-torse forming vector field for (M,g) if, for all
vector fields X:
R(X, )¢ = 0. (4.5)

From (3.16) we get
R(X.€)¢ = (fi — f)(X —n(X)¢) (46)
and therefore, if X € kern = &4 then R(X,€)¢ = (f1 — f3)X and we obtain:

Proposition 1. For M*"L(£) the following are equivalent: i) is reqular,
)€ is not semi-torse forming,

i11)S(&,€) # 0 i.e.,& is non-degenerate with respect to S,

i) Q&) # 0 i.e..£ does not belong to the kernel of Q.

In particular,if £ is parallel (V€ = 0)then M is not regular.

In the following we restrict to the regular case. Returning to (4.4), with W = £ then

we obtain:
n(X)a(§,§) — a(X,§) = 0. (4.7)
Moreover, by differentiating covariantly along Y,we get
[9(Vy X, §)+9(X, VyEa(E, §)+29(X, a(VyE, ) —[a(Vy X, ) +a(X, VyE)] = 0. (4.8)

Put X = Vy X in [@.7)

9(Vy X, §)a(§,§) — a(Vy X, §) =0. (4.9)
From and (4.9)), we get
— Bg(X, ¢Y)a(€, §) — 2B9(X, §)a(dY, ) + fa(X, ¢Y) = 0. (4.10)

Replace X by ¢Y in (4.7)), we have
a(eY,§) = 0. (4.11)
From and it follows that
— Blg(X, 6Y)al, €) — a(X, V)] = 0. (1.12)
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Replacing Y by ¢Y in and using ,, we get

By differentiating (4.13)) covariantly along any vector field on M, it can be easily seen that

a(&,€) is constant when 8 # 0. Hence we can state the following theorem:

Theorem 4.1. A parallel second order symmetric covariant tensor in a reqular General-

ized Sasakian space forms is a constant multiple of the metric tensor when [ # 0.

Next, Let M be a generalized Sasakian space-form and « be a parallel 2-form. Putting

Y =W =¢in (4.2)), we obtain

a(R(E, X)) Z) +alé,R(E,X)Z) = 0. (4.14)
Using and then we get,
(fr = fs)lalé, 2)n(X) — (X, Z) + (€, §)9(X, Z) — a(€, X)n(2)] = 0, (4.15)

Here also we restrict to the regular case, ie.,(fi — f3) # 0. Then the above equation

becomes
a(X, Z) = a§, Z)n(X) + a(§,§)9(X, Z) — a(§, X)n(Z), (4.16)
since « is 2-form, that is « is (0,2) skew-symmetric tensor. Therefore a(§,&) = 0 and

hence (4.16|) reduces to
a(X, Z) = a(§, Z)n(X) — a(&, X)n(2). (4.17)
Now, let A be (1,1) tensor field which is metrically equivalent to a, ie,a(X,Y) = g(AX,Y).
Then from we have
9(AX, Z) = n(X)g(AE, Z) — n(Z)g(AE, X) (4.18)

and thus
AX = n(X)AE - g(A¢, X)¢ (4.19)

Since « is parallel it follows that A is parallel. Hence using Vx& = —(¢ X, we get

Vx(AS) = A(VxE) = A(—=FoX). (4.20)
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Thus

Vox(A€) = A(=f¢*X) = BIAX —n(X)Ag].

Therefore, We have from (4.19) and
Vex (Ag) = —PBg(AE, X)E.

Now, from (4.19) we get
9(Ag ) = 0.

From (4.22) and (4.23]),we have
9(Vex (A), AG) = 0.

Replacing ¢ X by X in (4.24]) and using V£ = 0,we get

9(Vx(Ag), A) = 0,

for any X, and thus || A¢ ||=constant on M. From (4.25) we deduce that

g(A(VxE), AS) = —g(Vx&, A%) = 0.

Replace X by ¢.X in the above equation, it follows that

9(Vox§, A%€) = (=B X, A%¢) = 0.
So

9(X, A%) = g(n(X)§, A%),ifB #0
and hence

A =— | Ag|I* ¢
Differentiating the above equation covariantly along X, we obtain
Vx(A%) = A*(Vx§) = — || AL |I* (Vx9),
which in turn gives
A (=poX) = — || AL |I* (—BoX).

Replacing ¢ X by X, in to get

APX = — | AP x.

(4.21)

(4.22)

(4.23)

(4.24)

(4.25)

(4.26)

(4.27)

(4.28)

(4.29)

(4.30)

(4.31)

(4.32)
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Now, if || A¢ ||# 0, then m A is an almost complex structure on M. In fact,(/, g) is a

Kahler structure on M. The fundamental 2-form is g(JX,Y) = A\g(AX,Y) = Aa(X,Y),

i - 1
with A = 3z = constant. But (4.19) means

a(X, Z) = n(X)a(§, Z2) —n(Z)a(§, X) (4.33)
and thus « is degenerate, which is a conradiction. Therefore || A¢ ||= 0 and hence a = 0.

Hence we can state the following theorem:

Theorem 4.2. On a regular generalized Sasakian space-form there is no non-zero second

order skew symmetric parallel tensor if § # 0.

Corollary 4.1. A locally Ricci symmetric (VS = 0) reqular generalized Sasakian space-

form is an Einstein manifold.

Remark 4.3. The following statements for generalized Sasakian spaceform are equivalent.
The manifold is (i) Finstein (ii)locally Ricci symmetric (iii) Ricci semi-symmetric that is

R-S5=0.
The implication (i)=(ii)==(iii) is trivial. Now we prove the implication (iii)==(i)
and R.S = 0 means exactly with replaced a by S that is
(R(X,Y)-S)(U,V)=-=S(RX,Y)U,V)—-S(U,RX,Y)V). (4.34)
Considering R - S = 0 and putting X = ¢ in (4.34)), we have
S(R(EY)U, V) 4+ S(U,R(EY)V) = 0. (4.35)
By using and , we obtain
2n(fi = f3)°9(Y,Un(V) = (fr = f)n(U)S(Y. V) + 2n(f1 — f3)*g(Y. V)n(U)
—(fi= fs)n(V)S(U,Y) = 0.
Again by putting U = £ in the above equation and by using , and , we

obtain

(4.36)

S, V) =2n(f1 — f3)9(Y, V). (4.37)

In conclusion:
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Proposition 2. A Ricci semi-symmetric reqular generalized Sasakian spaceform is Ein-

stein.
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